File: sample_datasets.py

package info (click to toggle)
python-azure 20250603%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 851,724 kB
  • sloc: python: 7,362,925; ansic: 804; javascript: 287; makefile: 195; sh: 145; xml: 109
file content (94 lines) | stat: -rw-r--r-- 4,095 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# pylint: disable=line-too-long,useless-suppression
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------

"""
DESCRIPTION:
    Given an AIProjectClient, this sample demonstrates how to use the synchronous
    `.datasets` methods to upload files, create Datasets that reference those files,
    list Datasets and delete Datasets.

USAGE:
    python sample_datasets.py

    Before running the sample:

    pip install azure-ai-projects azure-identity

    Set these environment variables with your own values:
    1) PROJECT_ENDPOINT - Required. The Azure AI Project endpoint, as found in the overview page of your
       Azure AI Foundry project.
    2) CONNECTION_NAME - Required. The name of the Azure Storage Account connection to use for uploading files.
    3) DATASET_NAME - Optional. The name of the Dataset to create and use in this sample.
    4) DATASET_VERSION_1 - Optional. The first version of the Dataset to create and use in this sample.
    5) DATASET_VERSION_2 - Optional. The second version of the Dataset to create and use in this sample.
    6) DATA_FOLDER - Optional. The folder path where the data files for upload are located.
"""

import os
import re
from azure.identity import DefaultAzureCredential
from azure.ai.projects import AIProjectClient
from azure.ai.projects.models import DatasetVersion

endpoint = os.environ["PROJECT_ENDPOINT"]
connection_name = os.environ["CONNECTION_NAME"]
dataset_name = os.environ.get("DATASET_NAME", "dataset-test")
dataset_version_1 = os.environ.get("DATASET_VERSION_1", "1.0")
dataset_version_2 = os.environ.get("DATASET_VERSION_2", "2.0")

# Construct the paths to the data folder and data file used in this sample
script_dir = os.path.dirname(os.path.abspath(__file__))
data_folder = os.environ.get("DATA_FOLDER", os.path.join(script_dir, "data_folder"))
data_file = os.path.join(data_folder, "data_file1.txt")

with DefaultAzureCredential(exclude_interactive_browser_credential=False) as credential:

    with AIProjectClient(endpoint=endpoint, credential=credential) as project_client:

        # [START datasets_sample]
        print(
            f"Upload a single file and create a new Dataset `{dataset_name}`, version `{dataset_version_1}`, to reference the file."
        )
        dataset: DatasetVersion = project_client.datasets.upload_file(
            name=dataset_name,
            version=dataset_version_1,
            file_path=data_file,
            connection_name=connection_name,
        )
        print(dataset)

        print(
            f"Upload files in a folder (including sub-folders) and create a new version `{dataset_version_2}` in the same Dataset, to reference the files."
        )
        dataset = project_client.datasets.upload_folder(
            name=dataset_name,
            version=dataset_version_2,
            folder=data_folder,
            connection_name=connection_name,
            file_pattern=re.compile(r"\.(txt|csv|md)$", re.IGNORECASE),
        )
        print(dataset)

        print(f"Get an existing Dataset version `{dataset_version_1}`:")
        dataset = project_client.datasets.get(name=dataset_name, version=dataset_version_1)
        print(dataset)

        print(f"Get credentials of an existing Dataset version `{dataset_version_1}`:")
        asset_credential = project_client.datasets.get_credentials(name=dataset_name, version=dataset_version_1)
        print(asset_credential)

        print("List latest versions of all Datasets:")
        for dataset in project_client.datasets.list():
            print(dataset)

        print(f"Listing all versions of the Dataset named `{dataset_name}`:")
        for dataset in project_client.datasets.list_versions(name=dataset_name):
            print(dataset)

        print("Delete all Dataset versions created above:")
        project_client.datasets.delete(name=dataset_name, version=dataset_version_1)
        project_client.datasets.delete(name=dataset_name, version=dataset_version_2)
        # [END dataset_sample]