File: sample_evaluations_async.py

package info (click to toggle)
python-azure 20250603%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 851,724 kB
  • sloc: python: 7,362,925; ansic: 804; javascript: 287; makefile: 195; sh: 145; xml: 109
file content (117 lines) | stat: -rw-r--r-- 4,710 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# pylint: disable=line-too-long,useless-suppression
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------

"""
DESCRIPTION:
    Given an AIProjectClient, this sample demonstrates how to use the asynchronous
    `.evaluations` methods to create, get and list evaluations.

USAGE:
    python sample_evaluations_async.py

    Before running the sample:

    pip install azure-ai-projects azure-identity aiohttp

    Set these environment variables with your own values:
    1) PROJECT_ENDPOINT - Required. The Azure AI Project endpoint, as found in the overview page of your
       Azure AI Foundry project.
    2) CONNECTION_NAME - Required. The name of the Azure Storage Account connection to use for uploading files.
    3) DATASET_NAME - Optional. The name of the Dataset to create and use in this sample.
    4) DATASET_VERSION - Optional. The version of the Dataset to create and use in this sample.
    6) DATA_FOLDER - Optional. The folder path where the data files for upload are located.
"""
import asyncio
import os

from azure.identity.aio import DefaultAzureCredential
from azure.ai.projects.aio import AIProjectClient
from azure.ai.projects.models import (
    Evaluation,
    InputDataset,
    EvaluatorConfiguration,
    EvaluatorIds,
    DatasetVersion,
)

# Construct the paths to the data folder and data file used in this sample
script_dir = os.path.dirname(os.path.abspath(__file__))
data_folder = os.environ.get("DATA_FOLDER", os.path.join(script_dir, "data_folder"))
data_file = os.path.join(data_folder, "sample_data_evaluation.jsonl")


async def main() -> None:
    endpoint = os.environ[
        "PROJECT_ENDPOINT"
    ]  # Sample : https://<account_name>.services.ai.azure.com/api/projects/<project_name>
    model_endpoint = os.environ["MODEL_ENDPOINT"]  # Sample : https://<account_name>.services.ai.azure.com
    model_api_key = os.environ["MODEL_API_KEY"]
    model_deployment_name = os.environ["MODEL_DEPLOYMENT_NAME"]  # Sample : gpt-4o-mini
    dataset_name = os.environ.get("DATASET_NAME", "dataset-test")
    dataset_version = os.environ.get("DATASET_VERSION", "1.0")

    async with DefaultAzureCredential() as credential:

        async with AIProjectClient(endpoint=endpoint, credential=credential) as project_client:

            print("Upload a single file and create a new Dataset to reference the file.")
            dataset: DatasetVersion = await project_client.datasets.upload_file(
                name=dataset_name,
                version=dataset_version,
                file_path=data_file,
            )
            print(dataset)

            print("Create an evaluation")
            evaluation: Evaluation = Evaluation(
                display_name="Sample Evaluation Async",
                description="Sample evaluation for testing",
                # Sample Dataset Id : azureai://accounts/<account_name>/projects/<project_name>/data/<dataset_name>/versions/<version>
                data=InputDataset(id=dataset.id if dataset.id else ""),
                evaluators={
                    "relevance": EvaluatorConfiguration(
                        id=EvaluatorIds.RELEVANCE.value,
                        init_params={
                            "deployment_name": model_deployment_name,
                        },
                        data_mapping={
                            "query": "${data.query}",
                            "response": "${data.response}",
                        },
                    ),
                    "violence": EvaluatorConfiguration(
                        id=EvaluatorIds.VIOLENCE.value,
                        init_params={
                            "azure_ai_project": endpoint,
                        },
                    ),
                    "bleu_score": EvaluatorConfiguration(
                        id=EvaluatorIds.BLEU_SCORE.value,
                    ),
                },
            )

            evaluation_response: Evaluation = await project_client.evaluations.create(
                evaluation,
                headers={
                    "model-endpoint": model_endpoint,
                    "api-key": model_api_key,
                },
            )
            print(evaluation_response)

            print("Get evaluation")
            get_evaluation_response: Evaluation = await project_client.evaluations.get(evaluation_response.name)

            print(get_evaluation_response)

            print("List evaluations")
            async for evaluation in project_client.evaluations.list():
                print(evaluation)


if __name__ == "__main__":
    asyncio.run(main())