1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
# pylint: disable=line-too-long,useless-suppression
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------
import csv
import os
import pytest
import importlib.util
from azure.core.exceptions import HttpResponseError
class TestSamples:
"""
Test class for running all samples in the `/sdk/ai/azure-ai-projects/samples` folder.
To run this test:
* 'cd' to the folder '/sdk/ai/azure-ai-projects' in your azure-sdk-for-python repo.
* set PROJECT_ENDPOINT=<your-project-endpoint> - Define your Azure AI Foundry project endpoint used by the test.
* set ENABLE_AZURE_AI_PROJECTS_CONSOLE_LOGGING=false - to make sure logging is not enabled in the test, to reduce console spew.
* Uncomment the two lines that start with "@pytest.mark.skip" below.
* Run: pytest tests/samples/test_samples.py::TestSamples
* Load the resulting report in Excel: tests/samples/samples_report.csv
"""
@classmethod
def setup_class(cls):
current_path = os.path.abspath(__file__)
cls._samples_folder_path = os.path.join(current_path, os.pardir, os.pardir, os.pardir)
cls._results: dict[str, tuple[bool, str]] = {}
@classmethod
def teardown_class(cls):
"""
Class-level teardown method that generates a report file named "samples_report.csv" after all tests have run.
The report contains one line per sample run, with three columns:
1. PASS or FAIL indicating the sample result.
2. The name of the sample.
3. The exception string summary if the sample failed, otherwise empty.
The report is written to the same directory as this test file.
"""
report_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "samples_report.csv")
with open(report_path, mode="w", newline="") as file:
writer = csv.writer(file, quotechar='"', quoting=csv.QUOTE_ALL) # Ensures proper quoting
for test_name, (passed, exception_string) in cls._results.items():
exception_message = f'"{exception_string.splitlines()[0]}"' if exception_string else ""
writer.writerow([f"{'PASS' if passed else 'FAIL'}", test_name, exception_message])
@classmethod
def _set_env_vars(cls, sample_name: str, **kwargs):
"""
Sets environment variables for a given sample run and prints them.
Args:
sample_name (str): The name of the sample being executed.
**kwargs: Arbitrary keyword arguments representing environment variable names and their values.
"""
print(f"\nRunning {sample_name} with environment variables: ", end="")
for key, value in kwargs.items():
if value:
env_key = key.upper()
os.environ[env_key] = value
print(f"{env_key}={value} ", end="")
print("\n")
@classmethod
def _run_sample(cls, sample_name: str) -> None:
"""
Executes a synchronous sample file and records the result.
Args:
sample_name (str): The name of the sample file to execute.
Raises:
Exception: Re-raises any exception encountered during execution of the sample file.
Side Effects:
Updates the class-level _results dictionary with the execution status and error message (if any)
for the given sample.
Prints an error message to stdout if execution fails.
"""
sample_path = os.path.normpath(os.path.join(TestSamples._samples_folder_path, sample_name))
with open(sample_path) as f:
code = f.read()
try:
exec(code)
except HttpResponseError as exc:
exception_message = f"{exc.status_code}, {exc.reason}, {str(exc)}"
TestSamples._results[sample_name] = (False, exception_message)
print(f"=================> Error running sample {sample_path}: {exception_message}")
raise Exception from exc
except Exception as exc:
TestSamples._results[sample_name] = (False, str(exc))
print(f"=================> Error running sample {sample_path}: {exc}")
raise Exception from exc
TestSamples._results[sample_name] = (True, "")
@classmethod
async def _run_sample_async(cls, sample_name: str) -> None:
"""
Asynchronously runs a sample Python script specified by its file name.
This method dynamically imports the sample module from the given file path,
executes its `main()` coroutine, and records the result. If an exception occurs
during execution, the error is logged and re-raised.
Args:
sample_name (str): The name of the sample Python file to run (relative to the samples folder).
Raises:
ImportError: If the sample module cannot be loaded.
Exception: If an error occurs during the execution of the sample's `main()` coroutine.
Side Effects:
Updates the `_results` dictionary with the execution status and error message (if any).
Prints error messages to the console if execution fails.
"""
sample_path = os.path.normpath(os.path.join(TestSamples._samples_folder_path, sample_name))
# Dynamically import the module from the given path
module_name = os.path.splitext(os.path.basename(sample_path))[0]
spec = importlib.util.spec_from_file_location(module_name, sample_path)
if spec is None or spec.loader is None:
raise ImportError(f"Could not load module {module_name} from {sample_path}")
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
# Await the main() coroutine defined in the sample
try:
await module.main()
except HttpResponseError as exc:
exception_message = f"{exc.status_code}, {exc.reason}, {str(exc)}"
TestSamples._results[sample_name] = (False, exception_message)
print(f"=================> Error running sample {sample_path}: {exception_message}")
raise Exception from exc
except Exception as exc:
TestSamples._results[sample_name] = (False, str(exc))
print(f"=================> Error running sample {sample_path}: {exc}")
raise Exception from exc
TestSamples._results[sample_name] = (True, "")
@pytest.mark.parametrize(
"sample_name, model_deployment_name, connection_name, data_folder",
[
("samples\\agents\\sample_agents.py", "gpt-4o", "", ""),
("samples\\connections\\sample_connections.py", "", "connection1", ""),
("samples\\deployments\\sample_deployments.py", "DeepSeek-V3", "", ""),
("samples\\datasets\\sample_datasets.py", "", "balapvbyostoragecanary", "samples\\datasets\\data_folder"),
# ("samples\\evaluation\\sample_evaluations.py", "", "", ""),
("samples\\indexes\\sample_indexes.py", "", "", ""),
("samples\\inference\\sample_chat_completions_with_azure_ai_inference_client.py", "Phi-4", "", ""),
(
"samples\\inference\\sample_chat_completions_with_azure_ai_inference_client_and_azure_monitor_tracing.py",
"Phi-4",
"",
"",
),
(
"samples\\inference\\sample_chat_completions_with_azure_ai_inference_client_and_console_tracing.py",
"Phi-4",
"",
"",
),
(
"samples\\inference\\sample_chat_completions_with_azure_ai_inference_client_and_prompty_file.py",
"Phi-4",
"",
"samples\\inference",
),
(
"samples\\inference\\sample_chat_completions_with_azure_ai_inference_client_and_prompt_string.py",
"Phi-4",
"",
"",
),
("samples\\inference\\sample_chat_completions_with_azure_openai_client.py", "gpt-4o", "connection1", ""),
(
"samples\\inference\\sample_chat_completions_with_azure_openai_client_and_azure_monitor_tracing.py",
"gpt-4o",
"",
"",
),
(
"samples\\inference\\sample_chat_completions_with_azure_openai_client_and_console_tracing.py",
"gpt-4o",
"",
"",
),
(
"samples\\inference\\sample_image_embeddings_with_azure_ai_inference_client.py",
"Cohere-embed-v3-english",
"",
"samples\\inference",
),
(
"samples\\inference\\sample_text_embeddings_with_azure_ai_inference_client.py",
"text-embedding-3-large",
"",
"",
),
("samples\\telemetry\\sample_telemetry.py", "", "", ""),
],
)
@pytest.mark.skip(reason="This test should only run manually on your local machine, with live service calls.")
def test_samples(
self, sample_name: str, model_deployment_name: str, connection_name: str, data_folder: str
) -> None:
"""
Run all the synchronous sample code in the samples folder. If a sample throws an exception, which for example
happens when the service responds with an error, the test will fail.
Before running this test, you need to define the following environment variables:
1) PROJECT_ENDPOINT - The Azure AI Project endpoint, as found in the overview page of your
Azure AI Foundry project.
"""
self._set_env_vars(
sample_name,
**{
"model_deployment_name": model_deployment_name,
"connection_name": connection_name,
"data_folder": data_folder,
},
)
TestSamples._run_sample(sample_name)
@pytest.mark.parametrize(
"sample_name, model_deployment_name, connection_name, data_folder",
[
("samples\\agents\\sample_agents_async.py", "gpt-4o", "", ""),
("samples\\connections\\sample_connections_async.py", "", "connection1", ""),
(
"samples\\datasets\\sample_datasets_async.py",
"",
"balapvbyostoragecanary",
"samples\\datasets\\data_folder",
),
("samples\\deployments\\sample_deployments_async.py", "DeepSeek-V3", "", ""),
# ("samples\\evaluation\\sample_evaluations_async.py", "", "", ""),
("samples\\indexes\\sample_indexes_async.py", "", "", ""),
(
"samples\\inference\\async_samples\\sample_chat_completions_with_azure_ai_inference_client_async.py",
"Phi-4",
"",
"",
),
(
"samples\\inference\\async_samples\\sample_chat_completions_with_azure_openai_client_async.py",
"gpt-4o",
"connection1",
"",
),
(
"samples\\inference\\async_samples\\sample_image_embeddings_with_azure_ai_inference_client_async.py",
"Cohere-embed-v3-english",
"",
"samples\\inference\\async_samples",
),
(
"samples\\inference\\async_samples\\sample_text_embeddings_with_azure_ai_inference_client_async.py",
"text-embedding-3-large",
"",
"",
),
("samples\\telemetry\\sample_telemetry_async.py", "", "", ""),
],
)
@pytest.mark.skip(reason="This test should only run manually on your local machine, with live service calls.")
async def test_samples_async(
self, sample_name: str, model_deployment_name: str, connection_name: str, data_folder: str
) -> None:
"""
Run all the asynchronous sample code in the samples folder. If a sample throws an exception, which for example
happens when the service responds with an error, the test will fail.
Before running this test, you need to define the following environment variables:
1) PROJECT_ENDPOINT - The Azure AI Project endpoint, as found in the overview page of your
Azure AI Foundry project.
"""
self._set_env_vars(
sample_name,
**{
"model_deployment_name": model_deployment_name,
"connection_name": connection_name,
"data_folder": data_folder,
},
)
await TestSamples._run_sample_async(sample_name)
|