1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
"""
FILE: sample_multivariate_detect.py
DESCRIPTION:
This sample demonstrates how to use multivariate dataset to train a model and use the model to detect anomalies.
Prerequisites:
* The Anomaly Detector client library for Python
* A valid data feed
USAGE:
python sample_multivariate_detect.py
Set the environment variables with your own values before running the sample:
1) ANOMALY_DETECTOR_KEY - your source Form Anomaly Detector API key.
2) ANOMALY_DETECTOR_ENDPOINT - the endpoint to your source Anomaly Detector resource.
"""
import json
import os
import time
from datetime import datetime, timezone
from azure.ai.anomalydetector import AnomalyDetectorClient
from azure.core.credentials import AzureKeyCredential
from azure.core.exceptions import HttpResponseError
from azure.ai.anomalydetector.models import *
class MultivariateSample:
def __init__(self, subscription_key, anomaly_detector_endpoint):
self.sub_key = subscription_key
self.end_point = anomaly_detector_endpoint
# Create an Anomaly Detector client
# <client>
self.ad_client = AnomalyDetectorClient(self.end_point, AzureKeyCredential(self.sub_key))
# </client>
def list_models(self):
# List models
models = self.ad_client.list_multivariate_models(skip=0, top=10)
return list(models)
def train(self, body):
# Number of models available now
try:
model_list = self.list_models()
print("{:d} available models before training.".format(len(model_list)))
# Use sample data to train the model
print("Training new model...(it may take a few minutes)")
model = self.ad_client.train_multivariate_model(body)
trained_model_id = model.model_id
print("Training model id is {}".format(trained_model_id))
## Wait until the model is ready. It usually takes several minutes
model_status = None
model = None
while model_status != ModelStatus.READY and model_status != ModelStatus.FAILED:
model = self.ad_client.get_multivariate_model(trained_model_id)
print(model)
model_status = model.model_info.status
print("Model is {}".format(model_status))
time.sleep(30)
if model_status == ModelStatus.FAILED:
print("Creating model failed.")
print("Errors:")
if len(model.model_info.errors) > 0:
print(
"Error code: {}. Message: {}".format(
model.model_info.errors[0].code,
model.model_info.errors[0].message,
)
)
else:
print("None")
if model_status == ModelStatus.READY:
# Model list after training
model_list = self.list_models()
print("Done.\n--------------------")
print("{:d} available models after training.".format(len(model_list)))
# Return the latest model id
return trained_model_id
except HttpResponseError as e:
print(
"Error code: {}".format(e.error.code),
"Error message: {}".format(e.error.message),
)
except Exception as e:
raise e
return None
def batch_detect(self, model_id, body):
# Detect anomaly in the same data source (but a different interval)
try:
result = self.ad_client.detect_multivariate_batch_anomaly(model_id, body)
result_id = result.result_id
# Get results (may need a few seconds)
r = self.ad_client.get_multivariate_batch_detection_result(result_id)
print("Get detection result...(it may take a few seconds)")
while r.summary.status != MultivariateBatchDetectionStatus.READY and r.summary.status != MultivariateBatchDetectionStatus.FAILED:
r = self.ad_client.get_multivariate_batch_detection_result(result_id)
print("Detection is {}".format(r.summary.status))
time.sleep(15)
if r.summary.status == MultivariateBatchDetectionStatus.FAILED:
print("Detection failed.")
print("Errors:")
if len(r.summary.errors) > 0:
print("Error code: {}. Message: {}".format(r.summary.errors[0].code, r.summary.errors[0].message))
else:
print("None")
return None
return r
except HttpResponseError as e:
print(
"Error code: {}".format(e.error.code),
"Error message: {}".format(e.error.message),
)
except Exception as e:
raise e
return None
def delete_model(self, model_id):
# Delete the model
self.ad_client.delete_multivariate_model(model_id)
model_list = self.list_models()
print("{:d} available models after deletion.".format(len(model_list)))
def last_detect(self, model_id, variables):
# Detect anomaly by sync api
r = self.ad_client.detect_multivariate_last_anomaly(model_id, variables)
print("Get last detection result")
return r
if __name__ == "__main__":
SUBSCRIPTION_KEY = os.environ["ANOMALY_DETECTOR_KEY"]
ANOMALY_DETECTOR_ENDPOINT = os.environ["ANOMALY_DETECTOR_ENDPOINT"]
## Create a new sample and client
sample = MultivariateSample(SUBSCRIPTION_KEY, ANOMALY_DETECTOR_ENDPOINT)
# Train a new model
time_format = "%Y-%m-%dT%H:%M:%SZ"
blob_url = "{Your Blob Url}"
train_body = ModelInfo(
data_source=blob_url,
start_time=datetime.strptime("2021-01-02T00:00:00Z", time_format),
end_time=datetime.strptime("2021-01-02T05:00:00Z", time_format),
data_schema=DataSchema.MULTI_TABLE,
display_name="sample",
sliding_window=200,
align_policy=AlignPolicy(
align_mode=AlignMode.OUTER,
fill_n_a_method=FillNAMethod.LINEAR,
padding_value=0,
),
)
model_id = sample.train(train_body)
# Batch Inference
batch_inference_body = MultivariateBatchDetectionOptions(
data_source=blob_url,
top_contributor_count=10,
start_time=datetime.strptime("2021-01-02T00:00:00Z", time_format),
end_time=datetime.strptime("2021-01-02T05:00:00Z", time_format),
)
result = sample.batch_detect(model_id, batch_inference_body)
assert result is not None
print("Result ID:\t", result.result_id)
print("Result status:\t", result.summary.status)
print("Result length:\t", len(result.results))
# See detailed inference result
for r in result.results:
print(
"timestamp: {}, is_anomaly: {:<5}, anomaly score: {:.4f}, severity: {:.4f}, contributor count: {:<4d}".format(
r.timestamp,
r.value.is_anomaly,
r.value.score,
r.value.severity,
len(r.value.interpretation) if r.value.is_anomaly else 0,
)
)
if r.value.interpretation:
for contributor in r.value.interpretation:
print(
"\tcontributor variable: {:<10}, contributor score: {:.4f}".format(
contributor.variable, contributor.contribution_score
)
)
# *******************************************************************************************************************
# use your own inference data sending to last detection api, you should define your own variables and detectingPoints
# *****************************************************************************************************************
# define "<YOUR OWN variables>"
# variables = [
# {
# "name": "variables_name1",
# "timestamps": ['2021-01-01T00:00:00Z', '2021-01-01T00:01:00Z', ...],
# "values": [0, 0, ...]
# },
# {
# "name": "variables_name2",
# "timestamps": ['2021-01-01T00:00:00Z', '2021-01-01T00:01:00Z', ...],
# "values": [0, 0, ...]
# }
# ]
# Last detection
with open("./sample_data/multivariate_sample_data.json") as f:
variables_data = json.load(f)
variables = []
for item in variables_data["variables"]:
variables.append(
VariableValues(
variable=item["variable"],
timestamps=item["timestamps"],
values=item["values"],
)
)
last_inference_body = MultivariateLastDetectionOptions(
variables=variables,
top_contributor_count=10,
)
last_detect_result = sample.last_detect(model_id, last_inference_body)
assert last_detect_result is not None
print("Variable States:\t", last_detect_result.variable_states)
print("Variable States length:\t", len(last_detect_result.variable_states))
print("Results:\t", last_detect_result.results)
print("Results length:\t", len(last_detect_result.results))
# Delete model
sample.delete_model(model_id)
|