1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
|
# pylint: disable=too-many-lines,too-many-statements
# coding=utf-8
# --------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for license information.
# Code generated by Microsoft (R) AutoRest Code Generator.
# Changes may cause incorrect behavior and will be lost if the code is regenerated.
# --------------------------------------------------------------------------
from io import IOBase
import sys
from typing import Any, Callable, Dict, IO, Optional, TypeVar, Union, cast, overload
from azure.core.exceptions import (
ClientAuthenticationError,
HttpResponseError,
ResourceExistsError,
ResourceNotFoundError,
ResourceNotModifiedError,
map_error,
)
from azure.core.pipeline import PipelineResponse
from azure.core.polling import LROPoller, NoPolling, PollingMethod
from azure.core.polling.base_polling import LROBasePolling
from azure.core.rest import HttpRequest, HttpResponse
from azure.core.tracing.decorator import distributed_trace
from azure.core.utils import case_insensitive_dict
from .._serialization import Serializer
from .._vendor import ConversationAnalysisClientMixinABC
if sys.version_info >= (3, 9):
from collections.abc import MutableMapping
else:
from typing import MutableMapping # type: ignore # pylint: disable=ungrouped-imports
JSON = MutableMapping[str, Any] # pylint: disable=unsubscriptable-object
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
_SERIALIZER = Serializer()
_SERIALIZER.client_side_validation = False
def build_conversation_analysis_analyze_conversation_request( # pylint: disable=name-too-long
**kwargs: Any,
) -> HttpRequest:
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
_url = "/:analyze-conversations"
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
# Construct headers
if content_type is not None:
_headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str")
_headers["Accept"] = _SERIALIZER.header("accept", accept, "str")
return HttpRequest(method="POST", url=_url, params=_params, headers=_headers, **kwargs)
def build_conversation_analysis_conversation_analysis_request( # pylint: disable=name-too-long
**kwargs: Any,
) -> HttpRequest:
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
_url = "/analyze-conversations/jobs"
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
# Construct headers
if content_type is not None:
_headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str")
_headers["Accept"] = _SERIALIZER.header("accept", accept, "str")
return HttpRequest(method="POST", url=_url, params=_params, headers=_headers, **kwargs)
class ConversationAnalysisClientOperationsMixin(ConversationAnalysisClientMixinABC): # pylint: disable=name-too-long
@overload
def analyze_conversation(self, task: JSON, *, content_type: str = "application/json", **kwargs: Any) -> JSON:
# pylint: disable=line-too-long
"""Analyzes the input conversation utterance.
See
https://learn.microsoft.com/rest/api/language/2023-04-01/conversation-analysis-runtime/analyze-conversation
for more information.
:param task: A single conversational task to execute. Required.
:type task: JSON
:keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
Default value is "application/json".
:paramtype content_type: str
:return: JSON object
:rtype: JSON
:raises ~azure.core.exceptions.HttpResponseError:
Example:
.. code-block:: python
# The input is polymorphic. The following are possible polymorphic inputs based off
discriminator "kind":
# JSON input template for discriminator value "Conversation":
analyze_conversation_task = {
"analysisInput": {
"conversationItem": {
"id": "str", # The ID of a conversation item. Required.
"participantId": "str", # The participant ID of a
conversation item. Required.
"language": "str", # Optional. The override language of a
conversation item in BCP 47 language representation.
"modality": "str", # Optional. Enumeration of supported
conversational modalities. Known values are: "transcript" and "text".
"role": "str" # Optional. Role of the participant. Known
values are: "agent", "customer", and "generic".
}
},
"kind": "Conversation",
"parameters": {
"deploymentName": "str", # The name of the deployment to use.
Required.
"projectName": "str", # The name of the project to use. Required.
"directTarget": "str", # Optional. The name of a target project to
forward the request to.
"isLoggingEnabled": bool, # Optional. If true, the service will keep
the query for further review.
"stringIndexType": "TextElements_v8", # Optional. Default value is
"TextElements_v8". Specifies the method used to interpret string offsets. Set
to "UnicodeCodePoint" for Python strings. Known values are:
"TextElements_v8", "UnicodeCodePoint", and "Utf16CodeUnit".
"targetProjectParameters": {
"str": analysis_parameters
},
"verbose": bool # Optional. If true, the service will return more
detailed information in the response.
}
}
# JSON input template you can fill out and use as your body input.
task = analyze_conversation_task
# The response is polymorphic. The following are possible polymorphic responses based
off discriminator "kind":
# JSON input template for discriminator value "ConversationResult":
analyze_conversation_task_result = {
"kind": "ConversationResult",
"result": {
"prediction": base_prediction,
"query": "str", # The conversation utterance given by the caller.
Required.
"detectedLanguage": "str" # Optional. The system detected language
for the query in BCP 47 language representation..
}
}
# JSON input template for discriminator value "Conversation":
base_prediction = {
"entities": [
{
"category": "str", # The entity category. Required.
"confidenceScore": 0.0, # The entity confidence score.
Required.
"length": 0, # The length of the text. Required.
"offset": 0, # The starting index of this entity in the
query. Required.
"text": "str", # The predicted entity text. Required.
"extraInformation": [
base_extra_information
],
"resolutions": [
base_resolution
]
}
],
"intents": [
{
"category": "str", # A predicted class. Required.
"confidenceScore": 0.0 # The confidence score of the class
from 0.0 to 1.0. Required.
}
],
"projectKind": "Conversation",
"topIntent": "str" # Optional. The intent with the highest score.
}
# JSON input template for discriminator value "Orchestration":
base_prediction = {
"intents": {
"str": target_intent_result
},
"projectKind": "Orchestration",
"topIntent": "str" # Optional. The intent with the highest score.
}
# response body for status code(s): 200
response == analyze_conversation_task_result
"""
@overload
def analyze_conversation(self, task: IO[bytes], *, content_type: str = "application/json", **kwargs: Any) -> JSON:
# pylint: disable=line-too-long
"""Analyzes the input conversation utterance.
See
https://learn.microsoft.com/rest/api/language/2023-04-01/conversation-analysis-runtime/analyze-conversation
for more information.
:param task: A single conversational task to execute. Required.
:type task: IO[bytes]
:keyword content_type: Body Parameter content-type. Content type parameter for binary body.
Default value is "application/json".
:paramtype content_type: str
:return: JSON object
:rtype: JSON
:raises ~azure.core.exceptions.HttpResponseError:
Example:
.. code-block:: python
# The response is polymorphic. The following are possible polymorphic responses based
off discriminator "kind":
# JSON input template for discriminator value "ConversationResult":
analyze_conversation_task_result = {
"kind": "ConversationResult",
"result": {
"prediction": base_prediction,
"query": "str", # The conversation utterance given by the caller.
Required.
"detectedLanguage": "str" # Optional. The system detected language
for the query in BCP 47 language representation..
}
}
# JSON input template for discriminator value "Conversation":
base_prediction = {
"entities": [
{
"category": "str", # The entity category. Required.
"confidenceScore": 0.0, # The entity confidence score.
Required.
"length": 0, # The length of the text. Required.
"offset": 0, # The starting index of this entity in the
query. Required.
"text": "str", # The predicted entity text. Required.
"extraInformation": [
base_extra_information
],
"resolutions": [
base_resolution
]
}
],
"intents": [
{
"category": "str", # A predicted class. Required.
"confidenceScore": 0.0 # The confidence score of the class
from 0.0 to 1.0. Required.
}
],
"projectKind": "Conversation",
"topIntent": "str" # Optional. The intent with the highest score.
}
# JSON input template for discriminator value "Orchestration":
base_prediction = {
"intents": {
"str": target_intent_result
},
"projectKind": "Orchestration",
"topIntent": "str" # Optional. The intent with the highest score.
}
# response body for status code(s): 200
response == analyze_conversation_task_result
"""
@distributed_trace
def analyze_conversation(self, task: Union[JSON, IO[bytes]], **kwargs: Any) -> JSON:
# pylint: disable=line-too-long
"""Analyzes the input conversation utterance.
See
https://learn.microsoft.com/rest/api/language/2023-04-01/conversation-analysis-runtime/analyze-conversation
for more information.
:param task: A single conversational task to execute. Is either a JSON type or a IO[bytes]
type. Required.
:type task: JSON or IO[bytes]
:return: JSON object
:rtype: JSON
:raises ~azure.core.exceptions.HttpResponseError:
Example:
.. code-block:: python
# The input is polymorphic. The following are possible polymorphic inputs based off
discriminator "kind":
# JSON input template for discriminator value "Conversation":
analyze_conversation_task = {
"analysisInput": {
"conversationItem": {
"id": "str", # The ID of a conversation item. Required.
"participantId": "str", # The participant ID of a
conversation item. Required.
"language": "str", # Optional. The override language of a
conversation item in BCP 47 language representation.
"modality": "str", # Optional. Enumeration of supported
conversational modalities. Known values are: "transcript" and "text".
"role": "str" # Optional. Role of the participant. Known
values are: "agent", "customer", and "generic".
}
},
"kind": "Conversation",
"parameters": {
"deploymentName": "str", # The name of the deployment to use.
Required.
"projectName": "str", # The name of the project to use. Required.
"directTarget": "str", # Optional. The name of a target project to
forward the request to.
"isLoggingEnabled": bool, # Optional. If true, the service will keep
the query for further review.
"stringIndexType": "TextElements_v8", # Optional. Default value is
"TextElements_v8". Specifies the method used to interpret string offsets. Set
to "UnicodeCodePoint" for Python strings. Known values are:
"TextElements_v8", "UnicodeCodePoint", and "Utf16CodeUnit".
"targetProjectParameters": {
"str": analysis_parameters
},
"verbose": bool # Optional. If true, the service will return more
detailed information in the response.
}
}
# JSON input template you can fill out and use as your body input.
task = analyze_conversation_task
# The response is polymorphic. The following are possible polymorphic responses based
off discriminator "kind":
# JSON input template for discriminator value "ConversationResult":
analyze_conversation_task_result = {
"kind": "ConversationResult",
"result": {
"prediction": base_prediction,
"query": "str", # The conversation utterance given by the caller.
Required.
"detectedLanguage": "str" # Optional. The system detected language
for the query in BCP 47 language representation..
}
}
# JSON input template for discriminator value "Conversation":
base_prediction = {
"entities": [
{
"category": "str", # The entity category. Required.
"confidenceScore": 0.0, # The entity confidence score.
Required.
"length": 0, # The length of the text. Required.
"offset": 0, # The starting index of this entity in the
query. Required.
"text": "str", # The predicted entity text. Required.
"extraInformation": [
base_extra_information
],
"resolutions": [
base_resolution
]
}
],
"intents": [
{
"category": "str", # A predicted class. Required.
"confidenceScore": 0.0 # The confidence score of the class
from 0.0 to 1.0. Required.
}
],
"projectKind": "Conversation",
"topIntent": "str" # Optional. The intent with the highest score.
}
# JSON input template for discriminator value "Orchestration":
base_prediction = {
"intents": {
"str": target_intent_result
},
"projectKind": "Orchestration",
"topIntent": "str" # Optional. The intent with the highest score.
}
# response body for status code(s): 200
response == analyze_conversation_task_result
"""
error_map = {
401: ClientAuthenticationError,
404: ResourceNotFoundError,
409: ResourceExistsError,
304: ResourceNotModifiedError,
}
error_map.update(kwargs.pop("error_map", {}) or {})
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = kwargs.pop("params", {}) or {}
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
cls: ClsType[JSON] = kwargs.pop("cls", None)
content_type = content_type or "application/json"
_json = None
_content = None
if isinstance(task, (IOBase, bytes)):
_content = task
else:
_json = task
_request = build_conversation_analysis_analyze_conversation_request(
content_type=content_type,
api_version=self._config.api_version,
json=_json,
content=_content,
headers=_headers,
params=_params,
)
path_format_arguments = {
"Endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str", skip_quote=True),
}
_request.url = self._client.format_url(_request.url, **path_format_arguments)
_stream = False
pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access
_request, stream=_stream, **kwargs
)
response = pipeline_response.http_response
if response.status_code not in [200]:
if _stream:
response.read() # Load the body in memory and close the socket
map_error(status_code=response.status_code, response=response, error_map=error_map)
raise HttpResponseError(response=response)
if response.content:
deserialized = response.json()
else:
deserialized = None
if cls:
return cls(pipeline_response, cast(JSON, deserialized), {}) # type: ignore
return cast(JSON, deserialized) # type: ignore
def _conversation_analysis_initial(self, task: Union[JSON, IO[bytes]], **kwargs: Any) -> Optional[JSON]:
error_map = {
401: ClientAuthenticationError,
404: ResourceNotFoundError,
409: ResourceExistsError,
304: ResourceNotModifiedError,
}
error_map.update(kwargs.pop("error_map", {}) or {})
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = kwargs.pop("params", {}) or {}
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
cls: ClsType[Optional[JSON]] = kwargs.pop("cls", None)
content_type = content_type or "application/json"
_json = None
_content = None
if isinstance(task, (IOBase, bytes)):
_content = task
else:
_json = task
_request = build_conversation_analysis_conversation_analysis_request(
content_type=content_type,
api_version=self._config.api_version,
json=_json,
content=_content,
headers=_headers,
params=_params,
)
path_format_arguments = {
"Endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str", skip_quote=True),
}
_request.url = self._client.format_url(_request.url, **path_format_arguments)
_stream = False
pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access
_request, stream=_stream, **kwargs
)
response = pipeline_response.http_response
if response.status_code not in [200, 202]:
if _stream:
response.read() # Load the body in memory and close the socket
map_error(status_code=response.status_code, response=response, error_map=error_map)
raise HttpResponseError(response=response)
deserialized = None
response_headers = {}
if response.status_code == 200:
if response.content:
deserialized = response.json()
else:
deserialized = None
if response.status_code == 202:
response_headers["Operation-Location"] = self._deserialize(
"str", response.headers.get("Operation-Location")
)
if cls:
return cls(pipeline_response, deserialized, response_headers) # type: ignore
return deserialized # type: ignore
@overload
def begin_conversation_analysis(
self, task: JSON, *, content_type: str = "application/json", **kwargs: Any
) -> LROPoller[JSON]:
# pylint: disable=line-too-long
"""Submit analysis job for conversations.
Submit a collection of conversations for analysis. Specify one or more unique tasks to be
executed.
See https://learn.microsoft.com/rest/api/language/2023-04-01/analyze-conversation/submit-job
for more information.
:param task: Collection of conversations to analyze and one or more tasks to execute. Required.
:type task: JSON
:keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
Default value is "application/json".
:paramtype content_type: str
:return: An instance of LROPoller that returns JSON object
:rtype: ~azure.core.polling.LROPoller[JSON]
:raises ~azure.core.exceptions.HttpResponseError:
Example:
.. code-block:: python
# JSON input template you can fill out and use as your body input.
task = {
"analysisInput": {
"conversations": [
conversation
]
},
"tasks": [
analyze_conversation_lro_task
],
"displayName": "str" # Optional. Display name for the analysis job.
}
# response body for status code(s): 200
response == {
"createdDateTime": "2020-02-20 00:00:00", # Required.
"jobId": "str", # Required.
"lastUpdatedDateTime": "2020-02-20 00:00:00", # Required.
"status": "str", # The status of the task at the mentioned last update time.
Required. Known values are: "notStarted", "running", "succeeded", "failed",
"cancelled", "cancelling", and "partiallyCompleted".
"tasks": {
"completed": 0, # Count of tasks that finished successfully.
Required.
"failed": 0, # Count of tasks that failed. Required.
"inProgress": 0, # Count of tasks that are currently in progress.
Required.
"total": 0, # Total count of tasks submitted as part of the job.
Required.
"items": [
analyze_conversation_job_result
]
},
"displayName": "str", # Optional.
"errors": [
{
"code": "str", # One of a server-defined set of error codes.
Required. Known values are: "InvalidRequest", "InvalidArgument",
"Unauthorized", "Forbidden", "NotFound", "ProjectNotFound",
"OperationNotFound", "AzureCognitiveSearchNotFound",
"AzureCognitiveSearchIndexNotFound", "TooManyRequests",
"AzureCognitiveSearchThrottling",
"AzureCognitiveSearchIndexLimitReached", "InternalServerError",
"ServiceUnavailable", "Timeout", "QuotaExceeded", "Conflict", and
"Warning".
"message": "str", # A human-readable representation of the
error. Required.
"details": [
...
],
"innererror": {
"code": "str", # One of a server-defined set of
error codes. Required. Known values are: "InvalidRequest",
"InvalidParameterValue", "KnowledgeBaseNotFound",
"AzureCognitiveSearchNotFound", "AzureCognitiveSearchThrottling",
"ExtractionFailure", "InvalidRequestBodyFormat", "EmptyRequest",
"MissingInputDocuments", "InvalidDocument", "ModelVersionIncorrect",
"InvalidDocumentBatch", "UnsupportedLanguageCode", and
"InvalidCountryHint".
"message": "str", # Error message. Required.
"details": {
"str": "str" # Optional. Error details.
},
"innererror": ...,
"target": "str" # Optional. Error target.
},
"target": "str" # Optional. The target of the error.
}
],
"expirationDateTime": "2020-02-20 00:00:00", # Optional.
"nextLink": "str", # Optional.
"statistics": {
"conversationsCount": 0, # Number of conversations submitted in the
request. Required.
"documentsCount": 0, # Number of documents submitted in the request.
Required.
"erroneousConversationsCount": 0, # Number of invalid documents.
This includes documents that are empty, over the size limit, or in
unsupported languages. Required.
"erroneousDocumentsCount": 0, # Number of invalid documents. This
includes empty, over-size limit or non-supported languages documents.
Required.
"transactionsCount": 0, # Number of transactions for the request.
Required.
"validConversationsCount": 0, # Number of conversation documents.
This excludes documents that are empty, over the size limit, or in
unsupported languages. Required.
"validDocumentsCount": 0 # Number of valid documents. This excludes
empty, over-size limit or non-supported languages documents. Required.
}
}
"""
@overload
def begin_conversation_analysis(
self, task: IO[bytes], *, content_type: str = "application/json", **kwargs: Any
) -> LROPoller[JSON]:
# pylint: disable=line-too-long
"""Submit analysis job for conversations.
Submit a collection of conversations for analysis. Specify one or more unique tasks to be
executed.
See https://learn.microsoft.com/rest/api/language/2023-04-01/analyze-conversation/submit-job
for more information.
:param task: Collection of conversations to analyze and one or more tasks to execute. Required.
:type task: IO[bytes]
:keyword content_type: Body Parameter content-type. Content type parameter for binary body.
Default value is "application/json".
:paramtype content_type: str
:return: An instance of LROPoller that returns JSON object
:rtype: ~azure.core.polling.LROPoller[JSON]
:raises ~azure.core.exceptions.HttpResponseError:
Example:
.. code-block:: python
# response body for status code(s): 200
response == {
"createdDateTime": "2020-02-20 00:00:00", # Required.
"jobId": "str", # Required.
"lastUpdatedDateTime": "2020-02-20 00:00:00", # Required.
"status": "str", # The status of the task at the mentioned last update time.
Required. Known values are: "notStarted", "running", "succeeded", "failed",
"cancelled", "cancelling", and "partiallyCompleted".
"tasks": {
"completed": 0, # Count of tasks that finished successfully.
Required.
"failed": 0, # Count of tasks that failed. Required.
"inProgress": 0, # Count of tasks that are currently in progress.
Required.
"total": 0, # Total count of tasks submitted as part of the job.
Required.
"items": [
analyze_conversation_job_result
]
},
"displayName": "str", # Optional.
"errors": [
{
"code": "str", # One of a server-defined set of error codes.
Required. Known values are: "InvalidRequest", "InvalidArgument",
"Unauthorized", "Forbidden", "NotFound", "ProjectNotFound",
"OperationNotFound", "AzureCognitiveSearchNotFound",
"AzureCognitiveSearchIndexNotFound", "TooManyRequests",
"AzureCognitiveSearchThrottling",
"AzureCognitiveSearchIndexLimitReached", "InternalServerError",
"ServiceUnavailable", "Timeout", "QuotaExceeded", "Conflict", and
"Warning".
"message": "str", # A human-readable representation of the
error. Required.
"details": [
...
],
"innererror": {
"code": "str", # One of a server-defined set of
error codes. Required. Known values are: "InvalidRequest",
"InvalidParameterValue", "KnowledgeBaseNotFound",
"AzureCognitiveSearchNotFound", "AzureCognitiveSearchThrottling",
"ExtractionFailure", "InvalidRequestBodyFormat", "EmptyRequest",
"MissingInputDocuments", "InvalidDocument", "ModelVersionIncorrect",
"InvalidDocumentBatch", "UnsupportedLanguageCode", and
"InvalidCountryHint".
"message": "str", # Error message. Required.
"details": {
"str": "str" # Optional. Error details.
},
"innererror": ...,
"target": "str" # Optional. Error target.
},
"target": "str" # Optional. The target of the error.
}
],
"expirationDateTime": "2020-02-20 00:00:00", # Optional.
"nextLink": "str", # Optional.
"statistics": {
"conversationsCount": 0, # Number of conversations submitted in the
request. Required.
"documentsCount": 0, # Number of documents submitted in the request.
Required.
"erroneousConversationsCount": 0, # Number of invalid documents.
This includes documents that are empty, over the size limit, or in
unsupported languages. Required.
"erroneousDocumentsCount": 0, # Number of invalid documents. This
includes empty, over-size limit or non-supported languages documents.
Required.
"transactionsCount": 0, # Number of transactions for the request.
Required.
"validConversationsCount": 0, # Number of conversation documents.
This excludes documents that are empty, over the size limit, or in
unsupported languages. Required.
"validDocumentsCount": 0 # Number of valid documents. This excludes
empty, over-size limit or non-supported languages documents. Required.
}
}
"""
@distributed_trace
def begin_conversation_analysis(self, task: Union[JSON, IO[bytes]], **kwargs: Any) -> LROPoller[JSON]:
# pylint: disable=line-too-long
"""Submit analysis job for conversations.
Submit a collection of conversations for analysis. Specify one or more unique tasks to be
executed.
See https://learn.microsoft.com/rest/api/language/2023-04-01/analyze-conversation/submit-job
for more information.
:param task: Collection of conversations to analyze and one or more tasks to execute. Is either
a JSON type or a IO[bytes] type. Required.
:type task: JSON or IO[bytes]
:return: An instance of LROPoller that returns JSON object
:rtype: ~azure.core.polling.LROPoller[JSON]
:raises ~azure.core.exceptions.HttpResponseError:
Example:
.. code-block:: python
# JSON input template you can fill out and use as your body input.
task = {
"analysisInput": {
"conversations": [
conversation
]
},
"tasks": [
analyze_conversation_lro_task
],
"displayName": "str" # Optional. Display name for the analysis job.
}
# response body for status code(s): 200
response == {
"createdDateTime": "2020-02-20 00:00:00", # Required.
"jobId": "str", # Required.
"lastUpdatedDateTime": "2020-02-20 00:00:00", # Required.
"status": "str", # The status of the task at the mentioned last update time.
Required. Known values are: "notStarted", "running", "succeeded", "failed",
"cancelled", "cancelling", and "partiallyCompleted".
"tasks": {
"completed": 0, # Count of tasks that finished successfully.
Required.
"failed": 0, # Count of tasks that failed. Required.
"inProgress": 0, # Count of tasks that are currently in progress.
Required.
"total": 0, # Total count of tasks submitted as part of the job.
Required.
"items": [
analyze_conversation_job_result
]
},
"displayName": "str", # Optional.
"errors": [
{
"code": "str", # One of a server-defined set of error codes.
Required. Known values are: "InvalidRequest", "InvalidArgument",
"Unauthorized", "Forbidden", "NotFound", "ProjectNotFound",
"OperationNotFound", "AzureCognitiveSearchNotFound",
"AzureCognitiveSearchIndexNotFound", "TooManyRequests",
"AzureCognitiveSearchThrottling",
"AzureCognitiveSearchIndexLimitReached", "InternalServerError",
"ServiceUnavailable", "Timeout", "QuotaExceeded", "Conflict", and
"Warning".
"message": "str", # A human-readable representation of the
error. Required.
"details": [
...
],
"innererror": {
"code": "str", # One of a server-defined set of
error codes. Required. Known values are: "InvalidRequest",
"InvalidParameterValue", "KnowledgeBaseNotFound",
"AzureCognitiveSearchNotFound", "AzureCognitiveSearchThrottling",
"ExtractionFailure", "InvalidRequestBodyFormat", "EmptyRequest",
"MissingInputDocuments", "InvalidDocument", "ModelVersionIncorrect",
"InvalidDocumentBatch", "UnsupportedLanguageCode", and
"InvalidCountryHint".
"message": "str", # Error message. Required.
"details": {
"str": "str" # Optional. Error details.
},
"innererror": ...,
"target": "str" # Optional. Error target.
},
"target": "str" # Optional. The target of the error.
}
],
"expirationDateTime": "2020-02-20 00:00:00", # Optional.
"nextLink": "str", # Optional.
"statistics": {
"conversationsCount": 0, # Number of conversations submitted in the
request. Required.
"documentsCount": 0, # Number of documents submitted in the request.
Required.
"erroneousConversationsCount": 0, # Number of invalid documents.
This includes documents that are empty, over the size limit, or in
unsupported languages. Required.
"erroneousDocumentsCount": 0, # Number of invalid documents. This
includes empty, over-size limit or non-supported languages documents.
Required.
"transactionsCount": 0, # Number of transactions for the request.
Required.
"validConversationsCount": 0, # Number of conversation documents.
This excludes documents that are empty, over the size limit, or in
unsupported languages. Required.
"validDocumentsCount": 0 # Number of valid documents. This excludes
empty, over-size limit or non-supported languages documents. Required.
}
}
"""
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = kwargs.pop("params", {}) or {}
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
cls: ClsType[JSON] = kwargs.pop("cls", None)
polling: Union[bool, PollingMethod] = kwargs.pop("polling", True)
lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
cont_token: Optional[str] = kwargs.pop("continuation_token", None)
if cont_token is None:
raw_result = self._conversation_analysis_initial(
task=task, content_type=content_type, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs
)
kwargs.pop("error_map", None)
def get_long_running_output(pipeline_response):
response = pipeline_response.http_response
if response.content:
deserialized = response.json()
else:
deserialized = None
if cls:
return cls(pipeline_response, deserialized, {}) # type: ignore
return deserialized
path_format_arguments = {
"Endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str", skip_quote=True),
}
if polling is True:
polling_method: PollingMethod = cast(
PollingMethod, LROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs)
)
elif polling is False:
polling_method = cast(PollingMethod, NoPolling())
else:
polling_method = polling
if cont_token:
return LROPoller[JSON].from_continuation_token(
polling_method=polling_method,
continuation_token=cont_token,
client=self._client,
deserialization_callback=get_long_running_output,
)
return LROPoller[JSON](self._client, raw_result, get_long_running_output, polling_method) # type: ignore
|