File: sample_manage_projects.py

package info (click to toggle)
python-azure 20250603%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 851,724 kB
  • sloc: python: 7,362,925; ansic: 804; javascript: 287; makefile: 195; sh: 145; xml: 109
file content (150 lines) | stat: -rw-r--r-- 5,007 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# coding=utf-8
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------

"""
FILE: sample_manage_projects.py

DESCRIPTION:
    This sample demonstrates some common authoring operation snippets with the ConversationAuthoringClient.

USAGE:
    python sample_manage_projects.py

    Set the environment variables with your own values before running the sample:
    1) AZURE_CONVERSATIONS_ENDPOINT             - endpoint for your CLU resource.
    2) AZURE_CONVERSATIONS_KEY                  - API key for your CLU resource.
    3) AZURE_CONVERSATIONS_PROJECT_NAME         - project name for your existing CLU conversations project
"""

import uuid


def sample_export_project():
    import os
    from azure.core.rest import HttpRequest
    from azure.core.credentials import AzureKeyCredential
    from azure.ai.language.conversations.authoring import ConversationAuthoringClient

    clu_endpoint = os.environ["AZURE_CONVERSATIONS_ENDPOINT"]
    clu_key = os.environ["AZURE_CONVERSATIONS_KEY"]
    existing_project_name = os.environ["AZURE_CONVERSATIONS_PROJECT_NAME"]

    client = ConversationAuthoringClient(
        clu_endpoint, AzureKeyCredential(clu_key)
    )
    poller = client.begin_export_project(
        project_name=existing_project_name,
        string_index_type="Utf16CodeUnit",
        exported_project_format="Conversation"
    )
    job_state = poller.result()
    print(f"Export project status: {job_state['status']}")
    request = HttpRequest("GET", job_state["resultUrl"])
    response = client.send_request(request)
    exported_project = response.json()
    return exported_project


def sample_import_project(exported_project, project_name):
    import os
    from azure.core.credentials import AzureKeyCredential
    from azure.ai.language.conversations.authoring import ConversationAuthoringClient

    clu_endpoint = os.environ["AZURE_CONVERSATIONS_ENDPOINT"]
    clu_key = os.environ["AZURE_CONVERSATIONS_KEY"]

    print(f"Importing project as '{project_name}'")
    client = ConversationAuthoringClient(
        clu_endpoint, AzureKeyCredential(clu_key)
    )
    poller = client.begin_import_project(
        project_name=project_name,
        project=exported_project
    )
    response = poller.result()
    print(f"Import project status: {response['status']}")
    return project_name


def sample_train_model(project_name):
    import os
    from azure.core.credentials import AzureKeyCredential
    from azure.ai.language.conversations.authoring import ConversationAuthoringClient

    clu_endpoint = os.environ["AZURE_CONVERSATIONS_ENDPOINT"]
    clu_key = os.environ["AZURE_CONVERSATIONS_KEY"]

    client = ConversationAuthoringClient(
        clu_endpoint, AzureKeyCredential(clu_key)
    )
    print(f"Training model under label 'sample'.")

    poller = client.begin_train(
        project_name=project_name,
        configuration={"modelLabel": "sample", "trainingMode": "standard"},
    )

    response = poller.result()
    print(f"Train model status: {response['status']}")


def sample_deploy_model(project_name):
    import os
    from azure.core.credentials import AzureKeyCredential
    from azure.ai.language.conversations.authoring import ConversationAuthoringClient

    clu_endpoint = os.environ["AZURE_CONVERSATIONS_ENDPOINT"]
    clu_key = os.environ["AZURE_CONVERSATIONS_KEY"]

    deployment_name = "production"

    client = ConversationAuthoringClient(
        clu_endpoint, AzureKeyCredential(clu_key)
    )

    print(f"Deploying 'sample' model to 'production'.")
    poller = client.begin_deploy_project(
        project_name=project_name,
        deployment_name=deployment_name,
        deployment={"trainedModelLabel": "sample"},
    )
    response = poller.result()
    print(f"Model '{response['modelId']}' deployed to '{response['deploymentName']}'")


def sample_delete_project(project_name):
    import os
    from azure.core.credentials import AzureKeyCredential
    from azure.ai.language.conversations.authoring import ConversationAuthoringClient

    clu_endpoint = os.environ["AZURE_CONVERSATIONS_ENDPOINT"]
    clu_key = os.environ["AZURE_CONVERSATIONS_KEY"]

    client = ConversationAuthoringClient(
        clu_endpoint, AzureKeyCredential(clu_key)
    )

    poller = client.begin_delete_project(
        project_name=project_name
    )
    poller.result()
    print(f"Deleted project {project_name}")


if __name__ == '__main__':
    project_name = "test_project" + str(uuid.uuid4())
    try:
        print("Exporting project...")
        project = sample_export_project()
        print("Importing project...")
        project_name = sample_import_project(project, project_name)
        print("Training model...")
        sample_train_model(project_name)
        print("Deploying model...")
        sample_deploy_model(project_name)
    finally:
        print("Deleting project...")
        sample_delete_project(project_name)