1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
|
# coding=utf-8
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------
"""
FILE: sample_analyze_orchestration_app_conv_response.py
DESCRIPTION:
This sample demonstrates how to analyze user query using an orchestration project.
In this sample, orchestration project's top intent will map to a conversation project.
For more info about how to setup a CLU orchestration project, see the README.
USAGE:
python sample_analyze_orchestration_app_conv_response.py
Set the environment variables with your own values before running the sample:
1) AZURE_CONVERSATIONS_ENDPOINT - endpoint for your CLU resource.
2) AZURE_CONVERSATIONS_KEY - API key for your CLU resource.
3) AZURE_CONVERSATIONS_WORKFLOW_PROJECT_NAME - project name for your CLU orchestration project.
4) AZURE_CONVERSATIONS_WORKFLOW_DEPLOYMENT_NAME - deployment name for your CLU orchestration project.
"""
def sample_analyze_orchestration_app_conv_response():
# [START analyze_orchestration_app_conv_response]
# import libraries
import os
from azure.core.credentials import AzureKeyCredential
from azure.ai.language.conversations import ConversationAnalysisClient
# get secrets
clu_endpoint = os.environ["AZURE_CONVERSATIONS_ENDPOINT"]
clu_key = os.environ["AZURE_CONVERSATIONS_KEY"]
project_name = os.environ["AZURE_CONVERSATIONS_WORKFLOW_PROJECT_NAME"]
deployment_name = os.environ["AZURE_CONVERSATIONS_WORKFLOW_DEPLOYMENT_NAME"]
# analyze query
client = ConversationAnalysisClient(clu_endpoint, AzureKeyCredential(clu_key))
with client:
query = "Send an email to Carol about the tomorrow's demo"
result = client.analyze_conversation(
task={
"kind": "Conversation",
"analysisInput": {
"conversationItem": {
"participantId": "1",
"id": "1",
"modality": "text",
"language": "en",
"text": query
},
"isLoggingEnabled": False
},
"parameters": {
"projectName": project_name,
"deploymentName": deployment_name,
"verbose": True
}
}
)
# view result
print(f"query: {result['result']['query']}")
print(f"project kind: {result['result']['prediction']['projectKind']}\n")
# top intent
top_intent = result["result"]["prediction"]["topIntent"]
print(f"top intent: {top_intent}")
top_intent_object = result["result"]["prediction"]["intents"][top_intent]
print(f"confidence score: {top_intent_object['confidenceScore']}")
print(f"project kind: {top_intent_object['targetProjectKind']}")
# conversation result
if top_intent_object["targetProjectKind"] == "Conversation":
print("\nview conversation result:")
print(f"\ntop intent: {top_intent_object['result']['prediction']['topIntent']}")
print(f"category: {top_intent_object['result']['prediction']['intents'][0]['category']}")
print(f"confidence score: {top_intent_object['result']['prediction']['intents'][0]['confidenceScore']}\n")
print("\nview entities:")
for entity in top_intent_object["result"]["prediction"]["entities"]:
print(f"\ncategory: {entity['category']}")
print(f"text: {entity['text']}")
print(f"confidence score: {entity['confidenceScore']}")
if "resolutions" in entity:
print("resolutions")
for resolution in entity["resolutions"]:
print(f"kind: {resolution['resolutionKind']}")
print(f"value: {resolution['value']}")
if "extraInformation" in entity:
print("extra info")
for data in entity["extraInformation"]:
print(f"kind: {data['extraInformationKind']}")
if data["extraInformationKind"] == "ListKey":
print(f"key: {data['key']}")
if data["extraInformationKind"] == "EntitySubtype":
print(f"value: {data['value']}")
# [END analyze_orchestration_app_conv_response]
if __name__ == '__main__':
sample_analyze_orchestration_app_conv_response()
|