1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
|
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------
"""Customize generated code here.
Follow our quickstart for examples: https://aka.ms/azsdk/python/dpcodegen/python/customize
"""
from typing import Any, List, overload, Optional, Union, Tuple, cast, MutableMapping
import copy
from azure.core.tracing.decorator import distributed_trace
from ._operations import QuestionAnsweringClientOperationsMixin as QuestionAnsweringClientOperationsMixinGenerated
from ..models import (
AnswersOptions,
AnswersFromTextOptions,
AnswersResult,
AnswersFromTextResult,
KnowledgeBaseAnswerContext,
QueryFilters,
ShortAnswerOptions,
TextDocument,
)
JSON = MutableMapping[str, Any]
def _validate_text_records(records):
if not records:
raise ValueError("Input documents can not be empty or None")
if isinstance(records, str):
raise TypeError("Input documents cannot be a string.")
if isinstance(records, dict):
raise TypeError("Input documents cannot be a dict")
if not all(isinstance(x, str) for x in records):
if not all(isinstance(x, (dict, TextDocument)) for x in records):
raise TypeError("Mixing string and dictionary/object document input unsupported.")
request_batch = []
for idx, doc in enumerate(records):
if isinstance(doc, str):
record = {"id": str(idx), "text": doc}
request_batch.append(record)
else:
request_batch.append(doc)
return request_batch
def _get_positional_body(*args, **kwargs):
"""Verify args and kwargs are valid, and then return the positional body, if users passed it in.
:param args: The arguments passed to the method.
:type args: AnswersOptions or dict
"""
if len(args) > 1:
raise TypeError("There can only be one positional argument, which is the POST body of this request.")
if "options" in kwargs:
raise TypeError("The 'options' parameter is positional only.")
return args[0] if args else None
def _verify_qna_id_and_question(query_knowledgebase_options):
"""For query_knowledge_base we require either `question` or `qna_id`.
:param query_knowledgebase_options: The user-passed AnswersOptions or dict
:type query_knowledgebase_options: AnswersOptions or dict
"""
try:
qna_id = query_knowledgebase_options.qna_id
question = query_knowledgebase_options.question
except AttributeError:
qna_id = query_knowledgebase_options.get("qna_id") or query_knowledgebase_options.get("qnaId")
question = query_knowledgebase_options.get("question")
if not (qna_id or question):
raise TypeError("You need to pass in either `qna_id` or `question`.")
if qna_id and question:
raise TypeError("You can not specify both `qna_id` and `question`.")
def _handle_metadata_filter_conversion(options_input):
options = copy.deepcopy(options_input)
filters = options.filters if hasattr(options, "filters") else options.get("filters", {})
try:
if filters and filters.metadata_filter and filters.metadata_filter.metadata:
metadata_input = filters.metadata_filter.metadata
else:
metadata_input = None
in_class = True
except AttributeError:
metadata_input = filters.get("metadataFilter", {}).get("metadata")
in_class = False
if not metadata_input:
return options
try:
if any(t for t in metadata_input if len(t) != 2):
raise ValueError("'metadata' must be a sequence of key-value tuples.")
except TypeError as exc:
raise ValueError("'metadata' must be a sequence of key-value tuples.") from exc
metadata_modified = [{"key": m[0], "value": m[1]} for m in metadata_input]
if in_class:
filters.metadata_filter.metadata = metadata_modified
else:
filters["metadataFilter"]["metadata"] = metadata_modified
return options
def _get_answers_prepare_options(*args: AnswersOptions, **kwargs: Any) -> Tuple[AnswersOptions, Any]:
options = _get_positional_body(*args, **kwargs) or AnswersOptions(
qna_id=kwargs.pop("qna_id", None),
question=kwargs.pop("question", None),
top=kwargs.pop("top", None),
user_id=kwargs.pop("user_id", None),
confidence_threshold=kwargs.pop("confidence_threshold", None),
answer_context=kwargs.pop("answer_context", None),
ranker_kind=kwargs.pop("ranker_kind", None),
filters=kwargs.pop("filters", None),
short_answer_options=kwargs.pop("short_answer_options", None),
include_unstructured_sources=kwargs.pop("include_unstructured_sources", None),
)
_verify_qna_id_and_question(options)
return _handle_metadata_filter_conversion(options), kwargs
def _get_answers_from_text_prepare_options(
*args: AnswersFromTextOptions, **kwargs: Any
) -> Tuple[Union[JSON, AnswersFromTextOptions], Any]:
default_language = kwargs.pop("language", None)
options = _get_positional_body(*args, **kwargs) or AnswersFromTextOptions(
question=kwargs.pop("question"),
text_documents=kwargs.pop("text_documents"),
language=default_language,
)
try:
options = cast(JSON, options)
# pylint: disable=unsubscriptable-object,unsupported-assignment-operation
options["records"] = _validate_text_records(options["records"])
# pylint: disable=no-member,unsupported-assignment-operation
options["language"] = options.get("language", None) or default_language
except TypeError:
options = cast(AnswersFromTextOptions, options)
options.text_documents = _validate_text_records(options.text_documents)
options.language = options.language or default_language
return options, kwargs
class QuestionAnsweringClientOperationsMixin(QuestionAnsweringClientOperationsMixinGenerated):
@overload # type: ignore # https://github.com/Azure/azure-sdk-for-python/issues/26621
def get_answers(
self, options: AnswersOptions, *, project_name: str, deployment_name: str, **kwargs: Any
) -> AnswersResult:
"""Answers the specified question using your knowledge base.
:param options: Positional only. POST body of the request. Provide either `options`, OR
individual keyword arguments. If both are provided, only the options object will be used.
:type options: ~azure.ai.language.questionanswering.models.AnswersOptions
:keyword project_name: The name of the knowledge base project to use.
:paramtype project_name: str
:keyword deployment_name: The name of the specific deployment of the project to use.
:paramtype deployment_name: str
:return: AnswersResult
:rtype: ~azure.ai.language.questionanswering.models.AnswersResult
:raises ~azure.core.exceptions.HttpResponseError:
"""
@overload
def get_answers( # pylint: disable=arguments-differ
self,
*,
project_name: str,
deployment_name: str,
qna_id: Optional[int] = None,
question: Optional[str] = None,
top: Optional[int] = None,
user_id: Optional[str] = None,
confidence_threshold: Optional[float] = None,
answer_context: Optional[KnowledgeBaseAnswerContext] = None,
ranker_kind: Optional[str] = None,
filters: Optional[QueryFilters] = None,
short_answer_options: Optional[ShortAnswerOptions] = None,
include_unstructured_sources: Optional[bool] = None,
**kwargs: Any
) -> AnswersResult:
"""Answers the specified question using your knowledge base.
:keyword project_name: The name of the knowledge base project to use.
:paramtype project_name: str
:keyword deployment_name: The name of the specific deployment of the project to use.
:paramtype deployment_name: str
:keyword qna_id: Exact QnA ID to fetch from the knowledge base, this field takes priority over
question.
:paramtype qna_id: int
:keyword question: User question to query against the knowledge base.
:paramtype question: str
:keyword top: Max number of answers to be returned for the question.
:paramtype top: int
:keyword user_id: Unique identifier for the user.
:paramtype user_id: str
:keyword confidence_threshold: Minimum threshold score for answers, value ranges from 0 to 1.
:paramtype confidence_threshold: float
:keyword answer_context: Context object with previous QnA's information.
:paramtype answer_context: ~azure.ai.language.questionanswering.models.KnowledgeBaseAnswerContext
:keyword ranker_kind: Type of ranker to be used. Possible
values include: "Default", "QuestionOnly".
:paramtype ranker_kind: str
:keyword filters: Filter QnAs based on given metadata list and knowledge base sources.
:paramtype filters: ~azure.ai.language.questionanswering.models.QueryFilters
:keyword short_answer_options: To configure Answer span prediction feature.
:paramtype short_answer_options: ~azure.ai.language.questionanswering.models.ShortAnswerOptions
:keyword include_unstructured_sources: (Optional) Flag to enable Query over Unstructured
Sources.
:paramtype include_unstructured_sources: bool
:return: AnswersResult
:rtype: ~azure.ai.language.questionanswering.models.AnswersResult
:raises ~azure.core.exceptions.HttpResponseError:
"""
# pylint ignore b/c with overloads we need to doc ALL the params in the impl for them to show up in docs
# pylint: disable=docstring-keyword-should-match-keyword-only,docstring-missing-param,docstring-should-be-keyword
@distributed_trace
def get_answers( # pyright: ignore[reportIncompatibleMethodOverride]
self,
*args: AnswersOptions,
**kwargs: Any
) -> AnswersResult:
"""Answers the specified question using your knowledge base.
:param options: Positional only. POST body of the request. Provide either `options`, OR
individual keyword arguments. If both are provided, only the options object will be used.
:type options: ~azure.ai.language.questionanswering.models.AnswersOptions
:keyword project_name: The name of the knowledge base project to use.
:paramtype project_name: str
:keyword deployment_name: The name of the specific deployment of the project to use.
:paramtype deployment_name: str
:keyword qna_id: Exact QnA ID to fetch from the knowledge base, this field takes priority over
question.
:paramtype qna_id: int
:keyword question: User question to query against the knowledge base.
:paramtype question: str
:keyword top: Max number of answers to be returned for the question.
:paramtype top: int
:keyword user_id: Unique identifier for the user.
:paramtype user_id: str
:keyword confidence_threshold: Minimum threshold score for answers, value ranges from 0 to 1.
:paramtype confidence_threshold: float
:keyword answer_context: Context object with previous QnA's information.
:paramtype answer_context: ~azure.ai.language.questionanswering.models.KnowledgeBaseAnswerContext
:keyword ranker_kind: Type of ranker to be used. Possible
values include: "Default", "QuestionOnly".
:paramtype ranker_kind: str
:keyword filters: Filter QnAs based on given metadata list and knowledge base sources.
:paramtype filters: ~azure.ai.language.questionanswering.models.QueryFilters
:keyword short_answer_options: To configure Answer span prediction feature.
:paramtype short_answer_options: ~azure.ai.language.questionanswering.models.ShortAnswerOptions
:keyword include_unstructured_sources: (Optional) Flag to enable Query over Unstructured
Sources.
:paramtype include_unstructured_sources: bool
:return: AnswersResult
:rtype: ~azure.ai.language.questionanswering.models.AnswersResult
:raises ~azure.core.exceptions.HttpResponseError:
.. admonition:: Example:
.. literalinclude:: ../samples/sample_query_knowledgebase.py
:start-after: [START query_knowledgebase]
:end-before: [END query_knowledgebase]
:language: python
:dedent: 4
:caption: Answer the specified question using your knowledge base.
"""
options, kwargs = _get_answers_prepare_options(*args, **kwargs)
return super().get_answers(options, **kwargs)
@overload # type: ignore
def get_answers_from_text(self, options: AnswersFromTextOptions, **kwargs: Any) -> AnswersFromTextResult:
"""Answers the specified question using the provided text in the body.
:param options: Positional only. POST body of the request. Provide either `options`, OR
individual keyword arguments. If both are provided, only the options object will be used.
:type options: ~azure.ai.language.questionanswering.models.AnswersFromTextOptions
:return: AnswersFromTextResult
:rtype: ~azure.ai.language.questionanswering.models.AnswersFromTextResult
:raises ~azure.core.exceptions.HttpResponseError:
"""
@overload
def get_answers_from_text( # pylint: disable=arguments-differ
self,
*,
question: str,
text_documents: List[Union[str, TextDocument]],
language: Optional[str] = None,
**kwargs: Any
) -> AnswersFromTextResult:
"""Answers the specified question using the provided text in the body.
:keyword question: User question to query against the given text records.
:paramtype question: str
:keyword text_documents: Text records to be searched for given question.
:paramtype text_documents: list[str or ~azure.ai.language.questionanswering.models.TextDocument]
:keyword language: Language of the text records. This is BCP-47 representation of a language.
For example, use "en" for English; "es" for Spanish etc. If not set, use "en" for English as
default.
:paramtype language: str
:return: AnswersFromTextResult
:rtype: ~azure.ai.language.questionanswering.models.AnswersFromTextResult
:raises ~azure.core.exceptions.HttpResponseError:
"""
@distributed_trace
def get_answers_from_text( # pyright: ignore[reportIncompatibleMethodOverride]
self,
*args: AnswersFromTextOptions,
**kwargs: Any
) -> AnswersFromTextResult:
"""Answers the specified question using the provided text in the body.
:param options: Positional only. POST body of the request. Provide either `options`, OR
individual keyword arguments. If both are provided, only the options object will be used.
:type options: ~azure.ai.language.questionanswering.models.AnswersFromTextOptions
:keyword question: User question to query against the given text records.
:paramtype question: str
:keyword text_documents: Text records to be searched for given question.
:paramtype text_documents: list[str or ~azure.ai.language.questionanswering.models.TextDocument]
:keyword language: Language of the text records. This is BCP-47 representation of a language.
For example, use "en" for English; "es" for Spanish etc. If not set, use "en" for English as
default.
:paramtype language: str
:return: AnswersFromTextResult
:rtype: ~azure.ai.language.questionanswering.models.AnswersFromTextResult
:raises ~azure.core.exceptions.HttpResponseError:
.. admonition:: Example:
.. literalinclude:: ../samples/sample_query_text.py
:start-after: [START query_text]
:end-before: [END query_text]
:language: python
:dedent: 4
:caption: Answers the specified question using the provided text.
"""
options, kwargs = _get_answers_from_text_prepare_options(
*args, language=kwargs.pop("language", self._default_language), **kwargs # type: ignore
)
return super().get_answers_from_text(options, **kwargs) # type: ignore
__all__: List[str] = [
"QuestionAnsweringClientOperationsMixin"
] # Add all objects you want publicly available to users at this package level
def patch_sdk():
"""Do not remove from this file.
`patch_sdk` is a last resort escape hatch that allows you to do customizations
you can't accomplish using the techniques described in
https://aka.ms/azsdk/python/dpcodegen/python/customize
"""
|