1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
|
# The MIT License (MIT)
# Copyright (c) Microsoft Corporation. All rights reserved.
import os
import unittest
import uuid
import pytest
import azure.cosmos.cosmos_client as cosmos_client
import azure.cosmos.exceptions as exceptions
import test_config
import vector_test_data
from azure.cosmos import http_constants
from azure.cosmos.partition_key import PartitionKey
def verify_ordering(item_list, distance_function):
for i in range(len(item_list)):
assert item_list[i]["text"] == vector_test_data.get_ordered_item_texts()[i]
if distance_function == "euclidean":
for i in range(len(item_list) - 1):
assert item_list[i]["SimilarityScore"] <= item_list[i + 1]["SimilarityScore"]
else:
for i in range(len(item_list) - 1):
assert item_list[i]["SimilarityScore"] >= item_list[i + 1]["SimilarityScore"]
@pytest.mark.cosmosSearchQuery
class TestVectorSimilarityQuery(unittest.TestCase):
"""Test to check vector similarity queries behavior."""
client: cosmos_client.CosmosClient = None
config = test_config.TestConfig
host = config.host
masterKey = config.masterKey
connectionPolicy = config.connectionPolicy
TEST_DATABASE_ID = config.TEST_DATABASE_ID
TEST_CONTAINER_ID = "Vector Similarity Container " + str(uuid.uuid4())
@classmethod
def setUpClass(cls):
if (cls.masterKey == '[YOUR_KEY_HERE]' or
cls.host == '[YOUR_ENDPOINT_HERE]'):
raise Exception(
"You must specify your Azure Cosmos account values for "
"'masterKey' and 'host' at the top of this class to run the "
"tests.")
cls.client = cosmos_client.CosmosClient(cls.host, cls.masterKey)
cls.test_db = cls.client.create_database(str(uuid.uuid4()))
cls.created_quantized_cosine_container = cls.test_db.create_container(
id="quantized" + cls.TEST_CONTAINER_ID,
partition_key=PartitionKey(path="/pk"),
offer_throughput=test_config.TestConfig.THROUGHPUT_FOR_2_PARTITIONS,
indexing_policy=test_config.get_vector_indexing_policy(embedding_type="quantizedFlat"),
vector_embedding_policy=test_config.get_vector_embedding_policy(data_type="float32",
distance_function="cosine",
dimensions=128))
cls.created_flat_euclidean_container = cls.test_db.create_container(
id="flat" + cls.TEST_CONTAINER_ID,
partition_key=PartitionKey(path="/pk"),
offer_throughput=test_config.TestConfig.THROUGHPUT_FOR_2_PARTITIONS,
indexing_policy=test_config.get_vector_indexing_policy(embedding_type="flat"),
vector_embedding_policy=test_config.get_vector_embedding_policy(data_type="float32",
distance_function="euclidean",
dimensions=128))
cls.created_diskANN_dotproduct_container = cls.test_db.create_container(
id="diskANN" + cls.TEST_CONTAINER_ID,
partition_key=PartitionKey(path="/pk"),
offer_throughput=test_config.TestConfig.THROUGHPUT_FOR_2_PARTITIONS,
indexing_policy=test_config.get_vector_indexing_policy(embedding_type="diskANN"),
vector_embedding_policy=test_config.get_vector_embedding_policy(data_type="float32",
distance_function="dotproduct",
dimensions=128))
cls.created_large_container = cls.test_db.create_container(
id="large_container" + cls.TEST_CONTAINER_ID,
partition_key=PartitionKey(path="/pk"),
offer_throughput=test_config.TestConfig.THROUGHPUT_FOR_2_PARTITIONS,
indexing_policy=test_config.get_vector_indexing_policy(embedding_type="quantizedFlat"),
vector_embedding_policy=test_config.get_vector_embedding_policy(data_type="float32",
distance_function="cosine",
dimensions=2))
for item in vector_test_data.get_vector_items():
cls.created_quantized_cosine_container.create_item(item)
cls.created_flat_euclidean_container.create_item(item)
cls.created_diskANN_dotproduct_container.create_item(item)
@classmethod
def tearDownClass(cls):
try:
cls.test_db.delete_container("quantized" + cls.TEST_CONTAINER_ID)
cls.test_db.delete_container("flat" + cls.TEST_CONTAINER_ID)
cls.test_db.delete_container("diskANN" + cls.TEST_CONTAINER_ID)
cls.test_db.delete_container("large_container" + cls.TEST_CONTAINER_ID)
cls.client.delete_database(cls.test_db.id)
except exceptions.CosmosHttpResponseError:
pass
def test_wrong_vector_search_queries(self):
vector_string = vector_test_data.get_embedding_string("I am having a wonderful day.")
# try to send a vector search query without limit filters
query = "SELECT c.text, VectorDistance(c.embedding, [{}]) AS " \
"SimilarityScore FROM c ORDER BY VectorDistance(c.embedding, [{}])".format(vector_string, vector_string)
try:
list(self.created_large_container.query_items(query=query, enable_cross_partition_query=True))
pytest.fail("Client should not allow queries without filters.")
except ValueError as e:
assert "Executing a vector search query without TOP or LIMIT can consume many RUs very fast and" \
" have long runtimes. Please ensure you are using one of the two filters with your" \
" vector search query." in e.args[0]
# try to send a vector search query specifying the ordering as ASC or DESC
query = "SELECT c.text, VectorDistance(c.embedding, [{}]) AS " \
"SimilarityScore FROM c ORDER BY VectorDistance(c.embedding, [{}]) ASC".format(vector_string,
vector_string)
try:
list(self.created_large_container.query_items(query=query, enable_cross_partition_query=True))
pytest.fail("Client should not allow queries with ASC/DESC.")
except exceptions.CosmosHttpResponseError as e:
assert e.status_code == http_constants.StatusCodes.BAD_REQUEST
# TODO: Seems like this error message differs depending on Ubuntu vs. Windows runs?
assert ("One of the input values is invalid." in e.message
or "Specifying a sorting order (ASC or DESC) with VectorDistance function is not supported." in e.message)
def test_vector_search_environment_variables(self):
vector_string = vector_test_data.get_embedding_string("I am having a wonderful day.")
query = "SELECT TOP 10 c.text, VectorDistance(c.embedding, [{}]) AS " \
"SimilarityScore FROM c ORDER BY VectorDistance(c.embedding, [{}])".format(vector_string, vector_string)
os.environ["AZURE_COSMOS_MAX_ITEM_BUFFER_VECTOR_SEARCH"] = "1"
try:
[item for item in self.created_large_container.query_items(query=query, enable_cross_partition_query=True)]
pytest.fail("Config was not set correctly.")
except ValueError as e:
assert e.args[0] == ("Executing a vector search query with more items than the max is not allowed. "
"Please ensure you are using a limit smaller than the max, or change the max.")
os.environ["AZURE_COSMOS_MAX_ITEM_BUFFER_VECTOR_SEARCH"] = "50000"
os.environ["AZURE_COSMOS_DISABLE_NON_STREAMING_ORDER_BY"] = "False"
[item for item in self.created_large_container.query_items(query=query, enable_cross_partition_query=True)]
def test_ordering_distances(self):
# Besides ordering distances, we also verify that the query text properly replaces any set embedding policies
# load up previously calculated embedding for the given string
vector_string = vector_test_data.get_embedding_string("I am having a wonderful day.")
# test euclidean distance
for i in range(1, 11):
# we define queries with and without specs to directly use the embeddings in our container policies
vanilla_query = "SELECT TOP {} c.text, VectorDistance(c.embedding, [{}]) AS " \
"SimilarityScore FROM c ORDER BY VectorDistance(c.embedding, [{}])".format(str(i),
vector_string,
vector_string)
specs_query = "SELECT TOP {} c.text, VectorDistance(c.embedding, [{}], false, {{'distanceFunction': 'euclidean'}}) AS " \
"SimilarityScore FROM c ORDER BY VectorDistance(c.embedding, [{}], false, {{'distanceFunction': 'euclidean'}})" \
.format(str(i), vector_string, vector_string)
flat_list = list(self.created_flat_euclidean_container.query_items(query=vanilla_query,
enable_cross_partition_query=True))
verify_ordering(flat_list, "euclidean")
quantized_list = list(
self.created_quantized_cosine_container.query_items(query=specs_query,
enable_cross_partition_query=True))
verify_ordering(quantized_list, "euclidean")
disk_ann_list = list(
self.created_diskANN_dotproduct_container.query_items(query=specs_query,
enable_cross_partition_query=True))
verify_ordering(disk_ann_list, "euclidean")
# test cosine distance
for i in range(1, 11):
vanilla_query = "SELECT TOP {} c.text, VectorDistance(c.embedding, [{}]) AS " \
"SimilarityScore FROM c ORDER BY VectorDistance(c.embedding, [{}])".format(str(i),
vector_string,
vector_string)
specs_query = "SELECT TOP {} c.text, VectorDistance(c.embedding, [{}], false, {{'distanceFunction': 'cosine'}}) AS " \
"SimilarityScore FROM c ORDER BY VectorDistance(c.embedding, [{}], false, {{'distanceFunction': 'cosine'}})" \
.format(str(i), vector_string, vector_string)
flat_list = list(
self.created_flat_euclidean_container.query_items(query=specs_query, enable_cross_partition_query=True))
verify_ordering(flat_list, "cosine")
quantized_list = list(
self.created_quantized_cosine_container.query_items(query=vanilla_query,
enable_cross_partition_query=True))
verify_ordering(quantized_list, "cosine")
disk_ann_list = list(
self.created_diskANN_dotproduct_container.query_items(query=specs_query,
enable_cross_partition_query=True))
verify_ordering(disk_ann_list, "cosine")
# test dot product distance
for i in range(1, 11):
vanilla_query = "SELECT TOP {} c.text, VectorDistance(c.embedding, [{}]) AS " \
"SimilarityScore FROM c ORDER BY VectorDistance(c.embedding, [{}])".format(str(i),
vector_string,
vector_string)
specs_query = "SELECT TOP {} c.text, VectorDistance(c.embedding, [{}], false, {{'distanceFunction': 'dotproduct'}}) AS " \
"SimilarityScore FROM c ORDER BY VectorDistance(c.embedding, [{}], false, {{'distanceFunction': 'dotproduct'}})" \
.format(str(i), vector_string, vector_string)
flat_list = list(
self.created_flat_euclidean_container.query_items(query=specs_query, enable_cross_partition_query=True))
verify_ordering(flat_list, "dotproduct")
quantized_list = list(
self.created_quantized_cosine_container.query_items(query=specs_query,
enable_cross_partition_query=True))
verify_ordering(quantized_list, "dotproduct")
disk_ann_list = list(
self.created_diskANN_dotproduct_container.query_items(query=vanilla_query,
enable_cross_partition_query=True))
verify_ordering(disk_ann_list, "dotproduct")
def test_vector_query_pagination(self):
# load up previously calculated embedding for the given string
vector_string = vector_test_data.get_embedding_string("I am having a wonderful day.")
query = "SELECT TOP 8 c.text, VectorDistance(c.embedding, [{}], false, {{'distanceFunction': 'cosine'}}) AS " \
"SimilarityScore FROM c ORDER BY VectorDistance(c.embedding, [{}], false, {{'distanceFunction': " \
"'cosine'}})".format(vector_string, vector_string)
query_iterable = self.created_quantized_cosine_container.query_items(query=query,
enable_cross_partition_query=True,
max_item_count=3)
all_fetched_res = []
count = 0
item_pages = query_iterable.by_page()
for items in item_pages:
count += 1
all_fetched_res.extend(list(items))
assert count == 3
assert len(all_fetched_res) == 8
verify_ordering(all_fetched_res, "cosine")
def test_vector_query_large_data(self):
# test different limit queries on a larger data set
embedding_value = 0.0001
for i in range(2000):
item = {"id": str(i), "pk": i % 2, "embedding": [embedding_value, embedding_value]}
self.created_large_container.create_item(item)
embedding_value += 0.0001
query = "SELECT c.id, VectorDistance(c.embedding, [0.0001, 0.0001], false," \
" {'distanceFunction': 'cosine'}) AS SimilarityScore FROM c ORDER BY" \
" VectorDistance(c.embedding, [0.0001, 0.0001], false, {'distanceFunction': 'cosine'})" \
"OFFSET 0 LIMIT 1000"
query_iterable = self.created_large_container.query_items(query=query,
enable_cross_partition_query=True)
result_list = list(query_iterable)
assert len(result_list) == 1000
query = "SELECT DISTINCT c.id, VectorDistance(c.embedding, [0.0001, 0.0001], false," \
" {'distanceFunction': 'cosine'}) AS SimilarityScore FROM c ORDER BY" \
" VectorDistance(c.embedding, [0.0001, 0.0001], false, {'distanceFunction': 'cosine'})" \
"OFFSET 0 LIMIT 1000"
query_iterable = self.created_large_container.query_items(query=query,
enable_cross_partition_query=True)
result_list = list(query_iterable)
assert len(result_list) == 1000
query = "SELECT TOP 750 c.id, VectorDistance(c.embedding, [0.0001, 0.0001], false," \
" {'distanceFunction': 'cosine'}) AS SimilarityScore FROM c ORDER BY" \
" VectorDistance(c.embedding, [0.0001, 0.0001], false, {'distanceFunction': 'cosine'})"
query_iterable = self.created_large_container.query_items(query=query,
enable_cross_partition_query=True)
result_list = list(query_iterable)
assert len(result_list) == 750
query = "SELECT DISTINCT TOP 750 c.id, VectorDistance(c.embedding, [0.0001, 0.0001], false," \
" {'distanceFunction': 'cosine'}) AS SimilarityScore FROM c ORDER BY" \
" VectorDistance(c.embedding, [0.0001, 0.0001], false, {'distanceFunction': 'cosine'})"
query_iterable = self.created_large_container.query_items(query=query,
enable_cross_partition_query=True)
result_list = list(query_iterable)
assert len(result_list) == 750
query = "SELECT c.id, VectorDistance(c.embedding, [0.0001, 0.0001], false," \
" {'distanceFunction': 'cosine'}) AS SimilarityScore FROM c ORDER BY" \
" VectorDistance(c.embedding, [0.0001, 0.0001], false, {'distanceFunction': 'cosine'})" \
" OFFSET 1000 LIMIT 500"
query_iterable = self.created_large_container.query_items(query=query,
enable_cross_partition_query=True)
result_list = list(query_iterable)
assert len(result_list) == 500
query = "SELECT DISTINCT c.id, VectorDistance(c.embedding, [0.0001, 0.0001], false," \
" {'distanceFunction': 'cosine'}) AS SimilarityScore FROM c ORDER BY" \
" VectorDistance(c.embedding, [0.0001, 0.0001], false, {'distanceFunction': 'cosine'})" \
" OFFSET 1000 LIMIT 500"
query_iterable = self.created_large_container.query_items(query=query,
enable_cross_partition_query=True)
result_list = list(query_iterable)
assert len(result_list) == 500
def test_vector_query_cross_partition_response_hook(self):
# load up previously calculated embedding for the given string
vector_string = vector_test_data.get_embedding_string("I am having a wonderful day.")
query = "SELECT TOP 5 c.text, VectorDistance(c.embedding, [{}], false, {{'distanceFunction': 'cosine'}}) AS " \
"SimilarityScore FROM c ORDER BY VectorDistance(c.embedding, [{}], false, {{'distanceFunction': " \
"'cosine'}})".format(vector_string, vector_string)
response_hook = test_config.ResponseHookCaller()
query_iterable = self.created_quantized_cosine_container.query_items(query=query,
enable_cross_partition_query=True,
response_hook=response_hook)
result_list = list(query_iterable)
assert len(result_list) == 5
assert response_hook.count == 2
def test_vector_query_partitioned_response_hook(self):
# load up previously calculated embedding for the given string
vector_string = vector_test_data.get_embedding_string("I am having a wonderful day.")
query = "SELECT TOP 4 c.text, VectorDistance(c.embedding, [{}], false, {{'distanceFunction': 'cosine'}}) AS " \
"SimilarityScore FROM c ORDER BY VectorDistance(c.embedding, [{}], false, {{'distanceFunction': " \
"'cosine'}})".format(vector_string, vector_string)
response_hook = test_config.ResponseHookCaller()
query_iterable = self.created_quantized_cosine_container.query_items(query=query,
partition_key='1',
response_hook=response_hook)
result_list = list(query_iterable)
assert len(result_list) == 4
assert response_hook.count == 1
if __name__ == "__main__":
unittest.main()
|