1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
|
# Azure AI Document Intelligence client library for Python
Azure AI Document Intelligence ([previously known as Form Recognizer][service-rename]) is a cloud service that uses machine learning to analyze text and structured data from your documents. It includes the following main features:
- Layout - Extract content and structure (ex. words, selection marks, tables) from documents.
- Document - Analyze key-value pairs in addition to general layout from documents.
- Read - Read page information from documents.
- Prebuilt - Extract common field values from select document types (ex. receipts, invoices, business cards, ID documents, U.S. W-2 tax documents, among others) using prebuilt models.
- Custom - Build custom models from your own data to extract tailored field values in addition to general layout from documents.
- Classifiers - Build custom classification models that combine layout and language features to accurately detect and identify documents you process within your application.
- Add-on capabilities - Extract barcodes/QR codes, formulas, font/style, etc. or enable high resolution mode for large documents with optional parameters.
[Source code][python-di-src]
| [Package (PyPI)][python-di-pypi]
| [API reference documentation][python-di-ref-docs]
| [Product documentation][python-di-product-docs]
| [Samples][python-di-samples]
## Getting started
### Installating the package
```bash
python -m pip install azure-ai-documentintelligence
```
This table shows the relationship between SDK versions and supported API service versions:
| SDK version | Supported API service version |
| ----------- | ----------------------------- |
| 1.0.0 | 2024-11-30 |
Older API versions are supported in `azure-ai-formrecognizer`, please see the [Migration Guide][migration-guide] for detailed instructions on how to update application.
#### Prequisites
- Python 3.8 or later is required to use this package.
- You need an [Azure subscription][azure_sub] to use this package.
- An existing Azure AI Document Intelligence instance.
- **If running async APIs:** The async transport is designed to be opt-in. The [aiohttp](https://pypi.org/project/aiohttp/) framework is one of the supported implementations of async transport. It's not installed by default. You need to install it separately as follows: `pip install aiohttp`
#### Create a Cognitive Services or Document Intelligence resource
Document Intelligence supports both [multi-service and single-service access][cognitive_resource_portal]. Create a Cognitive Services resource if you plan to access multiple cognitive services under a single endpoint/key. For Document Intelligence access only, create a Document Intelligence resource. Please note that you will need a single-service resource if you intend to use [Azure Active Directory authentication](#create-the-client-with-an-azure-active-directory-credential).
You can create either resource using:
- Option 1: [Azure Portal][cognitive_resource_portal].
- Option 2: [Azure CLI][cognitive_resource_cli].
Below is an example of how you can create a Document Intelligence resource using the CLI:
```PowerShell
# Create a new resource group to hold the Document Intelligence resource
# if using an existing resource group, skip this step
az group create --name <your-resource-name> --location <location>
```
```PowerShell
# Create the Document Intelligence resource
az cognitiveservices account create \
--name <your-resource-name> \
--resource-group <your-resource-group-name> \
--kind FormRecognizer \
--sku <sku> \
--location <location> \
--yes
```
For more information about creating the resource or how to get the location and sku information see [here][cognitive_resource_cli].
### Authenticate the client
In order to interact with the Document Intelligence service, you will need to create an instance of a client.
An **endpoint** and **credential** are necessary to instantiate the client object.
#### Get the endpoint
You can find the endpoint for your Document Intelligence resource using the
[Azure Portal][azure_portal_get_endpoint]
or [Azure CLI][azure_cli_endpoint_lookup]:
```bash
# Get the endpoint for the Document Intelligence resource
az cognitiveservices account show --name "resource-name" --resource-group "resource-group-name" --query "properties.endpoint"
```
Either a regional endpoint or a custom subdomain can be used for authentication. They are formatted as follows:
```
Regional endpoint: https://<region>.api.cognitive.microsoft.com/
Custom subdomain: https://<resource-name>.cognitiveservices.azure.com/
```
A regional endpoint is the same for every resource in a region. A complete list of supported regional endpoints can be consulted [here][regional_endpoints]. Please note that regional endpoints do not support AAD authentication.
A custom subdomain, on the other hand, is a name that is unique to the Document Intelligence resource. They can only be used by [single-service resources][cognitive_resource_portal].
#### Get the API key
The API key can be found in the [Azure Portal][azure_portal] or by running the following Azure CLI command:
```bash
az cognitiveservices account keys list --name "<resource-name>" --resource-group "<resource-group-name>"
```
#### Create the client with AzureKeyCredential
To use an [API key][cognitive_authentication_api_key] as the `credential` parameter,
pass the key as a string into an instance of [AzureKeyCredential][azure-key-credential].
```python
from azure.core.credentials import AzureKeyCredential
from azure.ai.documentintelligence import DocumentIntelligenceClient
endpoint = "https://<my-custom-subdomain>.cognitiveservices.azure.com/"
credential = AzureKeyCredential("<api_key>")
document_intelligence_client = DocumentIntelligenceClient(endpoint, credential)
```
#### Create the client with an Azure Active Directory credential
`AzureKeyCredential` authentication is used in the examples in this getting started guide, but you can also
authenticate with Azure Active Directory using the [azure-identity][azure_identity] library.
Note that regional endpoints do not support AAD authentication. Create a [custom subdomain][custom_subdomain]
name for your resource in order to use this type of authentication.
To use the [DefaultAzureCredential][default_azure_credential] type shown below, or other credential types provided
with the Azure SDK, please install the `azure-identity` package:
```
pip install azure-identity
```
You will also need to [register a new AAD application and grant access][register_aad_app] to Document Intelligence by assigning the [Cognitive Services Data Reader][entra_auth_role] role to your service principal.
Once completed, set the values of the client ID, tenant ID, and client secret of the AAD application as environment variables:
`AZURE_CLIENT_ID`, `AZURE_TENANT_ID`, `AZURE_CLIENT_SECRET`.
```python
"""DefaultAzureCredential will use the values from these environment
variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET
"""
from azure.ai.documentintelligence import DocumentIntelligenceClient
from azure.identity import DefaultAzureCredential
endpoint = os.environ["DOCUMENTINTELLIGENCE_ENDPOINT"]
credential = DefaultAzureCredential()
document_intelligence_client = DocumentIntelligenceClient(endpoint, credential)
```
## Key concepts
### DocumentIntelligenceClient
`DocumentIntelligenceClient` provides operations for analyzing input documents using prebuilt and custom models through the `begin_analyze_document` API.
Use the `model_id` parameter to select the type of model for analysis. See a full list of supported models [here][di-models].
The `DocumentIntelligenceClient` also provides operations for classifying documents through the `begin_classify_document` API.
Custom classification models can classify each page in an input file to identify the document(s) within and can also identify multiple documents or multiple instances of a single document within an input file.
Sample code snippets are provided to illustrate using a DocumentIntelligenceClient [here](#examples "Examples").
More information about analyzing documents, including supported features, locales, and document types can be found in the [service documentation][di-models].
### DocumentIntelligenceAdministrationClient
`DocumentIntelligenceAdministrationClient` provides operations for:
- Building custom models to analyze specific fields you specify by labeling your custom documents. A `DocumentModelDetails` is returned indicating the document type(s) the model can analyze, as well as the estimated confidence for each field. See the [service documentation][di-build-model] for a more detailed explanation.
- Creating a composed model from a collection of existing models.
- Managing models created in your account.
- Listing operations or getting a specific model operation created within the last 24 hours.
- Copying a custom model from one Document Intelligence resource to another.
- Build and manage a custom classification model to classify the documents you process within your application.
Please note that models can also be built using a graphical user interface such as [Document Intelligence Studio][di-studio].
Sample code snippets are provided to illustrate using a DocumentIntelligenceAdministrationClient [here](#examples "Examples").
### Long-running operations
Long-running operations are operations which consist of an initial request sent to the service to start an operation,
followed by polling the service at intervals to determine whether the operation has completed or failed, and if it has
succeeded, to get the result.
Methods that analyze documents, build models, or copy/compose models are modeled as long-running operations.
The client exposes a `begin_<method-name>` method that returns an `LROPoller` or `AsyncLROPoller`. Callers should wait
for the operation to complete by calling `result()` on the poller object returned from the `begin_<method-name>` method.
Sample code snippets are provided to illustrate using long-running operations [below](#examples "Examples").
## Examples
The following section provides several code snippets covering some of the most common Document Intelligence tasks, including:
- [Extract Layout](#extract-layout "Extract Layout")
- [Extract Figures from Documents](#extract-figures-from-documents "Extract Figures from Documents")
- [Analyze Documents Result in PDF](#analyze-documents-result-in-pdf "Analyze Documents Result in PDF")
- [Using the General Document Model](#using-the-general-document-model "Using the General Document Model")
- [Using Prebuilt Models](#using-prebuilt-models "Using Prebuilt Models")
- [Build a Custom Model](#build-a-custom-model "Build a custom model")
- [Analyze Documents Using a Custom Model](#analyze-documents-using-a-custom-model "Analyze Documents Using a Custom Model")
- [Manage Your Models](#manage-your-models "Manage Your Models")
- [Add-on Capabilities](#add-on-capabilities "Add-on Capabilities")
- [Get Raw JSON Result](#get-raw-json-result "Get Raw JSON Result")
- [Parse analyzed result to JSON format](#parse-analyzed-result-to-json-format "Parse analyzed result to JSON format")
### Extract Layout
Extract text, selection marks, text styles, and table structures, along with their bounding region coordinates, from documents.
<!-- SNIPPET:sample_analyze_layout.extract_layout -->
```python
from azure.core.credentials import AzureKeyCredential
from azure.ai.documentintelligence import DocumentIntelligenceClient
from azure.ai.documentintelligence.models import AnalyzeResult
def _in_span(word, spans):
for span in spans:
if word.span.offset >= span.offset and (word.span.offset + word.span.length) <= (span.offset + span.length):
return True
return False
def _format_polygon(polygon):
if not polygon:
return "N/A"
return ", ".join([f"[{polygon[i]}, {polygon[i + 1]}]" for i in range(0, len(polygon), 2)])
endpoint = os.environ["DOCUMENTINTELLIGENCE_ENDPOINT"]
key = os.environ["DOCUMENTINTELLIGENCE_API_KEY"]
document_intelligence_client = DocumentIntelligenceClient(endpoint=endpoint, credential=AzureKeyCredential(key))
with open(path_to_sample_documents, "rb") as f:
poller = document_intelligence_client.begin_analyze_document("prebuilt-layout", body=f)
result: AnalyzeResult = poller.result()
if result.styles and any([style.is_handwritten for style in result.styles]):
print("Document contains handwritten content")
else:
print("Document does not contain handwritten content")
for page in result.pages:
print(f"----Analyzing layout from page #{page.page_number}----")
print(f"Page has width: {page.width} and height: {page.height}, measured with unit: {page.unit}")
if page.lines:
for line_idx, line in enumerate(page.lines):
words = []
if page.words:
for word in page.words:
print(f"......Word '{word.content}' has a confidence of {word.confidence}")
if _in_span(word, line.spans):
words.append(word)
print(
f"...Line # {line_idx} has word count {len(words)} and text '{line.content}' "
f"within bounding polygon '{_format_polygon(line.polygon)}'"
)
if page.selection_marks:
for selection_mark in page.selection_marks:
print(
f"Selection mark is '{selection_mark.state}' within bounding polygon "
f"'{_format_polygon(selection_mark.polygon)}' and has a confidence of {selection_mark.confidence}"
)
if result.paragraphs:
print(f"----Detected #{len(result.paragraphs)} paragraphs in the document----")
# Sort all paragraphs by span's offset to read in the right order.
result.paragraphs.sort(key=lambda p: (p.spans.sort(key=lambda s: s.offset), p.spans[0].offset))
print("-----Print sorted paragraphs-----")
for paragraph in result.paragraphs:
if not paragraph.bounding_regions:
print(f"Found paragraph with role: '{paragraph.role}' within N/A bounding region")
else:
print(f"Found paragraph with role: '{paragraph.role}' within")
print(
", ".join(
f" Page #{region.page_number}: {_format_polygon(region.polygon)} bounding region"
for region in paragraph.bounding_regions
)
)
print(f"...with content: '{paragraph.content}'")
print(f"...with offset: {paragraph.spans[0].offset} and length: {paragraph.spans[0].length}")
if result.tables:
for table_idx, table in enumerate(result.tables):
print(f"Table # {table_idx} has {table.row_count} rows and " f"{table.column_count} columns")
if table.bounding_regions:
for region in table.bounding_regions:
print(
f"Table # {table_idx} location on page: {region.page_number} is {_format_polygon(region.polygon)}"
)
for cell in table.cells:
print(f"...Cell[{cell.row_index}][{cell.column_index}] has text '{cell.content}'")
if cell.bounding_regions:
for region in cell.bounding_regions:
print(
f"...content on page {region.page_number} is within bounding polygon '{_format_polygon(region.polygon)}'"
)
print("----------------------------------------")
```
<!-- END SNIPPET -->
### Extract Figures from Documents
Extract figures from the document as cropped images.
<!-- SNIPPET:sample_analyze_result_figures.analyze_result_figures -->
```python
from azure.core.credentials import AzureKeyCredential
from azure.ai.documentintelligence import DocumentIntelligenceClient
from azure.ai.documentintelligence.models import AnalyzeOutputOption, AnalyzeResult
endpoint = os.environ["DOCUMENTINTELLIGENCE_ENDPOINT"]
key = os.environ["DOCUMENTINTELLIGENCE_API_KEY"]
document_intelligence_client = DocumentIntelligenceClient(endpoint=endpoint, credential=AzureKeyCredential(key))
with open(path_to_sample_documents, "rb") as f:
poller = document_intelligence_client.begin_analyze_document(
"prebuilt-layout",
body=f,
output=[AnalyzeOutputOption.FIGURES],
)
result: AnalyzeResult = poller.result()
operation_id = poller.details["operation_id"]
if result.figures:
for figure in result.figures:
if figure.id:
response = document_intelligence_client.get_analyze_result_figure(
model_id=result.model_id, result_id=operation_id, figure_id=figure.id
)
with open(f"{figure.id}.png", "wb") as writer:
writer.writelines(response)
else:
print("No figures found.")
```
<!-- END SNIPPET -->
### Analyze Documents Result in PDF
Convert an analog PDF into a PDF with embedded text. Such text can enable text search within the PDF or allow the PDF to be used in LLM chat scenarios.
_Note: For now, this feature is only supported by `prebuilt-read`. All other models will return error._
<!-- SNIPPET:sample_analyze_result_pdf.analyze_result_pdf -->
```python
from azure.core.credentials import AzureKeyCredential
from azure.ai.documentintelligence import DocumentIntelligenceClient
from azure.ai.documentintelligence.models import AnalyzeOutputOption, AnalyzeResult
endpoint = os.environ["DOCUMENTINTELLIGENCE_ENDPOINT"]
key = os.environ["DOCUMENTINTELLIGENCE_API_KEY"]
document_intelligence_client = DocumentIntelligenceClient(endpoint=endpoint, credential=AzureKeyCredential(key))
with open(path_to_sample_documents, "rb") as f:
poller = document_intelligence_client.begin_analyze_document(
"prebuilt-read",
body=f,
output=[AnalyzeOutputOption.PDF],
)
result: AnalyzeResult = poller.result()
operation_id = poller.details["operation_id"]
response = document_intelligence_client.get_analyze_result_pdf(model_id=result.model_id, result_id=operation_id)
with open("analyze_result.pdf", "wb") as writer:
writer.writelines(response)
```
<!-- END SNIPPET -->
### Using the General Document Model
Analyze key-value pairs, tables, styles, and selection marks from documents using the general document model provided by the Document Intelligence service.
Select the General Document Model by passing `model_id="prebuilt-document"` into the `begin_analyze_document` method:
<!-- SNIPPET:sample_analyze_general_documents.analyze_general_documents -->
```python
from azure.core.credentials import AzureKeyCredential
from azure.ai.documentintelligence import DocumentIntelligenceClient
from azure.ai.documentintelligence.models import DocumentAnalysisFeature, AnalyzeResult
def _in_span(word, spans):
for span in spans:
if word.span.offset >= span.offset and (word.span.offset + word.span.length) <= (span.offset + span.length):
return True
return False
def _format_bounding_region(bounding_regions):
if not bounding_regions:
return "N/A"
return ", ".join(
f"Page #{region.page_number}: {_format_polygon(region.polygon)}" for region in bounding_regions
)
def _format_polygon(polygon):
if not polygon:
return "N/A"
return ", ".join([f"[{polygon[i]}, {polygon[i + 1]}]" for i in range(0, len(polygon), 2)])
endpoint = os.environ["DOCUMENTINTELLIGENCE_ENDPOINT"]
key = os.environ["DOCUMENTINTELLIGENCE_API_KEY"]
document_intelligence_client = DocumentIntelligenceClient(endpoint=endpoint, credential=AzureKeyCredential(key))
with open(path_to_sample_documents, "rb") as f:
poller = document_intelligence_client.begin_analyze_document(
"prebuilt-layout",
body=f,
features=[DocumentAnalysisFeature.KEY_VALUE_PAIRS],
)
result: AnalyzeResult = poller.result()
if result.styles:
for style in result.styles:
if style.is_handwritten:
print("Document contains handwritten content: ")
print(",".join([result.content[span.offset : span.offset + span.length] for span in style.spans]))
print("----Key-value pairs found in document----")
if result.key_value_pairs:
for kv_pair in result.key_value_pairs:
if kv_pair.key:
print(
f"Key '{kv_pair.key.content}' found within "
f"'{_format_bounding_region(kv_pair.key.bounding_regions)}' bounding regions"
)
if kv_pair.value:
print(
f"Value '{kv_pair.value.content}' found within "
f"'{_format_bounding_region(kv_pair.value.bounding_regions)}' bounding regions\n"
)
for page in result.pages:
print(f"----Analyzing document from page #{page.page_number}----")
print(f"Page has width: {page.width} and height: {page.height}, measured with unit: {page.unit}")
if page.lines:
for line_idx, line in enumerate(page.lines):
words = []
if page.words:
for word in page.words:
print(f"......Word '{word.content}' has a confidence of {word.confidence}")
if _in_span(word, line.spans):
words.append(word)
print(
f"...Line #{line_idx} has {len(words)} words and text '{line.content}' within "
f"bounding polygon '{_format_polygon(line.polygon)}'"
)
if page.selection_marks:
for selection_mark in page.selection_marks:
print(
f"Selection mark is '{selection_mark.state}' within bounding polygon "
f"'{_format_polygon(selection_mark.polygon)}' and has a confidence of "
f"{selection_mark.confidence}"
)
if result.tables:
for table_idx, table in enumerate(result.tables):
print(f"Table # {table_idx} has {table.row_count} rows and {table.column_count} columns")
if table.bounding_regions:
for region in table.bounding_regions:
print(
f"Table # {table_idx} location on page: {region.page_number} is {_format_polygon(region.polygon)}"
)
for cell in table.cells:
print(f"...Cell[{cell.row_index}][{cell.column_index}] has text '{cell.content}'")
if cell.bounding_regions:
for region in cell.bounding_regions:
print(
f"...content on page {region.page_number} is within bounding polygon '{_format_polygon(region.polygon)}'\n"
)
print("----------------------------------------")
```
<!-- END SNIPPET -->
- Read more about the features provided by the `prebuilt-document` model [here][service_prebuilt_document].
### Using Prebuilt Models
Extract fields from select document types such as receipts, invoices, business cards, identity documents, and U.S. W-2 tax documents using prebuilt models provided by the Document Intelligence service.
For example, to analyze fields from a sales receipt, use the prebuilt receipt model provided by passing `model_id="prebuilt-receipt"` into the `begin_analyze_document` method:
<!-- SNIPPET:sample_analyze_receipts.analyze_receipts -->
```python
from azure.core.credentials import AzureKeyCredential
from azure.ai.documentintelligence import DocumentIntelligenceClient
from azure.ai.documentintelligence.models import AnalyzeResult
def _format_price(price_dict):
if price_dict is None:
return "N/A"
return "".join([f"{p}" for p in price_dict.values()])
endpoint = os.environ["DOCUMENTINTELLIGENCE_ENDPOINT"]
key = os.environ["DOCUMENTINTELLIGENCE_API_KEY"]
document_intelligence_client = DocumentIntelligenceClient(endpoint=endpoint, credential=AzureKeyCredential(key))
with open(path_to_sample_documents, "rb") as f:
poller = document_intelligence_client.begin_analyze_document("prebuilt-receipt", body=f, locale="en-US")
receipts: AnalyzeResult = poller.result()
if receipts.documents:
for idx, receipt in enumerate(receipts.documents):
print(f"--------Analysis of receipt #{idx + 1}--------")
print(f"Receipt type: {receipt.doc_type if receipt.doc_type else 'N/A'}")
if receipt.fields:
merchant_name = receipt.fields.get("MerchantName")
if merchant_name:
print(
f"Merchant Name: {merchant_name.get('valueString')} has confidence: "
f"{merchant_name.confidence}"
)
transaction_date = receipt.fields.get("TransactionDate")
if transaction_date:
print(
f"Transaction Date: {transaction_date.get('valueDate')} has confidence: "
f"{transaction_date.confidence}"
)
items = receipt.fields.get("Items")
if items:
print("Receipt items:")
for idx, item in enumerate(items.get("valueArray")):
print(f"...Item #{idx + 1}")
item_description = item.get("valueObject").get("Description")
if item_description:
print(
f"......Item Description: {item_description.get('valueString')} has confidence: "
f"{item_description.confidence}"
)
item_quantity = item.get("valueObject").get("Quantity")
if item_quantity:
print(
f"......Item Quantity: {item_quantity.get('valueString')} has confidence: "
f"{item_quantity.confidence}"
)
item_total_price = item.get("valueObject").get("TotalPrice")
if item_total_price:
print(
f"......Total Item Price: {_format_price(item_total_price.get('valueCurrency'))} has confidence: "
f"{item_total_price.confidence}"
)
subtotal = receipt.fields.get("Subtotal")
if subtotal:
print(
f"Subtotal: {_format_price(subtotal.get('valueCurrency'))} has confidence: {subtotal.confidence}"
)
tax = receipt.fields.get("TotalTax")
if tax:
print(f"Total tax: {_format_price(tax.get('valueCurrency'))} has confidence: {tax.confidence}")
tip = receipt.fields.get("Tip")
if tip:
print(f"Tip: {_format_price(tip.get('valueCurrency'))} has confidence: {tip.confidence}")
total = receipt.fields.get("Total")
if total:
print(f"Total: {_format_price(total.get('valueCurrency'))} has confidence: {total.confidence}")
print("--------------------------------------")
```
<!-- END SNIPPET -->
You are not limited to receipts! There are a few prebuilt models to choose from, each of which has its own set of supported fields. See other supported prebuilt models [here][di-models].
### Build a Custom Model
Build a custom model on your own document type. The resulting model can be used to analyze values from the types of documents it was trained on.
Provide a container SAS URL to your Azure Storage Blob container where you're storing the training documents.
More details on setting up a container and required file structure can be found in the [service documentation][di-build-training-set].
<!-- SNIPPET:sample_manage_models.build_model -->
```python
# Let's build a model to use for this sample
import uuid
from azure.ai.documentintelligence import DocumentIntelligenceAdministrationClient
from azure.ai.documentintelligence.models import (
DocumentBuildMode,
BuildDocumentModelRequest,
AzureBlobContentSource,
DocumentModelDetails,
)
from azure.core.credentials import AzureKeyCredential
endpoint = os.environ["DOCUMENTINTELLIGENCE_ENDPOINT"]
key = os.environ["DOCUMENTINTELLIGENCE_API_KEY"]
container_sas_url = os.environ["DOCUMENTINTELLIGENCE_STORAGE_CONTAINER_SAS_URL"]
document_intelligence_admin_client = DocumentIntelligenceAdministrationClient(endpoint, AzureKeyCredential(key))
poller = document_intelligence_admin_client.begin_build_document_model(
BuildDocumentModelRequest(
model_id=str(uuid.uuid4()),
build_mode=DocumentBuildMode.TEMPLATE,
azure_blob_source=AzureBlobContentSource(container_url=container_sas_url),
description="my model description",
)
)
model: DocumentModelDetails = poller.result()
print(f"Model ID: {model.model_id}")
print(f"Description: {model.description}")
print(f"Model created on: {model.created_date_time}")
print(f"Model expires on: {model.expiration_date_time}")
if model.doc_types:
print("Doc types the model can recognize:")
for name, doc_type in model.doc_types.items():
print(f"Doc Type: '{name}' built with '{doc_type.build_mode}' mode which has the following fields:")
if doc_type.field_schema:
for field_name, field in doc_type.field_schema.items():
if doc_type.field_confidence:
print(
f"Field: '{field_name}' has type '{field['type']}' and confidence score "
f"{doc_type.field_confidence[field_name]}"
)
```
<!-- END SNIPPET -->
### Analyze Documents Using a Custom Model
Analyze document fields, tables, selection marks, and more. These models are trained with your own data, so they're tailored to your documents.
For best results, you should only analyze documents of the same document type that the custom model was built with.
<!-- SNIPPET:sample_analyze_custom_documents.analyze_custom_documents -->
```python
from azure.core.credentials import AzureKeyCredential
from azure.ai.documentintelligence import DocumentIntelligenceClient
from azure.ai.documentintelligence.models import AnalyzeResult
def _print_table(header_names, table_data):
# Print a two-dimensional array like a table.
max_len_list = []
for i in range(len(header_names)):
col_values = list(map(lambda row: len(str(row[i])), table_data))
col_values.append(len(str(header_names[i])))
max_len_list.append(max(col_values))
row_format_str = "".join(map(lambda len: f"{{:<{len + 4}}}", max_len_list))
print(row_format_str.format(*header_names))
for row in table_data:
print(row_format_str.format(*row))
endpoint = os.environ["DOCUMENTINTELLIGENCE_ENDPOINT"]
key = os.environ["DOCUMENTINTELLIGENCE_API_KEY"]
model_id = os.getenv("CUSTOM_BUILT_MODEL_ID", custom_model_id)
document_intelligence_client = DocumentIntelligenceClient(endpoint=endpoint, credential=AzureKeyCredential(key))
# Make sure your document's type is included in the list of document types the custom model can analyze
with open(path_to_sample_documents, "rb") as f:
poller = document_intelligence_client.begin_analyze_document(model_id=model_id, body=f)
result: AnalyzeResult = poller.result()
if result.documents:
for idx, document in enumerate(result.documents):
print(f"--------Analyzing document #{idx + 1}--------")
print(f"Document has type {document.doc_type}")
print(f"Document has document type confidence {document.confidence}")
print(f"Document was analyzed with model with ID {result.model_id}")
if document.fields:
for name, field in document.fields.items():
field_value = field.get("valueString") if field.get("valueString") else field.content
print(
f"......found field of type '{field.type}' with value '{field_value}' and with confidence {field.confidence}"
)
# Extract table cell values
SYMBOL_OF_TABLE_TYPE = "array"
SYMBOL_OF_OBJECT_TYPE = "object"
KEY_OF_VALUE_OBJECT = "valueObject"
KEY_OF_CELL_CONTENT = "content"
for doc in result.documents:
if not doc.fields is None:
for field_name, field_value in doc.fields.items():
# Dynamic Table cell information store as array in document field.
if field_value.type == SYMBOL_OF_TABLE_TYPE and field_value.value_array:
col_names = []
sample_obj = field_value.value_array[0]
if KEY_OF_VALUE_OBJECT in sample_obj:
col_names = list(sample_obj[KEY_OF_VALUE_OBJECT].keys())
print("----Extracting Dynamic Table Cell Values----")
table_rows = []
for obj in field_value.value_array:
if KEY_OF_VALUE_OBJECT in obj:
value_obj = obj[KEY_OF_VALUE_OBJECT]
extract_value_by_col_name = lambda key: (
value_obj[key].get(KEY_OF_CELL_CONTENT)
if key in value_obj and KEY_OF_CELL_CONTENT in value_obj[key]
else "None"
)
row_data = list(map(extract_value_by_col_name, col_names))
table_rows.append(row_data)
_print_table(col_names, table_rows)
elif (
field_value.type == SYMBOL_OF_OBJECT_TYPE
and KEY_OF_VALUE_OBJECT in field_value
and field_value[KEY_OF_VALUE_OBJECT] is not None
):
rows_by_columns = list(field_value[KEY_OF_VALUE_OBJECT].values())
is_fixed_table = all(
(
rows_of_column["type"] == SYMBOL_OF_OBJECT_TYPE
and Counter(list(rows_by_columns[0][KEY_OF_VALUE_OBJECT].keys()))
== Counter(list(rows_of_column[KEY_OF_VALUE_OBJECT].keys()))
)
for rows_of_column in rows_by_columns
)
# Fixed Table cell information store as object in document field.
if is_fixed_table:
print("----Extracting Fixed Table Cell Values----")
col_names = list(field_value[KEY_OF_VALUE_OBJECT].keys())
row_dict: dict = {}
for rows_of_column in rows_by_columns:
rows = rows_of_column[KEY_OF_VALUE_OBJECT]
for row_key in list(rows.keys()):
if row_key in row_dict:
row_dict[row_key].append(rows[row_key].get(KEY_OF_CELL_CONTENT))
else:
row_dict[row_key] = [
row_key,
rows[row_key].get(KEY_OF_CELL_CONTENT),
]
col_names.insert(0, "")
_print_table(col_names, list(row_dict.values()))
print("------------------------------------")
```
<!-- END SNIPPET -->
Additionally, a document URL can also be used to analyze documents using the `begin_analyze_document` method.
<!-- SNIPPET:sample_analyze_receipts_from_url.analyze_receipts_from_url -->
```python
from azure.core.credentials import AzureKeyCredential
from azure.ai.documentintelligence import DocumentIntelligenceClient
from azure.ai.documentintelligence.models import AnalyzeDocumentRequest, AnalyzeResult
endpoint = os.environ["DOCUMENTINTELLIGENCE_ENDPOINT"]
key = os.environ["DOCUMENTINTELLIGENCE_API_KEY"]
document_intelligence_client = DocumentIntelligenceClient(endpoint=endpoint, credential=AzureKeyCredential(key))
url = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/main/sdk/documentintelligence/azure-ai-documentintelligence/samples/sample_forms/receipt/contoso-receipt.png"
poller = document_intelligence_client.begin_analyze_document(
"prebuilt-receipt", AnalyzeDocumentRequest(url_source=url)
)
receipts: AnalyzeResult = poller.result()
```
<!-- END SNIPPET -->
### Manage Your Models
Manage the custom models attached to your account.
<!-- SNIPPET:sample_manage_models.build_model -->
```python
# Let's build a model to use for this sample
import uuid
from azure.ai.documentintelligence import DocumentIntelligenceAdministrationClient
from azure.ai.documentintelligence.models import (
DocumentBuildMode,
BuildDocumentModelRequest,
AzureBlobContentSource,
DocumentModelDetails,
)
from azure.core.credentials import AzureKeyCredential
endpoint = os.environ["DOCUMENTINTELLIGENCE_ENDPOINT"]
key = os.environ["DOCUMENTINTELLIGENCE_API_KEY"]
container_sas_url = os.environ["DOCUMENTINTELLIGENCE_STORAGE_CONTAINER_SAS_URL"]
document_intelligence_admin_client = DocumentIntelligenceAdministrationClient(endpoint, AzureKeyCredential(key))
poller = document_intelligence_admin_client.begin_build_document_model(
BuildDocumentModelRequest(
model_id=str(uuid.uuid4()),
build_mode=DocumentBuildMode.TEMPLATE,
azure_blob_source=AzureBlobContentSource(container_url=container_sas_url),
description="my model description",
)
)
model: DocumentModelDetails = poller.result()
print(f"Model ID: {model.model_id}")
print(f"Description: {model.description}")
print(f"Model created on: {model.created_date_time}")
print(f"Model expires on: {model.expiration_date_time}")
if model.doc_types:
print("Doc types the model can recognize:")
for name, doc_type in model.doc_types.items():
print(f"Doc Type: '{name}' built with '{doc_type.build_mode}' mode which has the following fields:")
if doc_type.field_schema:
for field_name, field in doc_type.field_schema.items():
if doc_type.field_confidence:
print(
f"Field: '{field_name}' has type '{field['type']}' and confidence score "
f"{doc_type.field_confidence[field_name]}"
)
```
<!-- END SNIPPET -->
<!-- SNIPPET:sample_manage_models.get_resource_details -->
```python
account_details = document_intelligence_admin_client.get_resource_details()
print(
f"Our resource has {account_details.custom_document_models.count} custom models, "
f"and we can have at most {account_details.custom_document_models.limit} custom models"
)
```
<!-- END SNIPPET -->
<!-- SNIPPET:sample_manage_models.list_models -->
```python
# Next, we get a paged list of all of our custom models
models = document_intelligence_admin_client.list_models()
print("We have the following 'ready' models with IDs and descriptions:")
for model in models:
print(f"{model.model_id} | {model.description}")
```
<!-- END SNIPPET -->
<!-- SNIPPET:sample_manage_models.get_model -->
```python
my_model = document_intelligence_admin_client.get_model(model_id=model.model_id)
print(f"\nModel ID: {my_model.model_id}")
print(f"Description: {my_model.description}")
print(f"Model created on: {my_model.created_date_time}")
print(f"Model expires on: {my_model.expiration_date_time}")
if my_model.warnings:
print("Warnings encountered while building the model:")
for warning in my_model.warnings:
print(f"warning code: {warning.code}, message: {warning.message}, target of the error: {warning.target}")
```
<!-- END SNIPPET -->
<!-- SNIPPET:sample_manage_models.delete_model -->
```python
# Finally, we will delete this model by ID
document_intelligence_admin_client.delete_model(model_id=my_model.model_id)
from azure.core.exceptions import ResourceNotFoundError
try:
document_intelligence_admin_client.get_model(model_id=my_model.model_id)
except ResourceNotFoundError:
print(f"Successfully deleted model with ID {my_model.model_id}")
```
<!-- END SNIPPET -->
### Add-on Capabilities
Document Intelligence supports more sophisticated analysis capabilities. These optional features can be enabled and disabled depending on the scenario of the document extraction.
The following add-on capabilities are available in this SDK:
- [barcode/QR code][addon_barcodes_sample]
- [formula][addon_formulas_sample]
- [font/style][addon_fonts_sample]
- [high resolution mode][addon_highres_sample]
- [language][addon_languages_sample]
- [query fields][query_fields_sample]
Note that some add-on capabilities will incur additional charges. See pricing: https://azure.microsoft.com/pricing/details/ai-document-intelligence/.
### Get Raw JSON Result
Can get the HTTP response by passing parameter `raw_response_hook` to any client method.
<!-- SNIPPET:sample_get_raw_response.raw_response_hook -->
```python
import os
from azure.core.credentials import AzureKeyCredential
from azure.ai.documentintelligence import DocumentIntelligenceAdministrationClient
endpoint = os.environ["DOCUMENTINTELLIGENCE_ENDPOINT"]
key = os.environ["DOCUMENTINTELLIGENCE_API_KEY"]
client = DocumentIntelligenceAdministrationClient(endpoint=endpoint, credential=AzureKeyCredential(key))
responses = {}
def callback(response):
responses["status_code"] = response.http_response.status_code
responses["response_body"] = response.http_response.json()
client.get_resource_details(raw_response_hook=callback)
print(f"Response status code is: {responses['status_code']}")
response_body = responses["response_body"]
print(
f"Our resource has {response_body['customDocumentModels']['count']} custom models, "
f"and we can have at most {response_body['customDocumentModels']['limit']} custom models."
f"The quota limit for custom neural document models is {response_body['customNeuralDocumentModelBuilds']['quota']} and the resource has"
f"used {response_body['customNeuralDocumentModelBuilds']['used']}. The resource quota will reset on {response_body['customNeuralDocumentModelBuilds']['quotaResetDateTime']}"
)
```
<!-- END SNIPPET -->
Also, can use the `send_request` method to send custom HTTP requests and get raw JSON result from HTTP responses.
<!-- SNIPPET:sample_send_request.send_request -->
```python
import os
from azure.core.credentials import AzureKeyCredential
from azure.core.rest import HttpRequest
from azure.ai.documentintelligence import DocumentIntelligenceAdministrationClient
endpoint = os.environ["DOCUMENTINTELLIGENCE_ENDPOINT"]
key = os.environ["DOCUMENTINTELLIGENCE_API_KEY"]
client = DocumentIntelligenceAdministrationClient(endpoint=endpoint, credential=AzureKeyCredential(key))
# The `send_request` method can send custom HTTP requests that share the client's existing pipeline,
# Now let's use the `send_request` method to make a resource details fetching request.
# The URL of the request should be absolute, and append the API version used for the request.
request = HttpRequest(method="GET", url=f"{endpoint}/documentintelligence/info?api-version=2024-11-30")
response = client.send_request(request)
response.raise_for_status()
response_body = response.json()
print(
f"Our resource has {response_body['customDocumentModels']['count']} custom models, "
f"and we can have at most {response_body['customDocumentModels']['limit']} custom models."
f"The quota limit for custom neural document models is {response_body['customNeuralDocumentModelBuilds']['quota']} and the resource has"
f"used {response_body['customNeuralDocumentModelBuilds']['used']}. The resource quota will reset on {response_body['customNeuralDocumentModelBuilds']['quotaResetDateTime']}"
)
```
<!-- END SNIPPET -->
### Parse analyzed result to JSON format
The result from poller is not JSON parse-able by default, you should call `as_dict()` before parsing to JSON.
<!-- SNIPPET:sample_convert_to_and_from_dict.convert -->
```python
from azure.core.credentials import AzureKeyCredential
from azure.ai.documentintelligence import DocumentIntelligenceClient
from azure.ai.documentintelligence.models import AnalyzeResult
endpoint = os.environ["DOCUMENTINTELLIGENCE_ENDPOINT"]
key = os.environ["DOCUMENTINTELLIGENCE_API_KEY"]
document_intelligence_client = DocumentIntelligenceClient(endpoint=endpoint, credential=AzureKeyCredential(key))
with open(path_to_sample_documents, "rb") as f:
poller = document_intelligence_client.begin_analyze_document("prebuilt-layout", body=f)
result: AnalyzeResult = poller.result()
# convert the received model to a dictionary
analyze_result_dict = result.as_dict()
# save the dictionary as JSON content in a JSON file
with open("data.json", "w") as output_file:
json.dump(analyze_result_dict, output_file, indent=4)
# convert the dictionary back to the original model
model = AnalyzeResult(analyze_result_dict)
# use the model as normal
print("----Converted from dictionary AnalyzeResult----")
print(f"Model ID: '{model.model_id}'")
print(f"Number of pages analyzed {len(model.pages)}")
print(f"API version used: {model.api_version}")
print("----------------------------------------")
```
<!-- END SNIPPET -->
## Troubleshooting
### General
Document Intelligence client library will raise exceptions defined in [Azure Core][azure_core_exceptions].
Error codes and messages raised by the Document Intelligence service can be found in the [service documentation][di-errors].
### Logging
This library uses the standard
[logging][python_logging] library for logging.
Basic information about HTTP sessions (URLs, headers, etc.) is logged at `INFO` level.
Detailed `DEBUG` level logging, including request/response bodies and **unredacted**
headers, can be enabled on the client or per-operation with the `logging_enable` keyword argument.
See full SDK logging documentation with examples [here][sdk_logging_docs].
### Optional Configuration
Optional keyword arguments can be passed in at the client and per-operation level.
The azure-core [reference documentation][azure_core_ref_docs]
describes available configurations for retries, logging, transport protocols, and more.
## Next steps
### More sample code
See the [Sample README][sample_readme] for several code snippets illustrating common patterns used in the Document Intelligence Python API.
### Additional documentation
For more extensive documentation on Azure AI Document Intelligence, see the [Document Intelligence documentation][python-di-product-docs] on docs.microsoft.com.
## Contributing
This project welcomes contributions and suggestions. Most contributions require
you to agree to a Contributor License Agreement (CLA) declaring that you have
the right to, and actually do, grant us the rights to use your contribution.
For details, visit https://cla.microsoft.com.
When you submit a pull request, a CLA-bot will automatically determine whether
you need to provide a CLA and decorate the PR appropriately (e.g., label,
comment). Simply follow the instructions provided by the bot. You will only
need to do this once across all repos using our CLA.
This project has adopted the
[Microsoft Open Source Code of Conduct][code_of_conduct]. For more information,
see the Code of Conduct FAQ or contact opencode@microsoft.com with any
additional questions or comments.
<!-- LINKS -->
[code_of_conduct]: https://opensource.microsoft.com/codeofconduct/
[default_azure_credential]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/identity/azure-identity#defaultazurecredential
[azure_sub]: https://azure.microsoft.com/free/
[python-di-src]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence
[python-di-pypi]: https://pypi.org/project/azure-ai-documentintelligence/
[python-di-product-docs]: https://learn.microsoft.com/azure/ai-services/document-intelligence/overview?view=doc-intel-4.0.0&viewFallbackFrom=form-recog-3.0.0
[python-di-ref-docs]: https://aka.ms/azsdk/python/documentintelligence/docs
[python-di-samples]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/documentintelligence/azure-ai-documentintelligence/samples
[python-di-available-regions]: https://aka.ms/azsdk/documentintelligence/available-regions
[azure_portal]: https://ms.portal.azure.com/
[regional_endpoints]: https://azure.microsoft.com/global-infrastructure/services/?products=form-recognizer
[cognitive_resource_portal]: https://ms.portal.azure.com/#create/Microsoft.CognitiveServicesFormRecognizer
[cognitive_resource_cli]: https://learn.microsoft.com/azure/cognitive-services/cognitive-services-apis-create-account-cli?tabs=windows
[azure-key-credential]: https://aka.ms/azsdk/python/core/azurekeycredential
[di-studio]: https://documentintelligence.ai.azure.com/studio
[di-build-model]: https://aka.ms/azsdk/documentintelligence/buildmodel
[di-build-training-set]: https://aka.ms/azsdk/documentintelligence/buildtrainingset
[di-models]: https://aka.ms/azsdk/documentintelligence/models
[di-errors]: https://aka.ms/azsdk/documentintelligence/errors
[azure_core_ref_docs]: https://aka.ms/azsdk/python/core/docs
[azure_core_exceptions]: https://aka.ms/azsdk/python/core/docs#module-azure.core.exceptions
[python_logging]: https://docs.python.org/3/library/logging.html
[azure_cli_endpoint_lookup]: https://learn.microsoft.com/cli/azure/cognitiveservices/account?view=azure-cli-latest#az-cognitiveservices-account-show
[azure_portal_get_endpoint]: https://learn.microsoft.com/azure/cognitive-services/cognitive-services-apis-create-account?tabs=multiservice%2Cwindows#get-the-keys-for-your-resource
[cognitive_authentication_api_key]: https://learn.microsoft.com/azure/cognitive-services/cognitive-services-apis-create-account?tabs=multiservice%2Cwindows#get-the-keys-for-your-resource
[register_aad_app]: https://learn.microsoft.com/azure/cognitive-services/authentication#assign-a-role-to-a-service-principal
[entra_auth_role]: https://learn.microsoft.com/azure/role-based-access-control/built-in-roles/ai-machine-learning#cognitive-services-data-reader
[custom_subdomain]: https://learn.microsoft.com/azure/cognitive-services/authentication#create-a-resource-with-a-custom-subdomain
[azure_identity]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/identity/azure-identity
[sdk_logging_docs]: https://learn.microsoft.com/azure/developer/python/sdk/azure-sdk-logging
[migration-guide]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/documentintelligence/azure-ai-documentintelligence/MIGRATION_GUIDE.md
[sample_readme]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/documentintelligence/azure-ai-documentintelligence/samples
[addon_barcodes_sample]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/documentintelligence/azure-ai-documentintelligence/samples/sample_analyze_addon_barcodes.py
[addon_fonts_sample]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/documentintelligence/azure-ai-documentintelligence/samples/sample_analyze_addon_fonts.py
[addon_formulas_sample]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/documentintelligence/azure-ai-documentintelligence/samples/sample_analyze_addon_formulas.py
[addon_highres_sample]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/documentintelligence/azure-ai-documentintelligence/samples/sample_analyze_addon_highres.py
[addon_languages_sample]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/documentintelligence/azure-ai-documentintelligence/samples/sample_analyze_addon_languages.py
[query_fields_sample]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/documentintelligence/azure-ai-documentintelligence/samples/sample_analyze_addon_query_fields.py
[service-rename]: https://techcommunity.microsoft.com/t5/azure-ai-services-blog/azure-form-recognizer-is-now-azure-ai-document-intelligence-with/ba-p/3875765
[service_prebuilt_document]: https://learn.microsoft.com/azure/ai-services/document-intelligence/concept-general-document#general-document-features
|