File: sample_analyze_addon_highres_async.py

package info (click to toggle)
python-azure 20250603%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 851,724 kB
  • sloc: python: 7,362,925; ansic: 804; javascript: 287; makefile: 195; sh: 145; xml: 109
file content (167 lines) | stat: -rw-r--r-- 6,336 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# coding: utf-8

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------

"""
FILE: sample_analyze_addon_highres_async.py

DESCRIPTION:
    This sample demonstrates how to recognize documents with improved quality using
    the add-on 'OCR_HIGH_RESOLUTION' capability.

    This sample uses Layout model to demonstrate.

    Add-on capabilities accept a list of strings containing values from the `DocumentAnalysisFeature`
    enum class. For more information, see:
    https://aka.ms/azsdk/python/documentintelligence/analysisfeature.

    The following capabilities are free:
    - BARCODES
    - LANGUAGES

    The following capabilities will incur additional charges:
    - FORMULAS
    - OCR_HIGH_RESOLUTION
    - STYLE_FONT
    - QUERY_FIELDS

    See pricing: https://azure.microsoft.com/pricing/details/ai-document-intelligence/.

USAGE:
    python sample_analyze_addon_highres_async.py

    Set the environment variables with your own values before running the sample:
    1) DOCUMENTINTELLIGENCE_ENDPOINT - the endpoint to your Document Intelligence resource.
    2) DOCUMENTINTELLIGENCE_API_KEY - your Document Intelligence API key.
"""

import asyncio
import os


def get_words(page, line):
    result = []
    for word in page.words:
        if _in_span(word, line.spans):
            result.append(word)
    return result


def _in_span(word, spans):
    for span in spans:
        if word.span.offset >= span.offset and (word.span.offset + word.span.length) <= (span.offset + span.length):
            return True
    return False


def format_polygon(polygon):
    if not polygon:
        return "N/A"
    return ", ".join([f"[{polygon[i]}, {polygon[i + 1]}]" for i in range(0, len(polygon), 2)])


async def analyze_with_highres():
    path_to_sample_documents = os.path.abspath(
        os.path.join(
            os.path.abspath(__file__),
            "..",
            "..",
            "sample_forms/add_ons/highres.png",
        )
    )
    from azure.core.credentials import AzureKeyCredential
    from azure.ai.documentintelligence.aio import DocumentIntelligenceClient
    from azure.ai.documentintelligence.models import DocumentAnalysisFeature, AnalyzeResult

    endpoint = os.environ["DOCUMENTINTELLIGENCE_ENDPOINT"]
    key = os.environ["DOCUMENTINTELLIGENCE_API_KEY"]

    document_intelligence_client = DocumentIntelligenceClient(endpoint=endpoint, credential=AzureKeyCredential(key))

    async with document_intelligence_client:
        # Specify which add-on capabilities to enable.
        with open(path_to_sample_documents, "rb") as f:
            poller = await document_intelligence_client.begin_analyze_document(
                "prebuilt-layout",
                body=f,
                features=[DocumentAnalysisFeature.OCR_HIGH_RESOLUTION],
            )
        result: AnalyzeResult = await poller.result()

    if result.styles and any([style.is_handwritten for style in result.styles]):
        print("Document contains handwritten content")
    else:
        print("Document does not contain handwritten content")

    for page in result.pages:
        print(f"----Analyzing layout from page #{page.page_number}----")
        print(f"Page has width: {page.width} and height: {page.height}, measured with unit: {page.unit}")

        if page.lines:
            for line_idx, line in enumerate(page.lines):
                words = get_words(page, line)
                print(
                    f"...Line # {line_idx} has word count {len(words)} and text '{line.content}' "
                    f"within bounding polygon '{format_polygon(line.polygon)}'"
                )

        if page.words:
            for word in page.words:
                print(f"......Word '{word.content}' has a confidence of {word.confidence}")

        if page.selection_marks:
            for selection_mark in page.selection_marks:
                print(
                    f"Selection mark is '{selection_mark.state}' within bounding polygon "
                    f"'{format_polygon(selection_mark.polygon)}' and has a confidence of {selection_mark.confidence}"
                )

    if result.tables:
        for table_idx, table in enumerate(result.tables):
            print(f"Table # {table_idx} has {table.row_count} rows and " f"{table.column_count} columns")
            if table.bounding_regions:
                for region in table.bounding_regions:
                    print(
                        f"Table # {table_idx} location on page: {region.page_number} is {format_polygon(region.polygon)}"
                    )
            for cell in table.cells:
                print(f"...Cell[{cell.row_index}][{cell.column_index}] has text '{cell.content}'")
                if cell.bounding_regions:
                    for region in cell.bounding_regions:
                        print(
                            f"...content on page {region.page_number} is within bounding polygon '{format_polygon(region.polygon)}'"
                        )

    print("----------------------------------------")


async def main():
    await analyze_with_highres()


if __name__ == "__main__":
    from azure.core.exceptions import HttpResponseError
    from dotenv import find_dotenv, load_dotenv

    try:
        load_dotenv(find_dotenv())
        asyncio.run(main())
    except HttpResponseError as error:
        # Examples of how to check an HttpResponseError
        # Check by error code:
        if error.error is not None:
            if error.error.code == "InvalidImage":
                print(f"Received an invalid image error: {error.error}")
            if error.error.code == "InvalidRequest":
                print(f"Received an invalid request error: {error.error}")
            # Raise the error again after printing it
            raise
        # If the inner error is None and then it is possible to check the message to get more information:
        if "Invalid request".casefold() in error.message.casefold():
            print(f"Uh-oh! Seems there was an invalid request: {error}")
        # Raise the error again
        raise