1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
|
# coding: utf-8
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
"""
FILE: sample_analyze_batch_documents_async.py
DESCRIPTION:
This sample demonstrates how to analyze documents in a batch.
This sample uses Layout model to demonstrate.
Add-on capabilities accept a list of strings containing values from the `DocumentAnalysisFeature`
enum class. For more information, see:
https://aka.ms/azsdk/python/documentintelligence/analysisfeature.
The following capabilities are free:
- BARCODES
- LANGUAGES
The following capabilities will incur additional charges:
- FORMULAS
- OCR_HIGH_RESOLUTION
- STYLE_FONT
- QUERY_FIELDS
See pricing: https://azure.microsoft.com/pricing/details/ai-document-intelligence/.
USAGE:
python sample_analyze_batch_documents_async.py
Set the environment variables with your own values before running the sample:
1) DOCUMENTINTELLIGENCE_ENDPOINT - the endpoint to your Document Intelligence resource.
2) DOCUMENTINTELLIGENCE_API_KEY - your Document Intelligence API key.
"""
import asyncio
import os
async def analyze_batch_docs():
from azure.core.credentials import AzureKeyCredential
from azure.ai.documentintelligence.aio import DocumentIntelligenceClient
from azure.ai.documentintelligence.models import (
AnalyzeBatchDocumentsRequest,
AzureBlobContentSource,
)
endpoint = os.environ["DOCUMENTINTELLIGENCE_ENDPOINT"]
key = os.environ["DOCUMENTINTELLIGENCE_API_KEY"]
result_container_sas_url = os.environ["RESULT_CONTAINER_SAS_URL"]
batch_training_data_container_sas_url = os.environ["TRAINING_DATA_CONTAINER_SAS_URL"]
document_intelligence_client = DocumentIntelligenceClient(endpoint=endpoint, credential=AzureKeyCredential(key))
async with document_intelligence_client:
request = AnalyzeBatchDocumentsRequest(
result_container_url=result_container_sas_url,
azure_blob_source=AzureBlobContentSource(
container_url=batch_training_data_container_sas_url,
),
)
poller = await document_intelligence_client.begin_analyze_batch_documents(
model_id="prebuilt-layout",
body=request,
)
continuation_token = (
poller.continuation_token()
) # a continuation token that allows to restart the poller later.
poller2 = await document_intelligence_client.get_analyze_batch_result(continuation_token)
if poller2.done():
final_result = await poller2.result()
print(f"Succeeded count: {final_result.succeeded_count}")
print(f"Failed count: {final_result.failed_count}")
print(f"Skipped count: {final_result.skipped_count}")
else:
print("The batch analyze is still in process...")
async def main():
await analyze_batch_docs()
if __name__ == "__main__":
from azure.core.exceptions import HttpResponseError
from dotenv import find_dotenv, load_dotenv
try:
load_dotenv(find_dotenv())
asyncio.run(main())
except HttpResponseError as error:
# Examples of how to check an HttpResponseError
# Check by error code:
if error.error is not None:
if error.error.code == "InvalidImage":
print(f"Received an invalid image error: {error.error}")
if error.error.code == "InvalidRequest":
print(f"Received an invalid request error: {error.error}")
# Raise the error again after printing it
raise
# If the inner error is None and then it is possible to check the message to get more information:
if "Invalid request".casefold() in error.message.casefold():
print(f"Uh-oh! Seems there was an invalid request: {error}")
# Raise the error again
raise
|