1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
|
# coding: utf-8
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
"""
FILE: sample_manage_classifiers_async.py
DESCRIPTION:
This sample demonstrates how to manage the classifiers on your account. To learn
how to build a classifier, look at sample_build_classifier.py.
USAGE:
python sample_manage_classifiers_async.py
Set the environment variables with your own values before running the sample:
1) DOCUMENTINTELLIGENCE_ENDPOINT - the endpoint to your Document Intelligence resource.
2) DOCUMENTINTELLIGENCE_API_KEY - your Document Intelligence API key.
3) DOCUMENTINTELLIGENCE_TRAINING_DATA_CLASSIFIER_SAS_URL - The shared access signature (SAS) Url of your Azure Blob Storage container
"""
import asyncio
import os
async def sample_manage_classifiers():
import uuid
from azure.core.credentials import AzureKeyCredential
from azure.ai.documentintelligence.aio import DocumentIntelligenceAdministrationClient
from azure.ai.documentintelligence.models import (
AzureBlobContentSource,
ClassifierDocumentTypeDetails,
BuildDocumentClassifierRequest,
DocumentClassifierDetails,
)
endpoint = os.environ["DOCUMENTINTELLIGENCE_ENDPOINT"]
key = os.environ["DOCUMENTINTELLIGENCE_API_KEY"]
container_sas_url = os.environ["DOCUMENTINTELLIGENCE_TRAINING_DATA_CLASSIFIER_SAS_URL"]
document_intelligence_admin_client = DocumentIntelligenceAdministrationClient(
endpoint=endpoint, credential=AzureKeyCredential(key)
)
async with document_intelligence_admin_client:
# build a document classifier
poller = await document_intelligence_admin_client.begin_build_classifier(
BuildDocumentClassifierRequest(
classifier_id=str(uuid.uuid4()),
doc_types={
"IRS-1040-A": ClassifierDocumentTypeDetails(
azure_blob_source=AzureBlobContentSource(
container_url=container_sas_url, prefix="IRS-1040-A/train"
)
),
"IRS-1040-D": ClassifierDocumentTypeDetails(
azure_blob_source=AzureBlobContentSource(
container_url=container_sas_url, prefix="IRS-1040-D/train"
)
),
},
description="IRS document classifier",
)
)
classifier: DocumentClassifierDetails = await poller.result()
print(f"Built classifier with ID: {classifier.classifier_id}")
print(f"API version used to build the classifier model: {classifier.api_version}")
print(f"Classifier description: {classifier.description}")
print(f"Document classes used for training the model:")
for doc_type, details in classifier.doc_types.items():
print(f"Document type: {doc_type}")
if details.azure_blob_source:
print(f"Container source: {details.azure_blob_source.container_url}\n")
# Next, we get a paged list of all of our document classifiers
classifiers = document_intelligence_admin_client.list_classifiers()
print("We have the following 'ready' models with IDs and descriptions:")
async for classifier in classifiers:
print(f"{classifier.classifier_id} | {classifier.description}")
my_classifier = await document_intelligence_admin_client.get_classifier(classifier_id=classifier.classifier_id)
print(f"\nClassifier ID: {my_classifier.classifier_id}")
print(f"Description: {my_classifier.description}")
print(f"Classifier created on: {my_classifier.created_date_time}")
print(f"Classifier expires on: {my_classifier.expiration_date_time}")
# Finally, we will delete this classifier by ID
await document_intelligence_admin_client.delete_classifier(classifier_id=my_classifier.classifier_id)
from azure.core.exceptions import ResourceNotFoundError
try:
await document_intelligence_admin_client.get_classifier(classifier_id=my_classifier.classifier_id)
except ResourceNotFoundError:
print(f"Successfully deleted classifier with ID {my_classifier.classifier_id}")
async def main():
await sample_manage_classifiers()
if __name__ == "__main__":
from azure.core.exceptions import HttpResponseError
from dotenv import find_dotenv, load_dotenv
try:
load_dotenv(find_dotenv())
asyncio.run(main())
except HttpResponseError as error:
# Examples of how to check an HttpResponseError
# Check by error code:
if error.error is not None:
if error.error.code == "InvalidImage":
print(f"Received an invalid image error: {error.error}")
if error.error.code == "InvalidRequest":
print(f"Received an invalid request error: {error.error}")
# Raise the error again after printing it
raise
# If the inner error is None and then it is possible to check the message to get more information:
if "Invalid request".casefold() in error.message.casefold():
print(f"Uh-oh! Seems there was an invalid request: {error}")
# Raise the error again
raise
|