1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
# coding: utf-8
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
"""
FILE: sample_analyze_addon_fonts.py
DESCRIPTION:
This sample demonstrates how to extract font information using the add-on
'STYLE_FONT' capability.
This sample uses Layout model to demonstrate.
Add-on capabilities accept a list of strings containing values from the `DocumentAnalysisFeature`
enum class. For more information, see:
https://aka.ms/azsdk/python/documentintelligence/analysisfeature.
The following capabilities are free:
- BARCODES
- LANGUAGES
The following capabilities will incur additional charges:
- FORMULAS
- OCR_HIGH_RESOLUTION
- STYLE_FONT
- QUERY_FIELDS
See pricing: https://azure.microsoft.com/pricing/details/ai-document-intelligence/.
USAGE:
python sample_analyze_addon_fonts.py
Set the environment variables with your own values before running the sample:
1) DOCUMENTINTELLIGENCE_ENDPOINT - the endpoint to your Document Intelligence resource.
2) DOCUMENTINTELLIGENCE_API_KEY - your Document Intelligence API key.
"""
import os
from collections import defaultdict
def analyze_fonts():
path_to_sample_documents = os.path.abspath(
os.path.join(
os.path.abspath(__file__),
"..",
"sample_forms/add_ons/fonts_and_languages.png",
)
)
# [START analyze_fonts]
from azure.core.credentials import AzureKeyCredential
from azure.ai.documentintelligence import DocumentIntelligenceClient
from azure.ai.documentintelligence.models import DocumentAnalysisFeature, AnalyzeResult
def _get_styled_text(styles, content):
# Iterate over the styles and merge the spans from each style.
spans = [span for style in styles for span in style.spans]
spans.sort(key=lambda span: span.offset)
return ",".join([content[span.offset : span.offset + span.length] for span in spans])
endpoint = os.environ["DOCUMENTINTELLIGENCE_ENDPOINT"]
key = os.environ["DOCUMENTINTELLIGENCE_API_KEY"]
document_intelligence_client = DocumentIntelligenceClient(endpoint=endpoint, credential=AzureKeyCredential(key))
# Specify which add-on capabilities to enable.
with open(path_to_sample_documents, "rb") as f:
poller = document_intelligence_client.begin_analyze_document(
"prebuilt-layout",
body=f,
features=[DocumentAnalysisFeature.STYLE_FONT],
)
result: AnalyzeResult = poller.result()
# DocumentStyle has the following font related attributes:
similar_font_families = defaultdict(list) # e.g., 'Arial, sans-serif
font_styles = defaultdict(list) # e.g, 'italic'
font_weights = defaultdict(list) # e.g., 'bold'
font_colors = defaultdict(list) # in '#rrggbb' hexadecimal format
font_background_colors = defaultdict(list) # in '#rrggbb' hexadecimal format
if result.styles and any([style.is_handwritten for style in result.styles]):
print("Document contains handwritten content")
else:
print("Document does not contain handwritten content")
return
print("\n----Fonts styles detected in the document----")
# Iterate over the styles and group them by their font attributes.
for style in result.styles:
if style.similar_font_family:
similar_font_families[style.similar_font_family].append(style)
if style.font_style:
font_styles[style.font_style].append(style)
if style.font_weight:
font_weights[style.font_weight].append(style)
if style.color:
font_colors[style.color].append(style)
if style.background_color:
font_background_colors[style.background_color].append(style)
print(f"Detected {len(similar_font_families)} font families:")
for font_family, styles in similar_font_families.items():
print(f"- Font family: '{font_family}'")
print(f" Text: '{_get_styled_text(styles, result.content)}'")
print(f"\nDetected {len(font_styles)} font styles:")
for font_style, styles in font_styles.items():
print(f"- Font style: '{font_style}'")
print(f" Text: '{_get_styled_text(styles, result.content)}'")
print(f"\nDetected {len(font_weights)} font weights:")
for font_weight, styles in font_weights.items():
print(f"- Font weight: '{font_weight}'")
print(f" Text: '{_get_styled_text(styles, result.content)}'")
print(f"\nDetected {len(font_colors)} font colors:")
for font_color, styles in font_colors.items():
print(f"- Font color: '{font_color}'")
print(f" Text: '{_get_styled_text(styles, result.content)}'")
print(f"\nDetected {len(font_background_colors)} font background colors:")
for font_background_color, styles in font_background_colors.items():
print(f"- Font background color: '{font_background_color}'")
print(f" Text: '{_get_styled_text(styles, result.content)}'")
print("----------------------------------------")
# [END analyze_fonts]
if __name__ == "__main__":
from azure.core.exceptions import HttpResponseError
from dotenv import find_dotenv, load_dotenv
try:
load_dotenv(find_dotenv())
analyze_fonts()
except HttpResponseError as error:
# Examples of how to check an HttpResponseError
# Check by error code:
if error.error is not None:
if error.error.code == "InvalidImage":
print(f"Received an invalid image error: {error.error}")
if error.error.code == "InvalidRequest":
print(f"Received an invalid request error: {error.error}")
# Raise the error again after printing it
raise
# If the inner error is None and then it is possible to check the message to get more information:
if "Invalid request".casefold() in error.message.casefold():
print(f"Uh-oh! Seems there was an invalid request: {error}")
# Raise the error again
raise
|