File: sample_analyze_general_documents.py

package info (click to toggle)
python-azure 20250603%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 851,724 kB
  • sloc: python: 7,362,925; ansic: 804; javascript: 287; makefile: 195; sh: 145; xml: 109
file content (156 lines) | stat: -rw-r--r-- 6,536 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# coding: utf-8

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------

"""
FILE: sample_analyze_general_documents.py

DESCRIPTION:
    This sample demonstrates how to extract general document information from a document
    given through a file.

USAGE:
    python sample_analyze_general_documents.py

    Set the environment variables with your own values before running the sample:
    1) DOCUMENTINTELLIGENCE_ENDPOINT - the endpoint to your Document Intelligence resource.
    2) DOCUMENTINTELLIGENCE_API_KEY - your Document Intelligence API key.
"""

import os


def analyze_general_documents():
    path_to_sample_documents = os.path.abspath(
        os.path.join(
            os.path.abspath(__file__),
            "..",
            "./sample_forms/forms/form_selection_mark.png",
        )
    )

    # [START analyze_general_documents]
    from azure.core.credentials import AzureKeyCredential
    from azure.ai.documentintelligence import DocumentIntelligenceClient
    from azure.ai.documentintelligence.models import DocumentAnalysisFeature, AnalyzeResult

    def _in_span(word, spans):
        for span in spans:
            if word.span.offset >= span.offset and (word.span.offset + word.span.length) <= (span.offset + span.length):
                return True
        return False

    def _format_bounding_region(bounding_regions):
        if not bounding_regions:
            return "N/A"
        return ", ".join(
            f"Page #{region.page_number}: {_format_polygon(region.polygon)}" for region in bounding_regions
        )

    def _format_polygon(polygon):
        if not polygon:
            return "N/A"
        return ", ".join([f"[{polygon[i]}, {polygon[i + 1]}]" for i in range(0, len(polygon), 2)])

    endpoint = os.environ["DOCUMENTINTELLIGENCE_ENDPOINT"]
    key = os.environ["DOCUMENTINTELLIGENCE_API_KEY"]

    document_intelligence_client = DocumentIntelligenceClient(endpoint=endpoint, credential=AzureKeyCredential(key))
    with open(path_to_sample_documents, "rb") as f:
        poller = document_intelligence_client.begin_analyze_document(
            "prebuilt-layout",
            body=f,
            features=[DocumentAnalysisFeature.KEY_VALUE_PAIRS],
        )
    result: AnalyzeResult = poller.result()

    if result.styles:
        for style in result.styles:
            if style.is_handwritten:
                print("Document contains handwritten content: ")
                print(",".join([result.content[span.offset : span.offset + span.length] for span in style.spans]))

    print("----Key-value pairs found in document----")
    if result.key_value_pairs:
        for kv_pair in result.key_value_pairs:
            if kv_pair.key:
                print(
                    f"Key '{kv_pair.key.content}' found within "
                    f"'{_format_bounding_region(kv_pair.key.bounding_regions)}' bounding regions"
                )
            if kv_pair.value:
                print(
                    f"Value '{kv_pair.value.content}' found within "
                    f"'{_format_bounding_region(kv_pair.value.bounding_regions)}' bounding regions\n"
                )

    for page in result.pages:
        print(f"----Analyzing document from page #{page.page_number}----")
        print(f"Page has width: {page.width} and height: {page.height}, measured with unit: {page.unit}")

        if page.lines:
            for line_idx, line in enumerate(page.lines):
                words = []
                if page.words:
                    for word in page.words:
                        print(f"......Word '{word.content}' has a confidence of {word.confidence}")
                        if _in_span(word, line.spans):
                            words.append(word)
                print(
                    f"...Line #{line_idx} has {len(words)} words and text '{line.content}' within "
                    f"bounding polygon '{_format_polygon(line.polygon)}'"
                )

        if page.selection_marks:
            for selection_mark in page.selection_marks:
                print(
                    f"Selection mark is '{selection_mark.state}' within bounding polygon "
                    f"'{_format_polygon(selection_mark.polygon)}' and has a confidence of "
                    f"{selection_mark.confidence}"
                )

    if result.tables:
        for table_idx, table in enumerate(result.tables):
            print(f"Table # {table_idx} has {table.row_count} rows and {table.column_count} columns")
            if table.bounding_regions:
                for region in table.bounding_regions:
                    print(
                        f"Table # {table_idx} location on page: {region.page_number} is {_format_polygon(region.polygon)}"
                    )
            for cell in table.cells:
                print(f"...Cell[{cell.row_index}][{cell.column_index}] has text '{cell.content}'")
                if cell.bounding_regions:
                    for region in cell.bounding_regions:
                        print(
                            f"...content on page {region.page_number} is within bounding polygon '{_format_polygon(region.polygon)}'\n"
                        )
    print("----------------------------------------")
    # [END analyze_general_documents]


if __name__ == "__main__":
    from azure.core.exceptions import HttpResponseError
    from dotenv import find_dotenv, load_dotenv

    try:
        load_dotenv(find_dotenv())
        analyze_general_documents()
    except HttpResponseError as error:
        # Examples of how to check an HttpResponseError
        # Check by error code:
        if error.error is not None:
            if error.error.code == "InvalidImage":
                print(f"Received an invalid image error: {error.error}")
            if error.error.code == "InvalidRequest":
                print(f"Received an invalid request error: {error.error}")
            # Raise the error again after printing it
            raise
        # If the inner error is None and then it is possible to check the message to get more information:
        if "Invalid request".casefold() in error.message.casefold():
            print(f"Uh-oh! Seems there was an invalid request: {error}")
        # Raise the error again
        raise