File: sample_analyze_layout.py

package info (click to toggle)
python-azure 20250603%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 851,724 kB
  • sloc: python: 7,362,925; ansic: 804; javascript: 287; makefile: 195; sh: 145; xml: 109
file content (153 lines) | stat: -rw-r--r-- 6,792 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# coding: utf-8

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------

"""
FILE: sample_analyze_layout.py

DESCRIPTION:
    This sample demonstrates how to extract text, selection marks, and layout information from a document
    given through a file.

    Note that selection marks returned from begin_analyze_document(model_id="prebuilt-layout") do not return the text
    associated with the checkbox. For the API to return this information, build a custom model to analyze the
    checkbox and its text. See sample_build_model.py for more information.

USAGE:
    python sample_analyze_layout.py

    Set the environment variables with your own values before running the sample:
    1) DOCUMENTINTELLIGENCE_ENDPOINT - the endpoint to your Document Intelligence resource.
    2) DOCUMENTINTELLIGENCE_API_KEY - your Document Intelligence API key.
"""

import os


def analyze_layout():
    path_to_sample_documents = os.path.abspath(
        os.path.join(
            os.path.abspath(__file__),
            "..",
            "./sample_forms/forms/tabular_and_general_data.docx",
        )
    )

    # [START extract_layout]
    from azure.core.credentials import AzureKeyCredential
    from azure.ai.documentintelligence import DocumentIntelligenceClient
    from azure.ai.documentintelligence.models import AnalyzeResult

    def _in_span(word, spans):
        for span in spans:
            if word.span.offset >= span.offset and (word.span.offset + word.span.length) <= (span.offset + span.length):
                return True
        return False

    def _format_polygon(polygon):
        if not polygon:
            return "N/A"
        return ", ".join([f"[{polygon[i]}, {polygon[i + 1]}]" for i in range(0, len(polygon), 2)])

    endpoint = os.environ["DOCUMENTINTELLIGENCE_ENDPOINT"]
    key = os.environ["DOCUMENTINTELLIGENCE_API_KEY"]

    document_intelligence_client = DocumentIntelligenceClient(endpoint=endpoint, credential=AzureKeyCredential(key))
    with open(path_to_sample_documents, "rb") as f:
        poller = document_intelligence_client.begin_analyze_document("prebuilt-layout", body=f)
    result: AnalyzeResult = poller.result()

    if result.styles and any([style.is_handwritten for style in result.styles]):
        print("Document contains handwritten content")
    else:
        print("Document does not contain handwritten content")

    for page in result.pages:
        print(f"----Analyzing layout from page #{page.page_number}----")
        print(f"Page has width: {page.width} and height: {page.height}, measured with unit: {page.unit}")

        if page.lines:
            for line_idx, line in enumerate(page.lines):
                words = []
                if page.words:
                    for word in page.words:
                        print(f"......Word '{word.content}' has a confidence of {word.confidence}")
                        if _in_span(word, line.spans):
                            words.append(word)
                print(
                    f"...Line # {line_idx} has word count {len(words)} and text '{line.content}' "
                    f"within bounding polygon '{_format_polygon(line.polygon)}'"
                )

        if page.selection_marks:
            for selection_mark in page.selection_marks:
                print(
                    f"Selection mark is '{selection_mark.state}' within bounding polygon "
                    f"'{_format_polygon(selection_mark.polygon)}' and has a confidence of {selection_mark.confidence}"
                )

    if result.paragraphs:
        print(f"----Detected #{len(result.paragraphs)} paragraphs in the document----")
        # Sort all paragraphs by span's offset to read in the right order.
        result.paragraphs.sort(key=lambda p: (p.spans.sort(key=lambda s: s.offset), p.spans[0].offset))
        print("-----Print sorted paragraphs-----")
        for paragraph in result.paragraphs:
            if not paragraph.bounding_regions:
                print(f"Found paragraph with role: '{paragraph.role}' within N/A bounding region")
            else:
                print(f"Found paragraph with role: '{paragraph.role}' within")
                print(
                    ", ".join(
                        f" Page #{region.page_number}: {_format_polygon(region.polygon)} bounding region"
                        for region in paragraph.bounding_regions
                    )
                )
            print(f"...with content: '{paragraph.content}'")
            print(f"...with offset: {paragraph.spans[0].offset} and length: {paragraph.spans[0].length}")

    if result.tables:
        for table_idx, table in enumerate(result.tables):
            print(f"Table # {table_idx} has {table.row_count} rows and " f"{table.column_count} columns")
            if table.bounding_regions:
                for region in table.bounding_regions:
                    print(
                        f"Table # {table_idx} location on page: {region.page_number} is {_format_polygon(region.polygon)}"
                    )
            for cell in table.cells:
                print(f"...Cell[{cell.row_index}][{cell.column_index}] has text '{cell.content}'")
                if cell.bounding_regions:
                    for region in cell.bounding_regions:
                        print(
                            f"...content on page {region.page_number} is within bounding polygon '{_format_polygon(region.polygon)}'"
                        )

    print("----------------------------------------")
    # [END extract_layout]


if __name__ == "__main__":
    from azure.core.exceptions import HttpResponseError
    from dotenv import find_dotenv, load_dotenv

    try:
        load_dotenv(find_dotenv())
        analyze_layout()
    except HttpResponseError as error:
        # Examples of how to check an HttpResponseError
        # Check by error code:
        if error.error is not None:
            if error.error.code == "InvalidImage":
                print(f"Received an invalid image error: {error.error}")
            if error.error.code == "InvalidRequest":
                print(f"Received an invalid request error: {error.error}")
            # Raise the error again after printing it
            raise
        # If the inner error is None and then it is possible to check the message to get more information:
        if "Invalid request".casefold() in error.message.casefold():
            print(f"Uh-oh! Seems there was an invalid request: {error}")
        # Raise the error again
        raise