File: sample_analyze_read.py

package info (click to toggle)
python-azure 20250603%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 851,724 kB
  • sloc: python: 7,362,925; ansic: 804; javascript: 287; makefile: 195; sh: 145; xml: 109
file content (154 lines) | stat: -rw-r--r-- 6,162 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# coding: utf-8

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------

"""
FILE: sample_analyze_read.py

DESCRIPTION:
    This sample demonstrates how to extract document information using "prebuilt-read"
    to analyze a given file.

USAGE:
    python sample_analyze_read.py

    Set the environment variables with your own values before running the sample:
    1) DOCUMENTINTELLIGENCE_ENDPOINT - the endpoint to your Document Intelligence resource.
    2) DOCUMENTINTELLIGENCE_API_KEY - your Document Intelligence API key.
"""

import os


def get_words(page, line):
    result = []
    for word in page.words:
        if _in_span(word, line.spans):
            result.append(word)
    return result


def _in_span(word, spans):
    for span in spans:
        if word.span.offset >= span.offset and (word.span.offset + word.span.length) <= (span.offset + span.length):
            return True
    return False


def format_bounding_region(bounding_regions):
    if not bounding_regions:
        return "N/A"
    return ", ".join(f"Page #{region.page_number}: {format_polygon(region.polygon)}" for region in bounding_regions)


def format_polygon(polygon):
    if not polygon:
        return "N/A"
    return ", ".join([f"[{polygon[i]}, {polygon[i + 1]}]" for i in range(0, len(polygon), 2)])


def analyze_read():
    path_to_sample_documents = os.path.abspath(
        os.path.join(
            os.path.abspath(__file__),
            "..",
            "./sample_forms/forms/Form_1.jpg",
        )
    )

    from azure.core.credentials import AzureKeyCredential
    from azure.ai.documentintelligence import DocumentIntelligenceClient
    from azure.ai.documentintelligence.models import DocumentAnalysisFeature, AnalyzeResult

    endpoint = os.environ["DOCUMENTINTELLIGENCE_ENDPOINT"]
    key = os.environ["DOCUMENTINTELLIGENCE_API_KEY"]

    document_intelligence_client = DocumentIntelligenceClient(endpoint=endpoint, credential=AzureKeyCredential(key))
    with open(path_to_sample_documents, "rb") as f:
        poller = document_intelligence_client.begin_analyze_document(
            "prebuilt-read",
            body=f,
            features=[DocumentAnalysisFeature.STYLE_FONT],
        )
    result: AnalyzeResult = poller.result()

    print("----Languages detected in the document----")
    if result.languages is not None:
        for language in result.languages:
            print(f"Language code: '{language.locale}' with confidence {language.confidence}")

    print("----Styles detected in the document----")
    if result.styles:
        for style in result.styles:
            if style.is_handwritten:
                print("Found the following handwritten content: ")
                print(",".join([result.content[span.offset : span.offset + span.length] for span in style.spans]))
            if style.font_style:
                print(f"The document contains '{style.font_style}' font style, applied to the following text: ")
                print(",".join([result.content[span.offset : span.offset + span.length] for span in style.spans]))

    for page in result.pages:
        print(f"----Analyzing document from page #{page.page_number}----")
        print(f"Page has width: {page.width} and height: {page.height}, measured with unit: {page.unit}")

        if page.lines:
            for line_idx, line in enumerate(page.lines):
                words = get_words(page, line)
                print(
                    f"...Line # {line_idx} has {len(words)} words and text '{line.content}' within "
                    f"bounding polygon '{format_polygon(line.polygon)}'"
                )

        if page.words:
            for word in page.words:
                print(f"......Word '{word.content}' has a confidence of {word.confidence}")

        if page.selection_marks:
            for selection_mark in page.selection_marks:
                print(
                    f"...Selection mark is '{selection_mark.state}' within bounding polygon "
                    f"'{format_polygon(selection_mark.polygon)}' and has a confidence of {selection_mark.confidence}"
                )

    if result.paragraphs:
        print(f"----Detected #{len(result.paragraphs)} paragraphs in the document----")
        # Sort all paragraphs by span's offset to read in the right order.
        result.paragraphs.sort(key=lambda p: (p.spans.sort(key=lambda s: s.offset), p.spans[0].offset))
        print("-----Print sorted paragraphs-----")
        for paragraph in result.paragraphs:
            print(
                f"Found paragraph with role: '{paragraph.role}' within "
                f"{format_bounding_region(paragraph.bounding_regions)} bounding regions"
            )
            print(f"...with content: '{paragraph.content}'")
            print(f"...with offset: {paragraph.spans[0].offset} and length: {paragraph.spans[0].length}")

    print("----------------------------------------")


if __name__ == "__main__":
    from azure.core.exceptions import HttpResponseError
    from dotenv import find_dotenv, load_dotenv

    try:
        load_dotenv(find_dotenv())
        analyze_read()
    except HttpResponseError as error:
        # Examples of how to check an HttpResponseError
        # Check by error code:
        if error.error is not None:
            if error.error.code == "InvalidImage":
                print(f"Received an invalid image error: {error.error}")
            if error.error.code == "InvalidRequest":
                print(f"Received an invalid request error: {error.error}")
            # Raise the error again after printing it
            raise
        # If the inner error is None and then it is possible to check the message to get more information:
        if "Invalid request".casefold() in error.message.casefold():
            print(f"Uh-oh! Seems there was an invalid request: {error}")
        # Raise the error again
        raise