1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
|
# coding: utf-8
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
"""
FILE: sample_analyze_read.py
DESCRIPTION:
This sample demonstrates how to extract document information using "prebuilt-read"
to analyze a given file.
USAGE:
python sample_analyze_read.py
Set the environment variables with your own values before running the sample:
1) DOCUMENTINTELLIGENCE_ENDPOINT - the endpoint to your Document Intelligence resource.
2) DOCUMENTINTELLIGENCE_API_KEY - your Document Intelligence API key.
"""
import os
def get_words(page, line):
result = []
for word in page.words:
if _in_span(word, line.spans):
result.append(word)
return result
def _in_span(word, spans):
for span in spans:
if word.span.offset >= span.offset and (word.span.offset + word.span.length) <= (span.offset + span.length):
return True
return False
def format_bounding_region(bounding_regions):
if not bounding_regions:
return "N/A"
return ", ".join(f"Page #{region.page_number}: {format_polygon(region.polygon)}" for region in bounding_regions)
def format_polygon(polygon):
if not polygon:
return "N/A"
return ", ".join([f"[{polygon[i]}, {polygon[i + 1]}]" for i in range(0, len(polygon), 2)])
def analyze_read():
path_to_sample_documents = os.path.abspath(
os.path.join(
os.path.abspath(__file__),
"..",
"./sample_forms/forms/Form_1.jpg",
)
)
from azure.core.credentials import AzureKeyCredential
from azure.ai.documentintelligence import DocumentIntelligenceClient
from azure.ai.documentintelligence.models import DocumentAnalysisFeature, AnalyzeResult
endpoint = os.environ["DOCUMENTINTELLIGENCE_ENDPOINT"]
key = os.environ["DOCUMENTINTELLIGENCE_API_KEY"]
document_intelligence_client = DocumentIntelligenceClient(endpoint=endpoint, credential=AzureKeyCredential(key))
with open(path_to_sample_documents, "rb") as f:
poller = document_intelligence_client.begin_analyze_document(
"prebuilt-read",
body=f,
features=[DocumentAnalysisFeature.STYLE_FONT],
)
result: AnalyzeResult = poller.result()
print("----Languages detected in the document----")
if result.languages is not None:
for language in result.languages:
print(f"Language code: '{language.locale}' with confidence {language.confidence}")
print("----Styles detected in the document----")
if result.styles:
for style in result.styles:
if style.is_handwritten:
print("Found the following handwritten content: ")
print(",".join([result.content[span.offset : span.offset + span.length] for span in style.spans]))
if style.font_style:
print(f"The document contains '{style.font_style}' font style, applied to the following text: ")
print(",".join([result.content[span.offset : span.offset + span.length] for span in style.spans]))
for page in result.pages:
print(f"----Analyzing document from page #{page.page_number}----")
print(f"Page has width: {page.width} and height: {page.height}, measured with unit: {page.unit}")
if page.lines:
for line_idx, line in enumerate(page.lines):
words = get_words(page, line)
print(
f"...Line # {line_idx} has {len(words)} words and text '{line.content}' within "
f"bounding polygon '{format_polygon(line.polygon)}'"
)
if page.words:
for word in page.words:
print(f"......Word '{word.content}' has a confidence of {word.confidence}")
if page.selection_marks:
for selection_mark in page.selection_marks:
print(
f"...Selection mark is '{selection_mark.state}' within bounding polygon "
f"'{format_polygon(selection_mark.polygon)}' and has a confidence of {selection_mark.confidence}"
)
if result.paragraphs:
print(f"----Detected #{len(result.paragraphs)} paragraphs in the document----")
# Sort all paragraphs by span's offset to read in the right order.
result.paragraphs.sort(key=lambda p: (p.spans.sort(key=lambda s: s.offset), p.spans[0].offset))
print("-----Print sorted paragraphs-----")
for paragraph in result.paragraphs:
print(
f"Found paragraph with role: '{paragraph.role}' within "
f"{format_bounding_region(paragraph.bounding_regions)} bounding regions"
)
print(f"...with content: '{paragraph.content}'")
print(f"...with offset: {paragraph.spans[0].offset} and length: {paragraph.spans[0].length}")
print("----------------------------------------")
if __name__ == "__main__":
from azure.core.exceptions import HttpResponseError
from dotenv import find_dotenv, load_dotenv
try:
load_dotenv(find_dotenv())
analyze_read()
except HttpResponseError as error:
# Examples of how to check an HttpResponseError
# Check by error code:
if error.error is not None:
if error.error.code == "InvalidImage":
print(f"Received an invalid image error: {error.error}")
if error.error.code == "InvalidRequest":
print(f"Received an invalid request error: {error.error}")
# Raise the error again after printing it
raise
# If the inner error is None and then it is possible to check the message to get more information:
if "Invalid request".casefold() in error.message.casefold():
print(f"Uh-oh! Seems there was an invalid request: {error}")
# Raise the error again
raise
|