File: sample_convert_to_and_from_dict.py

package info (click to toggle)
python-azure 20250603%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 851,724 kB
  • sloc: python: 7,362,925; ansic: 804; javascript: 287; makefile: 195; sh: 145; xml: 109
file content (96 lines) | stat: -rw-r--r-- 3,706 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# coding: utf-8

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------

"""
FILE: sample_convert_to_and_from_dict.py

DESCRIPTION:
    This sample demonstrates how to convert models returned from an analyze operation
    to and from a dictionary. The dictionary in this sample is then converted to a
    JSON file, then the same dictionary is converted back to its original model.

USAGE:
    python sample_convert_to_and_from_dict.py

    Set the environment variables with your own values before running the sample:
    1) DOCUMENTINTELLIGENCE_ENDPOINT - the endpoint to your Document Intelligence resource.
    2) DOCUMENTINTELLIGENCE_API_KEY - your Document Intelligence API key
"""

import os
import json


def convert_to_and_from_dict():
    path_to_sample_documents = os.path.abspath(
        os.path.join(
            os.path.abspath(__file__),
            "..",
            "./sample_forms/forms/Form_1.jpg",
        )
    )

    # [START convert]
    from azure.core.credentials import AzureKeyCredential
    from azure.ai.documentintelligence import DocumentIntelligenceClient
    from azure.ai.documentintelligence.models import AnalyzeResult

    endpoint = os.environ["DOCUMENTINTELLIGENCE_ENDPOINT"]
    key = os.environ["DOCUMENTINTELLIGENCE_API_KEY"]

    document_intelligence_client = DocumentIntelligenceClient(endpoint=endpoint, credential=AzureKeyCredential(key))
    with open(path_to_sample_documents, "rb") as f:
        poller = document_intelligence_client.begin_analyze_document("prebuilt-layout", body=f)
    result: AnalyzeResult = poller.result()

    # convert the received model to a dictionary
    analyze_result_dict = result.as_dict()

    # save the dictionary as JSON content in a JSON file
    with open("data.json", "w") as output_file:
        json.dump(analyze_result_dict, output_file, indent=4)
    
    # convert the dictionary back to the original model
    model = AnalyzeResult(analyze_result_dict)

    # use the model as normal
    print("----Converted from dictionary AnalyzeResult----")
    print(f"Model ID: '{model.model_id}'")
    print(f"Number of pages analyzed {len(model.pages)}")
    print(f"API version used: {model.api_version}")

    print("----------------------------------------")
    # [END convert]


if __name__ == "__main__":
    from azure.core.exceptions import HttpResponseError
    from dotenv import find_dotenv, load_dotenv

    try:
        load_dotenv(find_dotenv())
        convert_to_and_from_dict()
    except HttpResponseError as error:
        print(
            "For more information about troubleshooting errors, see the following guide: "
            "https://aka.ms/azsdk/python/formrecognizer/troubleshooting"
        )
        # Examples of how to check an HttpResponseError
        # Check by error code:
        if error.error is not None:
            if error.error.code == "InvalidImage":
                print(f"Received an invalid image error: {error.error}")
            if error.error.code == "InvalidRequest":
                print(f"Received an invalid request error: {error.error}")
            # Raise the error again after printing it
            raise
        # If the inner error is None and then it is possible to check the message to get more information:
        if "Invalid request".casefold() in error.message.casefold():
            print(f"Uh-oh! Seems there was an invalid request: {error}")
        # Raise the error again
        raise