File: sample_send_request.py

package info (click to toggle)
python-azure 20250603%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 851,724 kB
  • sloc: python: 7,362,925; ansic: 804; javascript: 287; makefile: 195; sh: 145; xml: 109
file content (73 lines) | stat: -rw-r--r-- 3,306 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# coding: utf-8

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------

"""
FILE: sample_send_request.py

DESCRIPTION:
    This sample demonstrates how to make custom HTTP requests through a client pipeline.

USAGE:
    python sample_send_request.py

    Set the environment variables with your own values before running the sample:
    1) DOCUMENTINTELLIGENCE_ENDPOINT - the endpoint to your Document Intelligence resource.
    2) DOCUMENTINTELLIGENCE_API_KEY - your Document Intelligence API key.
"""


def sample_send_request():
    # [START send_request]
    import os
    from azure.core.credentials import AzureKeyCredential
    from azure.core.rest import HttpRequest
    from azure.ai.documentintelligence import DocumentIntelligenceAdministrationClient

    endpoint = os.environ["DOCUMENTINTELLIGENCE_ENDPOINT"]
    key = os.environ["DOCUMENTINTELLIGENCE_API_KEY"]

    client = DocumentIntelligenceAdministrationClient(endpoint=endpoint, credential=AzureKeyCredential(key))

    # The `send_request` method can send custom HTTP requests that share the client's existing pipeline,
    # Now let's use the `send_request` method to make a resource details fetching request.
    # The URL of the request should be absolute, and append the API version used for the request.
    request = HttpRequest(method="GET", url=f"{endpoint}/documentintelligence/info?api-version=2024-11-30")
    response = client.send_request(request)
    response.raise_for_status()
    response_body = response.json()
    print(
        f"Our resource has {response_body['customDocumentModels']['count']} custom models, "
        f"and we can have at most {response_body['customDocumentModels']['limit']} custom models."
        f"The quota limit for custom neural document models is {response_body['customNeuralDocumentModelBuilds']['quota']} and the resource has"
        f"used {response_body['customNeuralDocumentModelBuilds']['used']}. The resource quota will reset on {response_body['customNeuralDocumentModelBuilds']['quotaResetDateTime']}"
    )
    # [END send_request]


if __name__ == "__main__":
    from azure.core.exceptions import HttpResponseError
    from dotenv import find_dotenv, load_dotenv

    try:
        load_dotenv(find_dotenv())
        sample_send_request()
    except HttpResponseError as error:
        # Examples of how to check an HttpResponseError
        # Check by error code:
        if error.error is not None:
            if error.error.code == "InvalidImage":
                print(f"Received an invalid image error: {error.error}")
            if error.error.code == "InvalidRequest":
                print(f"Received an invalid request error: {error.error}")
            # Raise the error again after printing it
            raise
        # If the inner error is None and then it is possible to check the message to get more information:
        if "Invalid request".casefold() in error.message.casefold():
            print(f"Uh-oh! Seems there was an invalid request: {error}")
        # Raise the error again
        raise