File: test_dac_analyze_custom_model.py

package info (click to toggle)
python-azure 20250603%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 851,724 kB
  • sloc: python: 7,362,925; ansic: 804; javascript: 287; makefile: 195; sh: 145; xml: 109
file content (130 lines) | stat: -rw-r--r-- 6,364 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# coding=utf-8
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------

import pytest
import uuid
from devtools_testutils import recorded_by_proxy, set_bodiless_matcher, get_credential
from azure.core.exceptions import ResourceNotFoundError
from azure.ai.documentintelligence import DocumentIntelligenceClient, DocumentIntelligenceAdministrationClient
from azure.ai.documentintelligence.models import (
    BuildDocumentModelRequest,
    AzureBlobContentSource,
    AnalyzeDocumentRequest,
)
from testcase import DocumentIntelligenceTest
from preparers import DocumentIntelligencePreparer
from conftest import skip_flaky_test


class TestDACAnalyzeCustomModel(DocumentIntelligenceTest):
    @DocumentIntelligencePreparer()
    def test_analyze_document_none_model_id(self, **kwargs):
        documentintelligence_endpoint = kwargs.pop("documentintelligence_endpoint")
        client = DocumentIntelligenceClient(documentintelligence_endpoint, get_credential())
        with pytest.raises(ValueError) as e:
            client.begin_analyze_document(model_id=None, body=b"xx")
        assert "No value for given attribute" in str(e.value)

    @DocumentIntelligencePreparer()
    def test_analyze_document_none_model_id_from_url(self, **kwargs):
        documentintelligence_endpoint = kwargs.pop("documentintelligence_endpoint")
        client = DocumentIntelligenceClient(documentintelligence_endpoint, get_credential())
        with pytest.raises(ValueError) as e:
            client.begin_analyze_document(model_id=None, body=AnalyzeDocumentRequest(url_source="https://badurl.jpg"))
        assert "No value for given attribute" in str(e.value)

    @DocumentIntelligencePreparer()
    @recorded_by_proxy
    def test_analyze_document_empty_model_id(self, **kwargs):
        documentintelligence_endpoint = kwargs.pop("documentintelligence_endpoint")
        client = DocumentIntelligenceClient(documentintelligence_endpoint, get_credential())
        with pytest.raises(ResourceNotFoundError) as e:
            client.begin_analyze_document(model_id="", body=b"xx")
        assert "Resource not found" in str(e.value)

    @DocumentIntelligencePreparer()
    @recorded_by_proxy
    def test_analyze_document_empty_model_id_from_url(self, **kwargs):
        documentintelligence_endpoint = kwargs.pop("documentintelligence_endpoint")
        client = DocumentIntelligenceClient(documentintelligence_endpoint, get_credential())
        with pytest.raises(ResourceNotFoundError) as e:
            client.begin_analyze_document(model_id="", body=AnalyzeDocumentRequest(url_source="https://badurl.jpg"))
        assert "Resource not found" in str(e.value)

    @skip_flaky_test
    @DocumentIntelligencePreparer()
    @recorded_by_proxy
    def test_custom_document_transform(self, documentintelligence_storage_container_sas_url, **kwargs):
        set_bodiless_matcher()
        documentintelligence_endpoint = kwargs.pop("documentintelligence_endpoint")
        di_admin_client = DocumentIntelligenceAdministrationClient(documentintelligence_endpoint, get_credential())
        di_client = DocumentIntelligenceClient(documentintelligence_endpoint, get_credential())

        recorded_variables = kwargs.pop("variables", {})
        recorded_variables.setdefault("model_id", str(uuid.uuid4()))
        request = BuildDocumentModelRequest(
            model_id=recorded_variables.get("model_id"),
            build_mode="template",
            azure_blob_source=AzureBlobContentSource(container_url=documentintelligence_storage_container_sas_url),
        )
        poller = di_admin_client.begin_build_document_model(request)
        model = poller.result()
        assert model

        with open(self.form_jpg, "rb") as fd:
            my_file = fd.read()
        poller = di_client.begin_analyze_document(model.model_id, my_file)
        document = poller.result()
        assert document.model_id == model.model_id
        assert len(document.pages) == 1
        assert len(document.tables) == 2
        assert len(document.paragraphs) == 42
        assert len(document.styles) == 1
        assert document.string_index_type == "textElements"
        assert document.content_format == "text"

        return recorded_variables

    @skip_flaky_test
    @DocumentIntelligencePreparer()
    @recorded_by_proxy
    def test_custom_document_transform_with_continuation_token(
        self, documentintelligence_storage_container_sas_url, **kwargs
    ):
        set_bodiless_matcher()
        documentintelligence_endpoint = kwargs.pop("documentintelligence_endpoint")
        di_admin_client = DocumentIntelligenceAdministrationClient(documentintelligence_endpoint, get_credential())
        di_client = DocumentIntelligenceClient(documentintelligence_endpoint, get_credential())

        recorded_variables = kwargs.pop("variables", {})
        recorded_variables.setdefault("model_id", str(uuid.uuid4()))
        request = BuildDocumentModelRequest(
            model_id=recorded_variables.get("model_id"),
            build_mode="template",
            azure_blob_source=AzureBlobContentSource(container_url=documentintelligence_storage_container_sas_url),
        )
        poller = di_admin_client.begin_build_document_model(request)
        continuation_token = poller.continuation_token()
        poller2 = di_admin_client.begin_build_document_model(request, continuation_token=continuation_token)
        model = poller2.result()
        assert model

        with open(self.form_jpg, "rb") as fd:
            my_file = fd.read()
        poller = di_client.begin_analyze_document(model.model_id, my_file)
        continuation_token = poller.continuation_token()
        di_client2 = DocumentIntelligenceClient(documentintelligence_endpoint, get_credential())
        poller2 = di_client2.begin_analyze_document(None, None, continuation_token=continuation_token)
        document = poller2.result()
        assert document.model_id == model.model_id
        assert len(document.pages) == 1
        assert len(document.tables) == 2
        assert len(document.paragraphs) == 42
        assert len(document.styles) == 1
        assert document.string_index_type == "textElements"
        assert document.content_format == "text"

        return recorded_variables