1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
# Migration Guide - From Promptflow Eval SDK To Azure AI Evaluation SDK
Github: [link](https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/evaluation/azure-ai-evaluation)
Pypi: [link](https://pypi.org/project/azure-ai-evaluation/)
Documentation: [link](https://learn.microsoft.com/azure/ai-studio/how-to/develop/evaluate-sdk)
Following Built-in evaluators are provided in new Azure AI Evaluation SDK ([azure-ai-evaluation](https://pypi.org/project/azure-ai-evaluation/)).
#### Built-in evaluators
| Category | Evaluator class|
|-----------------------------|------------------------------------------|
| [Performance and quality][performance_and_quality_evaluators] (AI-assisted) | `GroundednessEvaluator`, `RelevanceEvaluator`, `CoherenceEvaluator`, `FluencyEvaluator`, `SimilarityEvaluator`, `RetrievalEvaluator` |
| [Performance and quality][performance_and_quality_evaluators] (NLP) | `F1ScoreEvaluator`, `RougeScoreEvaluator`, `GleuScoreEvaluator`, `BleuScoreEvaluator`, `MeteorScoreEvaluator`|
| [Risk and safety][risk_and_safety_evaluators] (AI-assisted) | `ViolenceEvaluator`, `SexualEvaluator`, `SelfHarmEvaluator`, `HateUnfairnessEvaluator`, `IndirectAttackEvaluator`, `ProtectedMaterialEvaluator` |
| [Composite][composite_evaluators] | `QAEvaluator`, `ContentSafetyEvaluator`
### Promptflow Eval vs Azure AI Evaluation
Following are the few key differences b/w promptflow-eval package and azure-ai-evaluation package.
| SDK |Import statements |
|-----------|------------------------------------------------------------------------------------------------------------------------------------|
| promptflow-eval | `from promptflow.evals.evaluators import ContentSafetyEvaluator` |
| azure-ai-evaluation | `from azure.ai.evaluation import ContentSafetyEvaluator` |
**Note**: `ViolenceEvaluator, SexualEvaluator, SelfHarmEvaluator, HateUnfairnessEvaluator, IndirectAttackEvaluator, ProtectedMaterialEvaluator` follows the same pattern.
`ChatEvaluator` and `ContentSafetyChatEvaluator` has been removed.
However, multi-turn chat capabilities is added in ContentSafetyEvaluator. Please take a look at below sample code.
##### Promptflow Evals SDK
```python
from promptflow.evals.evaluators.content_safety import ContentSafetyEvaluator, ContentSafetyChatEvaluator
from pprint import pprint
project_scope = {
"subscription_id": "",
"resource_group_name": "",
"project_name": "",
}
content_safety_eval = ContentSafetyEvaluator(project_scope)
content_safety_score = content_safety_eval(
question="What is the capital of France?",
answer="Paris."
)
pprint(content_safety_score)
content_safety_chat_eval = ContentSafetyChatEvaluator(project_scope)
conversation = [
{
"role": "user",
"content": "What is the capital of France?"
},
{
"role": "assistant",
"content": "The capital of France is Paris.",
},
]
content_safety_chat_score = content_safety_chat_eval(conversation=conversation)
pprint(content_safety_chat_score)
```
##### Azure AI Evaluation SDK
```python
from azure.identity import DefaultAzureCredential
from azure.ai.evaluation import ContentSafetyEvaluator
from pprint import pprint
azure_cred = DefaultAzureCredential()
project_scope = {
"subscription_id": "<your-subscription-id>",
"resource_group_name": "<your-resource-group>",
"project_name": "<your-project-name>",
}
content_safety_eval = ContentSafetyEvaluator(azure_cred, project_scope)
content_safety_score = content_safety_eval(
query="What is the capital of Japan?",
response="The capital of Japan is Tokyo."
pprint(content_safety_score)
# Using Chat conversation
conversation = {
"messages": [
{
"content": "What is the capital of France?",
"role": "user",
},
{
"content": "Paris",
"role": "assistant",
}
],
}
content_safety_score = content_safety_eval(conversation=conversation)
pprint(content_safety_score)
```
### Using Evaluate API
| SDK |Import Statements |
|-----------|------------------------------------------------------------------------------------------------------------------------------------|
| promptflow-eval | ``from promptflow.evals.evaluate import evaluate`` |
| azure-ai-evaluation | ``from azure.ai.evaluation import evaluate`` |
##### Promptflow Evals SDK
```python
from promptflow.evals.evaluators.content_safety import ContentSafetyEvaluator, ContentSafetyChatEvaluator
from pprint import pprint
import pathlib
project_scope = {
"subscription_id": "",
"resource_group_name": "",
"project_name": "",
}
content_safety_eval = ContentSafetyEvaluator(project_scope)
# Using Evaluate API
file_path = pathlib.Path("data.jsonl")
result = evaluate(
data=file_path,
azure_ai_project=project_scope,
evaluators={"content_safety": content_safety_eval},
)
pprint(result)
```
##### Azure AI Evaluation SDK
```python
from azure.identity import DefaultAzureCredential
from azure.ai.evaluation import ContentSafetyEvaluator
import pathlib
from pprint import pprint
azure_cred = DefaultAzureCredential()
project_scope = {
"subscription_id": "<your-subscription-id>",
"resource_group_name": "<your-resource-group>",
"project_name": "<your-project-name>",
}
content_safety_eval = ContentSafetyEvaluator(azure_cred, project_scope)
# Using Evaluate API
file_path = pathlib.Path("data.jsonl")
result = evaluate(
data=file_path,
azure_ai_project=project_scope,
evaluators={"content_safety": content_safety_eval},
)
pprint(result)
```
### Adversarial Simulator.
Azure AI Evaluation SDK's Simulator provides an end-to-end synthetic datasets generation capabilities to help developers evaluate their LLM or GenAI application's responses against user prompts.
All the adversarial scenarios supported in PromptFlow SDK ([here](https://github.com/microsoft/promptflow/tree/main/src/promptflow-evals/promptflow/evals/synthetic)) has been provided in new Azure AI Evaluation SDK. Please refer to documentation [here](https://learn.microsoft.com/azure/ai-studio/how-to/develop/simulator-interaction-data#supported-adversarial-simulation-scenarios) for more details and sample code.
Following code snippet represents the basic differences between two SDKs.
##### Promptflow Evals SDK
```python
from promptflow.evals.synthetic import AdversarialSimulator, AdversarialScenario
from pprint import pprint
azure_cred = DefaultAzureCredential()
project_scope = {
"subscription_id": "<your-subscription-id>",
"resource_group_name": "<your-resource-group>",
"project_name": "<your-project-name>",
}
simulator = AdversarialSimulator(azure_ai_project=project_scope, credential=azure_cred)
outputs = await simulator(
scenario=AdversarialScenario.ADVERSARIAL_QA,
max_conversation_turns=1,
max_simulation_results=1,
target=callback
)
pprint(outputs.to_eval_qa_json_lines())
```
##### Azure AI Evaluation SDK
```python
from azure.ai.evaluation.simulator import AdversarialScenario, AdversarialSimulator
from pprint import pprint
azure_cred = DefaultAzureCredential()
project_scope = {
"subscription_id": "<your-subscription-id>",
"resource_group_name": "<your-resource-group>",
"project_name": "<your-project-name>",
}
simulator = AdversarialSimulator(azure_ai_project=project_scope, credential=azure_cred)
outputs = await simulator(
scenario=AdversarialScenario.ADVERSARIAL_QA,
max_conversation_turns=1,
max_simulation_results=1,
target=callback
)
pprint(outputs.to_eval_qr_json_lines())
```
Note: **`AdversarialSimulator`** in promptflow-eval SDK had function `to_eval_qa_json_lines()` to return following output:
```python
{"question": <user_message>, "answer": <assistant_message>}
```
Now, **`AdversarialSimulator`** in azure-ai-evaluation SDK have function `to_eval_qr_json_lines()` to return following output:
```python
{"query": <user_message>, "response": assistant_message}
```
<!-- LINKS -->
[performance_and_quality_evaluators]: https://learn.microsoft.com/azure/ai-studio/how-to/develop/evaluate-sdk#performance-and-quality-evaluators
[risk_and_safety_evaluators]: https://learn.microsoft.com/azure/ai-studio/how-to/develop/evaluate-sdk#risk-and-safety-evaluators-preview
[composite_evaluators]: https://learn.microsoft.com/azure/ai-studio/how-to/develop/evaluate-sdk#composite-evaluators
|