1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
|
# coding: utf-8
# type: ignore
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
"""
DESCRIPTION:
These samples demonstrate usage of various classes and methods used to perform evaluation with thresholds in the azure-ai-evaluation library.
USAGE:
python evaluation_samples_threshold.py
Set the environment variables with your own values before running the sample:
1) AZURE_OPENAI_ENDPOINT
2) AZURE_OPENAI_KEY
3) AZURE_OPENAI_DEPLOYMENT
4) AZURE_SUBSCRIPTION_ID
5) AZURE_RESOURCE_GROUP_NAME
6) AZURE_PROJECT_NAME
"""
class EvaluationThresholdSamples(object):
def evaluation_classes_methods_with_thresholds(self):
# [START threshold_evaluate_method]
import os
from azure.ai.evaluation import evaluate, RelevanceEvaluator, CoherenceEvaluator
model_config = {
"azure_endpoint": os.environ.get("AZURE_OPENAI_ENDPOINT"),
"api_key": os.environ.get("AZURE_OPENAI_KEY"),
"azure_deployment": os.environ.get("AZURE_OPENAI_DEPLOYMENT"),
}
print(os.getcwd())
path = "./sdk/evaluation/azure-ai-evaluation/samples/data/evaluate_test_data.jsonl"
evaluate(
data=path,
evaluators={
"coherence": CoherenceEvaluator(model_config=model_config, threshold=2),
"relevance": RelevanceEvaluator(model_config=model_config, threshold=4),
},
evaluator_config={
"coherence": {
"column_mapping": {
"response": "${data.response}",
"query": "${data.query}",
},
},
"relevance": {
"column_mapping": {
"response": "${data.response}",
"context": "${data.context}",
"query": "${data.query}",
},
},
},
)
# [END threshold_evaluate_method]
# [START threshold_bleu_score_evaluator]
from azure.ai.evaluation import BleuScoreEvaluator
bleu_evaluator = BleuScoreEvaluator(threshold=0.3)
bleu_score = bleu_evaluator(response="Lyon is the capital of France.", ground_truth="Paris is the capital of France.")
print(f"BLEU Score: {bleu_score['bleu_score']}, Result: {bleu_score['bleu_result']}, Threshold: {bleu_score['bleu_threshold']}")
# [END threshold_bleu_score_evaluator]
# [START threshold_coherence_evaluator]
import os
from azure.ai.evaluation import CoherenceEvaluator
model_config = {
"azure_endpoint": os.environ.get("AZURE_OPENAI_ENDPOINT"),
"api_key": os.environ.get("AZURE_OPENAI_KEY"),
"azure_deployment": os.environ.get("AZURE_OPENAI_DEPLOYMENT"),
}
coherence_evaluator = CoherenceEvaluator(model_config=model_config, threshold=2)
coherence_evaluator(query="What is the capital of France?", response="Paris is the capital of France.")
print(f"Coherence Score: {coherence_evaluator['coherence']}, Result: {coherence_evaluator['coherence_result']}, Threshold: {coherence_evaluator['coherence_threshold']}")
# [END coherence_evaluator]
# [START threshold_content_safety_evaluator]
import os
from azure.identity import DefaultAzureCredential
from azure.ai.evaluation import ContentSafetyEvaluator
azure_ai_project = {
"subscription_id": os.environ.get("AZURE_SUBSCRIPTION_ID"),
"resource_group_name": os.environ.get("AZURE_RESOURCE_GROUP_NAME"),
"project_name": os.environ.get("AZURE_PROJECT_NAME"),
}
credential = DefaultAzureCredential()
chat_eval = ContentSafetyEvaluator(azure_ai_project=azure_ai_project, credential=credential, threshold=3)
chat_eval(
query="What is the capital of France?",
response="Paris",
)
# [END threshold_content_safety_evaluator]
# [START threshold_hate_unfairness_evaluator]
import os
from azure.identity import DefaultAzureCredential
from azure.ai.evaluation import HateUnfairnessEvaluator
azure_ai_project = {
"subscription_id": os.environ.get("AZURE_SUBSCRIPTION_ID"),
"resource_group_name": os.environ.get("AZURE_RESOURCE_GROUP_NAME"),
"project_name": os.environ.get("AZURE_PROJECT_NAME"),
}
credential = DefaultAzureCredential()
hate_unfairness_eval = HateUnfairnessEvaluator(azure_ai_project=azure_ai_project, credential=credential, threshold=1)
hate_unfairness_eval(
query="What is the capital of France?",
response="Paris",
)
# [END threshold_hate_unfairness_evaluator]
# [START threshold_self_harm_evaluator]
import os
from azure.identity import DefaultAzureCredential
from azure.ai.evaluation import SelfHarmEvaluator
azure_ai_project = {
"subscription_id": os.environ.get("AZURE_SUBSCRIPTION_ID"),
"resource_group_name": os.environ.get("AZURE_RESOURCE_GROUP_NAME"),
"project_name": os.environ.get("AZURE_PROJECT_NAME"),
}
credential = DefaultAzureCredential()
self_harm_eval = SelfHarmEvaluator(azure_ai_project=azure_ai_project, credential=credential, threshold=4)
self_harm_eval(
query="What is the capital of France?",
response="Paris",
)
# [END threshold_self_harm_evaluator]
# [START threshold_sexual_evaluator]
import os
from azure.identity import DefaultAzureCredential
from azure.ai.evaluation import SexualEvaluator
azure_ai_project = {
"subscription_id": os.environ.get("AZURE_SUBSCRIPTION_ID"),
"resource_group_name": os.environ.get("AZURE_RESOURCE_GROUP_NAME"),
"project_name": os.environ.get("AZURE_PROJECT_NAME"),
}
credential = DefaultAzureCredential()
sexual_eval = SexualEvaluator(azure_ai_project=azure_ai_project, credential=credential, threshold=1)
sexual_eval(
query="What is the capital of France?",
response="Paris",
)
# [END threshold_sexual_evaluator]
# [START threshold_violence_evaluator]
import os
from azure.identity import DefaultAzureCredential
from azure.ai.evaluation import ViolenceEvaluator
azure_ai_project = {
"subscription_id": os.environ.get("AZURE_SUBSCRIPTION_ID"),
"resource_group_name": os.environ.get("AZURE_RESOURCE_GROUP_NAME"),
"project_name": os.environ.get("AZURE_PROJECT_NAME"),
}
credential = DefaultAzureCredential()
violence_eval = ViolenceEvaluator(azure_ai_project=azure_ai_project, credential=credential, threshold=1)
violence_eval(
query="What is the capital of France?",
response="Paris",
)
# [END threshold_violence_evaluator]
# [START threshold_f1_score_evaluator]
from azure.ai.evaluation import F1ScoreEvaluator
f1_evaluator = F1ScoreEvaluator(threshold=0.6)
f1_evaluator(response="Lyon is the capital of France.", ground_truth="Paris is the capital of France.")
# [END threshold_f1_score_evaluator]
# [START threshold_fluency_evaluator]
import os
from azure.ai.evaluation import FluencyEvaluator
model_config = {
"azure_endpoint": os.environ.get("AZURE_OPENAI_ENDPOINT"),
"api_key": os.environ.get("AZURE_OPENAI_KEY"),
"azure_deployment": os.environ.get("AZURE_OPENAI_DEPLOYMENT"),
}
fluency_evaluator = FluencyEvaluator(model_config=model_config, threshold=0.4)
fluency_evaluator(response="Paris is the capital of France.")
# [END threshold_fluency_evaluator]
# [START threshold_gleu_score_evaluator]
from azure.ai.evaluation import GleuScoreEvaluator
gleu_evaluator = GleuScoreEvaluator(threshold=0.2)
gleu_evaluator(response="Paris is the capital of France.", ground_truth="France's capital is Paris.")
# [END threshold_gleu_score_evaluator]
# [START threshold_groundedness_evaluator]
import os
from azure.ai.evaluation import GroundednessEvaluator
model_config = {
"azure_endpoint": os.environ.get("AZURE_OPENAI_ENDPOINT"),
"api_key": os.environ.get("AZURE_OPENAI_KEY"),
"azure_deployment": os.environ.get("AZURE_OPENAI_DEPLOYMENT"),
}
groundedness_evaluator = GroundednessEvaluator(model_config=model_config, threshold=2)
groundedness_evaluator(
response="Paris is the capital of France.",
context=(
"France, a country in Western Europe, is known for its rich history and cultural heritage."
"The city of Paris, located in the northern part of the country, serves as its capital."
"Paris is renowned for its art, fashion, and landmarks such as the Eiffel Tower and the Louvre Museum."
),
)
# [END threshold_groundedness_evaluator]
# [START threshold_meteor_score_evaluator]
from azure.ai.evaluation import MeteorScoreEvaluator
meteor_evaluator = MeteorScoreEvaluator(alpha=0.8, threshold=0.3)
meteor_evaluator(response="Paris is the capital of France.", ground_truth="France's capital is Paris.")
# [END threshold_meteor_score_evaluator]
# [START threshold_qa_evaluator]
import os
from azure.ai.evaluation import QAEvaluator
model_config = {
"azure_endpoint": os.environ.get("AZURE_OPENAI_ENDPOINT"),
"api_key": os.environ.get("AZURE_OPENAI_KEY"),
"azure_deployment": os.environ.get("AZURE_OPENAI_DEPLOYMENT"),
}
qa_eval = QAEvaluator(
model_config=model_config,
groundedness_threshold=2,
relevance_threshold=2,
coherence_threshold=2,
fluency_threshold=2,
similarity_threshold=2,
f1_score_threshold=0.5
)
qa_eval(query="This's the color?", response="Black", ground_truth="gray", context="gray")
# [END threshold_qa_evaluator]
# [START threshold_relevance_evaluator]
import os
from azure.ai.evaluation import RelevanceEvaluator
model_config = {
"azure_endpoint": os.environ.get("AZURE_OPENAI_ENDPOINT"),
"api_key": os.environ.get("AZURE_OPENAI_KEY"),
"azure_deployment": os.environ.get("AZURE_OPENAI_DEPLOYMENT"),
}
relevance_eval = RelevanceEvaluator(model_config=model_config, threshold=2)
relevance_eval(
query="What is the capital of Japan?",
response="The capital of Japan is Tokyo.",
)
# [END threshold_relevance_evaluator]
# [START threshold_retrieval_evaluator]
import os
from azure.ai.evaluation import RetrievalEvaluator
model_config = {
"azure_endpoint": os.environ.get("AZURE_OPENAI_ENDPOINT"),
"api_key": os.environ.get("AZURE_OPENAI_KEY"),
"azure_deployment": os.environ.get("AZURE_OPENAI_DEPLOYMENT"),
}
retrieval_eval = RetrievalEvaluator(model_config=model_config, threshold=2)
conversation = {
"messages": [
{
"content": "What is the capital of France?`''\"</>{}{{]",
"role": "user",
"context": "Customer wants to know the capital of France",
},
{"content": "Paris", "role": "assistant", "context": "Paris is the capital of France"},
{
"content": "What is the capital of Hawaii?",
"role": "user",
"context": "Customer wants to know the capital of Hawaii",
},
{"content": "Honolulu", "role": "assistant", "context": "Honolulu is the capital of Hawaii"},
],
"context": "Global context",
}
retrieval_eval(conversation=conversation)
# [END threshold_retrieval_evaluator]
# [START threshold_rouge_score_evaluator]
from azure.ai.evaluation import RougeScoreEvaluator, RougeType
rouge_evaluator = RougeScoreEvaluator(
rouge_type=RougeType.ROUGE_4,
precision_threshold=0.5,
recall_threshold=0.5,
f1_score_threshold=0.5
)
rouge_evaluator(response="Paris is the capital of France.", ground_truth="France's capital is Paris.")
# [END threshold_rouge_score_evaluator]
# [START threshold_similarity_evaluator]
import os
from azure.ai.evaluation import SimilarityEvaluator
model_config = {
"azure_endpoint": os.environ.get("AZURE_OPENAI_ENDPOINT"),
"api_key": os.environ.get("AZURE_OPENAI_KEY"),
"azure_deployment": os.environ.get("AZURE_OPENAI_DEPLOYMENT"),
}
similarity_eval = SimilarityEvaluator(model_config=model_config, threshold=3)
similarity_eval(
query="What is the capital of Japan?",
response="The capital of Japan is Tokyo.",
ground_truth="Tokyo is Japan's capital.",
)
# [END threshold_similarity_evaluator]
# [START threshold_groundedness_pro_evaluator]
import os
from azure.identity import DefaultAzureCredential
from azure.ai.evaluation import GroundednessProEvaluator
azure_ai_project = {
"subscription_id": os.environ.get("AZURE_SUBSCRIPTION_ID"),
"resource_group_name": os.environ.get("AZURE_RESOURCE_GROUP_NAME"),
"project_name": os.environ.get("AZURE_PROJECT_NAME"),
}
credential = DefaultAzureCredential()
groundedness_pro_eval = GroundednessProEvaluator(azure_ai_project=azure_ai_project, credential=credential, threshold=2)
groundedness_pro_eval(
query="What shape has 4 equilateral sides?",
response="Rhombus",
context="Rhombus is a shape with 4 equilateral sides.",
)
# [END threshold_groundedness_pro_evaluator]
# [START document_retrieval_evaluator]
from azure.ai.evaluation import DocumentRetrievalEvaluator
retrieval_ground_truth = [
{
"document_id": "1",
"query_relevance_judgement": 4
},
{
"document_id": "2",
"query_relevance_judgement": 2
},
{
"document_id": "3",
"query_relevance_judgement": 3
},
{
"document_id": "4",
"query_relevance_judgement": 1
},
{
"document_id": "5",
"query_relevance_judgement": 0
},
]
retrieved_documents = [
{
"document_id": "2",
"query_relevance_judgement": 45.1
},
{
"document_id": "6",
"query_relevance_judgement": 35.8
},
{
"document_id": "3",
"query_relevance_judgement": 29.2
},
{
"document_id": "5",
"query_relevance_judgement": 25.4
},
{
"document_id": "7",
"query_relevance_judgement": 18.8
},
]
threshold = {
"ndcg@3": 0.7,
"xdcg@3": 70,
"fidelity": 0.7
}
document_retrieval_evaluator = DocumentRetrievalEvaluator(threshold=threshold)
document_retrieval_evaluator(retrieval_ground_truth=retrieval_ground_truth, retrieved_documents=retrieved_documents)
# [END document_retrieval_evaluator]
if __name__ == "__main__":
print("Loading samples in evaluation_samples_threshold.py")
sample = EvaluationThresholdSamples()
print("Samples loaded successfully!")
print("Running samples in evaluation_samples_threshold.py")
sample.evaluation_classes_methods_with_thresholds()
print("Samples ran successfully!")
|