1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
|
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
"""
DESCRIPTION:
These samples demonstrate usage of various classes and methods used in Red Team
functionality within the azure-ai-evaluation library.
USAGE:
python red_team_samples.py
Set the environment variables with your own values before running the sample:
1) AZURE_SUBSCRIPTION_ID - your Azure subscription ID
2) AZURE_RESOURCE_GROUP_NAME - your resource group name
3) AZURE_PROJECT_NAME - your Azure AI project name
4) AZURE_OPENAI_ENDPOINT - your Azure OpenAI endpoint (for model samples)
5) AZURE_OPENAI_KEY - your Azure OpenAI key (for model samples)
6) AZURE_OPENAI_DEPLOYMENT - your Azure OpenAI deployment name (for model samples)
"""
import os
import asyncio
from azure.ai.evaluation.red_team import (
RedTeam,
AttackStrategy,
RiskCategory
)
from azure.identity import DefaultAzureCredential
class RedTeamSamples(object):
def __init__(self):
# Setup Azure AI Project connection
self.azure_ai_project = {
"subscription_id": os.environ.get("AZURE_SUBSCRIPTION_ID"),
"resource_group_name": os.environ.get("AZURE_RESOURCE_GROUP_NAME"),
"project_name": os.environ.get("AZURE_PROJECT_NAME"),
}
self.credential = DefaultAzureCredential()
# Setup Azure OpenAI config for model testing
self.azure_openai_config = {
"azure_endpoint": os.environ.get("AZURE_OPENAI_ENDPOINT"),
"api_key": os.environ.get("AZURE_OPENAI_KEY"),
"azure_deployment": os.environ.get("AZURE_OPENAI_DEPLOYMENT"),
}
async def basic_callback_example(self):
"""
This example demonstrates the most basic usage of Red Team with a
simple callback function. It shows how to initialize the agent with specific risk
categories and then use it to scan a target function with basic attack strategies.
"""
# [START red_team_basic_callback]
from azure.ai.evaluation.red_team import (
RedTeam,
AttackStrategy,
RiskCategory
)
from azure.identity import DefaultAzureCredential
# Initialize Red Team
azure_ai_project = {
"subscription_id": os.environ.get("AZURE_SUBSCRIPTION_ID"),
"resource_group_name": os.environ.get("AZURE_RESOURCE_GROUP_NAME"),
"project_name": os.environ.get("AZURE_PROJECT_NAME"),
}
credential = DefaultAzureCredential()
agent = RedTeam(azure_ai_project=self.azure_ai_project, credential=credential, risk_categories=[RiskCategory.Violence, RiskCategory.HateUnfairness], num_objectives=2)
# Define a simple callback function that simulates a chatbot
def simple_callback(query: str) -> str:
# Your implementation to call your application (e.g., RAG system, chatbot)
return "I'm an AI assistant that follows ethical guidelines. I cannot provide harmful content."
# Run the scan with basic attack strategies
results = await agent.scan(
target=simple_callback,
scan_name="Basic-Callback-Test",
attack_strategies=[AttackStrategy.Base64, AttackStrategy.ROT13],
application_scenario="A customer service chatbot for a retail company"
)
print(f"Scan completed with {len(results.scan_result) if results.scan_result else 0} conversations")
# [END red_team_basic_callback]
return results
async def advanced_callback_example(self):
"""
This example demonstrates a more advanced usage with a complex callback function
that handles conversation state and formatting. It shows how to use Red Team
with an asynchronous callback that processes message history in a chat format.
"""
# [START red_team_advanced_callback]
from azure.ai.evaluation.red_team import (
RedTeam,
AttackStrategy,
RiskCategory
)
from azure.identity import DefaultAzureCredential
# Initialize Red Team
azure_ai_project = {
"subscription_id": os.environ.get("AZURE_SUBSCRIPTION_ID"),
"resource_group_name": os.environ.get("AZURE_RESOURCE_GROUP_NAME"),
"project_name": os.environ.get("AZURE_PROJECT_NAME"),
}
credential = DefaultAzureCredential()
agent = RedTeam(azure_ai_project=self.azure_ai_project, credential=credential, risk_categories=[
RiskCategory.Violence,
RiskCategory.Sexual,
RiskCategory.SelfHarm,
RiskCategory.HateUnfairness
],
num_objectives=2,)
# Create a more complex callback function that handles conversation state
async def advanced_callback(messages, stream=False, session_state=None, context=None):
# Extract the latest message from the conversation history
messages_list = [{"role": message.role, "content": message.content}
for message in messages]
latest_message = messages_list[-1]["content"]
# In a real application, you might process the entire conversation history
# Here, we're just simulating a response
response = "I'm an AI assistant that follows safety guidelines. I cannot provide harmful content."
# Format the response to follow the expected chat protocol format
formatted_response = {
"content": response,
"role": "assistant"
}
return {"messages": [formatted_response]}
# Run the scan with multiple attack strategies
results = await agent.scan(
target=advanced_callback,
scan_name="Advanced-Callback-Test",
attack_strategies=[
AttackStrategy.Base64,
AttackStrategy.ROT13,
AttackStrategy.UnicodeConfusable
],
application_scenario="An AI assistant for educational content"
)
print(f"Advanced scan completed with {len(results.scan_result) if results.scan_result else 0} conversations")
# [END red_team_advanced_callback]
return results
async def direct_model_testing_example(self):
"""
This example demonstrates how to test an Azure OpenAI model directly using the
Red Team. Rather than providing a callback function, it shows how to
set up and pass configuration for a model to be tested directly.
"""
# [START red_team_direct_model]
from azure.ai.evaluation.red_team import (
RedTeam,
AttackStrategy,
RiskCategory
)
from azure.identity import DefaultAzureCredential
# Initialize Red Team
azure_ai_project = {
"subscription_id": os.environ.get("AZURE_SUBSCRIPTION_ID"),
"resource_group_name": os.environ.get("AZURE_RESOURCE_GROUP_NAME"),
"project_name": os.environ.get("AZURE_PROJECT_NAME"),
}
credential = DefaultAzureCredential()
agent = RedTeam(azure_ai_project=self.azure_ai_project, credential=credential, risk_categories=[RiskCategory.Violence],
num_objectives=1,)
# Configuration for Azure OpenAI model
azure_openai_config = {
"azure_endpoint": os.environ.get("AZURE_OPENAI_ENDPOINT"),
"api_key": os.environ.get("AZURE_OPENAI_KEY"),
"azure_deployment": os.environ.get("AZURE_OPENAI_DEPLOYMENT"),
}
# Run scan directly against a model configuration
model_results = await agent.scan(
target=self.azure_openai_config,
scan_name="Direct-Model-Test",
attack_strategies=[
AttackStrategy.Flip,
AttackStrategy.Tense,
AttackStrategy.Compose([AttackStrategy.Base64, AttackStrategy.ROT13]),
],
application_scenario="A legal document assistant for contract drafting",
timeout=360
)
print(f"Model test completed with {len(model_results.scan_result) if model_results.scan_result else 0} conversations")
# [END red_team_direct_model]
return model_results
async def strategy_complexity_levels_example(self):
"""
This example demonstrates how to use different complexity levels of attack strategies.
It shows how to use the predefined complexity groups (EASY, MODERATE, DIFFICULT) to
test a target with attacks of varying sophistication.
"""
# [START red_team_complexity_levels]
from azure.ai.evaluation.red_team import (
RedTeam,
AttackStrategy,
RiskCategory
)
from azure.identity import DefaultAzureCredential
# Initialize Red Team
azure_ai_project = {
"subscription_id": os.environ.get("AZURE_SUBSCRIPTION_ID"),
"resource_group_name": os.environ.get("AZURE_RESOURCE_GROUP_NAME"),
"project_name": os.environ.get("AZURE_PROJECT_NAME"),
}
credential = DefaultAzureCredential()
agent = RedTeam(azure_ai_project=self.azure_ai_project, credential=credential,risk_categories=[RiskCategory.Violence, RiskCategory.SelfHarm], num_objectives=2)
# Create a simple callback function
def callback(query: str) -> str:
return "I'm a helpful assistant that follows ethical guidelines."
# Run a scan with different complexity levels
results = await agent.scan(
target=callback,
scan_name="Complexity-Levels-Test",
attack_strategies=[
AttackStrategy.EASY, # Group of easy complexity attacks
AttackStrategy.MODERATE, # Group of moderate complexity attacks
AttackStrategy.DIFFICULT # Group of difficult complexity attacks
],
application_scenario="A financial advisor chatbot"
)
print(f"Complexity levels test completed with {len(results.scan_result) if results.scan_result else 0} conversations")
# [END red_team_complexity_levels]
return results
async def specific_attack_strategies_example(self):
"""
This example demonstrates how to use specific attack strategies rather than
complexity groups. It shows how to select individual attack techniques to test
a target's resilience against particular evasion methods.
"""
# [START red_team_specific_strategies]
from azure.ai.evaluation.red_team import (
RedTeam,
AttackStrategy,
RiskCategory
)
from azure.identity import DefaultAzureCredential
# Initialize Red Team
azure_ai_project = {
"subscription_id": os.environ.get("AZURE_SUBSCRIPTION_ID"),
"resource_group_name": os.environ.get("AZURE_RESOURCE_GROUP_NAME"),
"project_name": os.environ.get("AZURE_PROJECT_NAME"),
}
credential = DefaultAzureCredential()
agent = RedTeam(
azure_ai_project=self.azure_ai_project,
credential=credential,
risk_categories=[RiskCategory.SelfHarm, RiskCategory.HateUnfairness],
num_objectives=2
)
# Define a simple callback function
def callback(query: str) -> str:
return "I'm a medical information assistant. I can provide general health information."
# Run a scan with specific attack strategies
results = await agent.scan(
target=callback,
scan_name="Specific-Strategies-Test",
attack_strategies=[
AttackStrategy.Base64, # Encode prompts in Base64
AttackStrategy.Flip, # Flip text to evade detection
AttackStrategy.CharacterSpace, # Add character spaces
AttackStrategy.ROT13, # Use ROT13 encoding
AttackStrategy.UnicodeConfusable # Use confusable Unicode characters
],
application_scenario="A medical information assistant"
)
print(f"Specific strategies test completed with {len(results.scan_result) if results.scan_result else 0} conversations")
# [END red_team_specific_strategies]
return results
async def data_only_mode_example(self):
"""
This example demonstrates the data-only mode which collects conversation data
without performing evaluations. This is useful for gathering attack attempts and
responses for later analysis or when you want to implement your own evaluation.
"""
# [START red_team_data_only]
from azure.ai.evaluation.red_team import (
RedTeam,
AttackStrategy,
RiskCategory
)
from azure.identity import DefaultAzureCredential
# Initialize Red Team
azure_ai_project = {
"subscription_id": os.environ.get("AZURE_SUBSCRIPTION_ID"),
"resource_group_name": os.environ.get("AZURE_RESOURCE_GROUP_NAME"),
"project_name": os.environ.get("AZURE_PROJECT_NAME"),
}
credential = DefaultAzureCredential()
agent = RedTeam(
azure_ai_project=self.azure_ai_project,
credential=credential,
risk_categories=[RiskCategory.Sexual, RiskCategory.HateUnfairness],
num_objectives=2
)
# Define a simple callback function
def callback(query: str) -> str:
return "I'm a content moderation assistant. I help identify inappropriate content."
# Run a data-only scan (without evaluations)
results = await agent.scan(
target=callback,
scan_name="Data-Only-Test",
attack_strategies=[AttackStrategy.Morse, AttackStrategy.Leetspeak],
application_scenario="A content moderation system",
data_only=True # Only collect conversation data without evaluations
)
# Access the collected conversation data
conversations = results.scan_result
print(f"Collected {len(conversations) if conversations else 0} conversations without evaluation")
# [END red_team_data_only]
return results
async def output_path_example(self):
"""
This example demonstrates how to specify a custom output path for saving scan results.
It shows how to create a timestamped directory and save the results to a specific
location for later analysis.
"""
# [START red_team_output_path]
import os
from datetime import datetime
from azure.ai.evaluation.red_team import (
RedTeam,
AttackStrategy,
RiskCategory
)
from azure.identity import DefaultAzureCredential
# Initialize Red Team
azure_ai_project = {
"subscription_id": os.environ.get("AZURE_SUBSCRIPTION_ID"),
"resource_group_name": os.environ.get("AZURE_RESOURCE_GROUP_NAME"),
"project_name": os.environ.get("AZURE_PROJECT_NAME"),
}
credential = DefaultAzureCredential()
agent = RedTeam(
azure_ai_project=self.azure_ai_project,
credential=credential,
risk_categories=[RiskCategory.HateUnfairness, RiskCategory.Violence],
num_objectives=2
)
# Create a timestamp-based output directory
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_dir = f"redteam_results_{timestamp}"
os.makedirs(output_dir, exist_ok=True)
output_path = os.path.join(output_dir, "redteam_results.json")
# Define a simple callback function
def callback(query: str) -> str:
return "I'm an educational assistant designed to help with learning."
# Run a scan with custom output path
results = await agent.scan(
target=callback,
scan_name="Output-Path-Test",
attack_strategies=[AttackStrategy.AsciiArt, AttackStrategy.Binary],
application_scenario="An educational assistant for students",
output_path=output_path # Specify where to save results
)
print(f"Results saved to: {output_path}")
# [END red_team_output_path]
return results
async def custom_application_example(self):
"""
This example demonstrates testing a more complex custom application with built-in
content moderation capabilities. It shows how to create and test a more sophisticated
target with its own guardrails and conversation tracking.
"""
# [START red_team_custom_application]
from azure.ai.evaluation.red_team import (
RedTeam,
AttackStrategy,
RiskCategory
)
from azure.identity import DefaultAzureCredential
# Initialize Red Team
azure_ai_project = {
"subscription_id": os.environ.get("AZURE_SUBSCRIPTION_ID"),
"resource_group_name": os.environ.get("AZURE_RESOURCE_GROUP_NAME"),
"project_name": os.environ.get("AZURE_PROJECT_NAME"),
}
credential = DefaultAzureCredential()
agent = RedTeam(
azure_ai_project=self.azure_ai_project,
credential=credential,
risk_categories=[RiskCategory.HateUnfairness, RiskCategory.Violence],
num_objectives=2
)
# Define a more complex application with some guardrails
class ContentCreationAssistant:
def __init__(self):
self.banned_topics = ["violence", "hate", "harassment", "self-harm", "explicit"]
self.conversation_history = []
def check_content(self, text):
# Simple content filter (in reality, this would be more sophisticated)
for topic in self.banned_topics:
if topic in text.lower():
return False
return True
def generate_response(self, query):
# Store conversation history
self.conversation_history.append({"role": "user", "content": query})
# Check if content passes moderation
if not self.check_content(query):
response = "I'm sorry, I cannot assist with that type of content as it may violate content guidelines."
else:
response = "I'm a content creation assistant. I can help you draft blog posts and articles following ethical guidelines."
# Add response to history
self.conversation_history.append({"role": "assistant", "content": response})
return response
# Create an instance of the assistant
assistant = ContentCreationAssistant()
# Wrapper function for RedTeam
def content_assistant_callback(query):
return assistant.generate_response(query)
print()
# Run the scan with various attack strategies
results = await agent.scan(
target=content_assistant_callback,
scan_name="Content-Assistant-Test",
attack_strategies=[
AttackStrategy.EASY, # Easy complexity attacks
AttackStrategy.Jailbreak # Test jailbreak attempts
],
application_scenario="A content creation assistant for bloggers and writers"
)
print(f"Custom application test completed with {len(results.scan_result) if results.scan_result else 0} conversations")
# [END red_team_custom_application]
return results
async def pyrit_prompt_chat_target_example(self):
"""
This example demonstrates how to use Red Team with a PyRIT PromptChatTarget.
It shows integration with the PyRIT library for testing Azure OpenAI models using
the more sophisticated target interfaces provided by PyRIT.
"""
# [START red_team_pyrit_target]
from azure.ai.evaluation.red_team import (
RedTeam,
AttackStrategy,
RiskCategory
)
from azure.identity import DefaultAzureCredential
from pyrit.prompt_target import OpenAIChatTarget, PromptChatTarget
# Initialize Red Team
azure_ai_project = {
"subscription_id": os.environ.get("AZURE_SUBSCRIPTION_ID"),
"resource_group_name": os.environ.get("AZURE_RESOURCE_GROUP_NAME"),
"project_name": os.environ.get("AZURE_PROJECT_NAME"),
}
credential = DefaultAzureCredential()
agent = RedTeam(
azure_ai_project=self.azure_ai_project,
credential=credential,
risk_categories=[RiskCategory.SelfHarm, RiskCategory.HateUnfairness],
num_objectives=2
)
# Create a PyRIT PromptChatTarget for an Azure OpenAI model
# This could be any class that inherits from PromptChatTarget
chat_target = OpenAIChatTarget(
model_name=os.environ.get("AZURE_OPENAI_DEPLOYMENT"),
endpoint=os.environ.get("AZURE_OPENAI_ENDPOINT"),
api_key=os.environ.get("AZURE_OPENAI_KEY")
)
# Run a scan using the PyRIT PromptChatTarget directly
results = await agent.scan(
target=chat_target, # PyRIT PromptChatTarget instance
scan_name="PyRIT-Target-Test",
attack_strategies=[
AttackStrategy.Base64,
AttackStrategy.ROT13
],
application_scenario="A general-purpose AI assistant"
)
print(f"PyRIT target scan completed with {len(results.scan_result) if results.scan_result else 0} conversations")
# [END red_team_pyrit_target]
return results
async def run_samples():
"""Run all Red Team samples."""
print("Running Red Team samples...")
samples = RedTeamSamples()
# Uncomment the samples you want to run
sample_runners = [
samples.basic_callback_example(),
# samples.advanced_callback_example(),
# samples.direct_model_testing_example(),
# samples.strategy_complexity_levels_example(),
# samples.specific_attack_strategies_example(),
# samples.data_only_mode_example(),
# samples.output_path_example(),
# samples.custom_application_example(),
# samples.pyrit_prompt_chat_target_example(),
]
# Run the selected samples
await asyncio.gather(*sample_runners)
print("All samples completed!")
if __name__ == "__main__":
print("Azure AI Evaluation Red Team Samples")
print("==========================================")
print("Set the following environment variables before running:")
print(" AZURE_SUBSCRIPTION_ID")
print(" AZURE_RESOURCE_GROUP_NAME")
print(" AZURE_PROJECT_NAME")
print(" AZURE_OPENAI_ENDPOINT (for model testing examples)")
print(" AZURE_OPENAI_KEY (for model testing examples)")
print(" AZURE_OPENAI_DEPLOYMENT (for model testing examples)")
print("\nRunning samples...\n")
from dotenv import load_dotenv
load_dotenv()
# Run the async samples
asyncio.run(run_samples())
|