1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
# ---------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# ---------------------------------------------------------
import os
import pathlib
import pandas as pd
import pytest
from devtools_testutils import is_live
from openai.types.graders import StringCheckGrader
from azure.ai.evaluation import (
F1ScoreEvaluator,
evaluate,
AzureOpenAIGrader,
AzureOpenAILabelGrader,
AzureOpenAIStringCheckGrader,
AzureOpenAITextSimilarityGrader,
)
@pytest.fixture
def data_file():
data_path = os.path.join(pathlib.Path(__file__).parent.resolve(), "data")
return os.path.join(data_path, "evaluate_test_data.jsonl")
@pytest.mark.usefixtures("recording_injection", "recorded_test")
class TestAoaiEvaluation:
@pytest.mark.skipif(not is_live(), reason="AOAI recordings have bad recording scrubbing")
def test_evaluate_all_aoai_graders(self, model_config, data_file):
# create a normal evaluator for comparison
f1_eval = F1ScoreEvaluator()
## ---- Initialize specific graders ----
# Corresponds to https://github.com/openai/openai-python/blob/ed53107e10e6c86754866b48f8bd862659134ca8/src/openai/types/eval_text_similarity_grader.py#L11
sim_grader = AzureOpenAITextSimilarityGrader(
model_config=model_config,
evaluation_metric="fuzzy_match",
input="{{item.query}}",
name="similarity",
pass_threshold=1,
reference="{{item.query}}",
)
# Corresponds to https://github.com/openai/openai-python/blob/ed53107e10e6c86754866b48f8bd862659134ca8/src/openai/types/eval_string_check_grader_param.py#L10
string_grader = AzureOpenAIStringCheckGrader(
model_config=model_config,
input="{{item.query}}",
name="starts with what is",
operation="like",
reference="What is",
)
# Corresponds to https://github.com/openai/openai-python/blob/ed53107e10e6c86754866b48f8bd862659134ca8/src/openai/types/eval_create_params.py#L132
label_grader = AzureOpenAILabelGrader(
model_config=model_config,
input=[{"content": "{{item.query}}", "role": "user"}],
labels=["too short", "just right", "too long"],
passing_labels=["just right"],
model="gpt-4o",
name="label",
)
# ---- General Grader Initialization ----
# Define an string check grader config directly using the OAI SDK
oai_string_check_grader = StringCheckGrader(
input="{{item.query}}",
name="contains hello",
operation="like",
reference="hello",
type="string_check"
)
# Plug that into the general grader
general_grader = AzureOpenAIGrader(
model_config=model_config,
grader_config=oai_string_check_grader
)
evaluators = {
"f1_score": f1_eval,
"similarity": sim_grader,
"string_check": string_grader,
"label_model": label_grader,
"general_grader": general_grader,
}
# run the evaluation
result = evaluate(
data=data_file,
evaluators=evaluators,
_use_run_submitter_client=True
)
row_result_df = pd.DataFrame(result["rows"])
metrics = result["metrics"]
assert len(row_result_df.keys()) == 23
assert len(row_result_df["outputs.f1_score.f1_score"]) == 3
assert len(row_result_df["outputs.similarity.similarity_result"]) == 3
assert len(row_result_df["outputs.similarity.passed"]) == 3
assert len(row_result_df["outputs.similarity.score"]) == 3
assert len(row_result_df["outputs.similarity.sample"]) == 3
assert len(row_result_df["outputs.string_check.string_check_result"]) == 3
assert len(row_result_df["outputs.string_check.passed"]) == 3
assert len(row_result_df["outputs.string_check.score"]) == 3
assert len(row_result_df["outputs.string_check.sample"]) == 3
assert len(row_result_df["outputs.label_model.label_model_result"]) == 3
assert len(row_result_df["outputs.label_model.passed"]) == 3
assert len(row_result_df["outputs.label_model.score"]) == 3
assert len(row_result_df["outputs.label_model.sample"]) == 3
assert len(row_result_df["outputs.general_grader.general_grader_result"]) == 3
assert len(row_result_df["outputs.general_grader.passed"]) == 3
assert len(row_result_df["outputs.general_grader.score"]) == 3
assert len(row_result_df["outputs.general_grader.sample"]) == 3
assert len(metrics.keys()) == 11
assert metrics["f1_score.f1_score"] >= 0
assert metrics['f1_score.f1_score'] >= 0
assert metrics['f1_score.f1_threshold'] >= 0
assert metrics['f1_score.binary_aggregate'] >= 0
assert metrics['f1_score.prompt_tokens'] == 0
assert metrics['f1_score.completion_tokens'] == 0
assert metrics['f1_score.total_tokens'] == 0
assert metrics['f1_score.duration'] >= 0
assert metrics['similarity.pass_rate'] == 1.0
assert metrics['string_check.pass_rate'] == 0.3333333333333333
assert metrics['label_model.pass_rate'] >= 0
assert metrics['general_grader.pass_rate'] == 0.0
@pytest.mark.skipif(not is_live(), reason="AOAI recordings have bad recording scrubbing")
def test_evaluate_with_column_mapping_and_target(self, model_config, data_file):
sim_grader = AzureOpenAITextSimilarityGrader(
model_config=model_config,
evaluation_metric="fuzzy_match",
input="{{item.target_output}}",
name="similarity",
pass_threshold=1,
reference="{{item.query}}",
)
string_grader = AzureOpenAIStringCheckGrader(
model_config=model_config,
input="{{item.query}}",
name="starts with what is",
operation="like",
reference="What is",
)
def target(query: str):
return {"target_output": query}
evaluators = {
"similarity": sim_grader,
"string_check": string_grader,
}
evaluation_config = {
"similarity": {
"column_mapping": {
"query": "${data.query}", # test basic mapping
"target_output": "${target.target_output}",
},
},
"string_check": { # test mapping across value names
"column_mapping": {"query": "${target.target_output}"},
},
}
# run the evaluation
result = evaluate(
data=data_file,
evaluators=evaluators,
_use_run_submitter_client=True,
target=target,
evaluation_config=evaluation_config,
)
row_result_df = pd.DataFrame(result["rows"])
metrics = result["metrics"]
assert len(row_result_df.keys()) == 13
assert len(row_result_df["outputs.similarity.similarity_result"]) == 3
assert len(row_result_df["outputs.similarity.passed"]) == 3
assert len(row_result_df["outputs.similarity.score"]) == 3
assert len(row_result_df["outputs.similarity.sample"]) == 3
assert len(row_result_df["outputs.string_check.string_check_result"]) == 3
assert len(row_result_df["outputs.string_check.passed"]) == 3
assert len(row_result_df["outputs.string_check.score"]) == 3
assert len(row_result_df["outputs.string_check.sample"]) == 3
assert len(metrics.keys()) == 2
assert metrics['similarity.pass_rate'] == 1.0
assert metrics['string_check.pass_rate'] == 0.3333333333333333
|