File: test_evaluate.py

package info (click to toggle)
python-azure 20250603%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 851,724 kB
  • sloc: python: 7,362,925; ansic: 804; javascript: 287; makefile: 195; sh: 145; xml: 109
file content (502 lines) | stat: -rw-r--r-- 19,282 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
import json
import math
import os
import pathlib
import pandas as pd
import pytest
import requests
from ci_tools.variables import in_ci

from azure.ai.evaluation import (
    F1ScoreEvaluator,
    FluencyEvaluator,
    evaluate,
)
from azure.ai.evaluation._common.math import list_mean_nan_safe
from azure.ai.evaluation._azure._clients import LiteMLClient
from azure.ai.evaluation._constants import TokenScope


@pytest.fixture
def csv_file():
    data_path = os.path.join(pathlib.Path(__file__).parent.resolve(), "data")
    return os.path.join(data_path, "evaluate_test_data.csv")


@pytest.fixture
def data_file():
    data_path = os.path.join(pathlib.Path(__file__).parent.resolve(), "data")
    return os.path.join(data_path, "evaluate_test_data.jsonl")


@pytest.fixture
def questions_file():
    data_path = os.path.join(pathlib.Path(__file__).parent.resolve(), "data")
    return os.path.join(data_path, "questions.jsonl")


def answer_evaluator(response):
    return {"length": len(response)}


def answer_evaluator_int(response):
    return len(response)


def answer_evaluator_int_dict(response):
    return {42: len(response)}


def question_evaluator(query):
    return {"length": len(query)}


def _get_run_from_run_history(flow_run_id, azure_ml_client: LiteMLClient, project_scope):
    """Get run info from run history"""
    from azure.identity import DefaultAzureCredential

    token = "Bearer " + DefaultAzureCredential().get_token(TokenScope.DEFAULT_AZURE_MANAGEMENT).token
    headers = {
        "Authorization": token,
        "Content-Type": "application/json",
    }
    workspace = azure_ml_client.workspace_get_info(project_scope["project_name"])
    endpoint = (workspace.discovery_url or "").split("discovery")[0]
    pattern = (
        f"/subscriptions/{project_scope['subscription_id']}"
        f"/resourceGroups/{project_scope['resource_group_name']}"
        f"/providers/Microsoft.MachineLearningServices"
        f"/workspaces/{project_scope['project_name']}"
    )
    url = endpoint + "history/v1.0" + pattern + "/rundata"

    payload = {
        "runId": flow_run_id,
        "selectRunMetadata": True,
        "selectRunDefinition": True,
        "selectJobSpecification": True,
    }

    response = requests.post(url, headers=headers, json=payload)
    if response.status_code == 200:
        run = response.json()
        # if original_form is True, return the original run data from run history, mainly for test use
        return run
    elif response.status_code == 404:
        raise Exception(f"Run {flow_run_id!r} not found.")
    else:
        raise Exception(f"Failed to get run from service. Code: {response.status_code}, text: {response.text}")


@pytest.mark.usefixtures("recording_injection", "recorded_test")
@pytest.mark.localtest
class TestEvaluate:
    # Technically unit-test-able, but kept here due to file manipulation
    def test_evaluate_with_relative_data_path(self):
        original_working_dir = os.getcwd()

        try:
            working_dir = os.path.dirname(__file__)
            os.chdir(working_dir)

            data_file = "data/evaluate_test_data.jsonl"

            f1_score_eval = F1ScoreEvaluator()
            # run the evaluation with targets
            result = evaluate(
                data=data_file,
                evaluators={"f1": f1_score_eval},
            )
            row_result_df = pd.DataFrame(result["rows"])
            assert "outputs.f1.f1_score" in row_result_df.columns
            assert not any(math.isnan(f1) for f1 in row_result_df["outputs.f1.f1_score"])
        finally:
            os.chdir(original_working_dir)

    # @pytest.mark.performance_test
    @pytest.mark.skip(reason="Temporary skip to merge 37201, will re-enable in subsequent pr")
    def test_evaluate_with_async_enabled_evaluator(self, model_config, data_file):
        os.environ["AI_EVALS_BATCH_USE_ASYNC"] = "true"
        fluency_eval = FluencyEvaluator(model_config)

        start_time = time.time()
        result = evaluate(
            data=data_file,
            evaluators={
                "fluency": fluency_eval,
            },
        )
        end_time = time.time()
        duration = end_time - start_time

        row_result_df = pd.DataFrame(result["rows"])
        metrics = result["metrics"]

        # validate the results
        assert result is not None
        assert result["rows"] is not None
        input_data = pd.read_json(data_file, lines=True)
        assert row_result_df.shape[0] == len(input_data)
        assert "outputs.fluency.fluency" in row_result_df.columns.to_list()
        assert "fluency.fluency" in metrics.keys()
        assert duration < 10, f"evaluate API call took too long: {duration} seconds"
        os.environ.pop("AI_EVALS_BATCH_USE_ASYNC")

    @pytest.mark.parametrize(
        "function,column",
        [
            (answer_evaluator, "length"),
            (answer_evaluator_int, "output"),
            (answer_evaluator_int_dict, "42"),
        ],
    )
    @pytest.mark.parametrize("use_pf_client", [True, False])
    def test_evaluate_python_function(self, data_file, use_pf_client, function, column):
        # data
        input_data = pd.read_json(data_file, lines=True)

        # run the evaluation
        result = evaluate(data=data_file, evaluators={"answer": function}, _use_pf_client=use_pf_client)

        row_result_df = pd.DataFrame(result["rows"])
        metrics = result["metrics"]

        # validate the results
        assert result is not None
        assert result["rows"] is not None
        assert row_result_df.shape[0] == len(input_data)

        out_column = f"outputs.answer.{column}"
        metric = f"answer.{column}"
        assert out_column in row_result_df.columns.to_list()
        assert metric in metrics.keys()
        assert metrics.get(metric) == list_mean_nan_safe(row_result_df[out_column])
        assert row_result_df[out_column][2] == 31

    def test_evaluate_with_target(self, questions_file, run_from_temp_dir):
        """Test evaluation with target function."""
        # We cannot define target in this file as pytest will load
        # all modules in test folder and target_fn will be imported from the first
        # module named test_evaluate and it will be a different module in unit test
        # folder. By keeping function in separate file we guarantee, it will be loaded
        # from there.
        from .target_fn import target_fn

        f1_score_eval = F1ScoreEvaluator()
        # run the evaluation with targets
        result = evaluate(
            data=questions_file,
            target=target_fn,
            evaluators={"answer": answer_evaluator, "f1": f1_score_eval},
        )
        row_result_df = pd.DataFrame(result["rows"])
        assert "outputs.response" in row_result_df.columns
        assert "outputs.answer.length" in row_result_df.columns
        assert list(row_result_df["outputs.answer.length"]) == [28, 76, 22]
        assert "outputs.f1.f1_score" in row_result_df.columns
        assert not any(math.isnan(f1) for f1 in row_result_df["outputs.f1.f1_score"])

    # TODO move to unit test, rename to column mapping focus
    @pytest.mark.parametrize(
        "evaluation_config",
        [
            None,
            {"default": {}},
            {"default": {}, "question_ev": {}},
            {"default": {"column_mapping": {"query": "${target.query}"}}},
            {"default": {"column_mapping": {"query": "${data.query}"}}},
            {"default": {}, "question_ev": {"column_mapping": {"query": "${data.query}"}}},
            {"default": {}, "question_ev": {"column_mapping": {"query": "${target.query}"}}},
            {"default": {}, "question_ev": {"column_mapping": {"another_question": "${target.query}"}}},
            {"default": {"column_mapping": {"another_question": "${target.query}"}}},
        ],
    )
    def test_evaluate_another_questions(self, questions_file, evaluation_config, run_from_temp_dir):
        """Test evaluation with target function."""
        from .target_fn import target_fn3

        # run the evaluation with targets
        result = evaluate(
            target=target_fn3,
            data=questions_file,
            evaluators={
                "question_ev": question_evaluator,
            },
            evaluator_config=evaluation_config,
        )
        row_result_df = pd.DataFrame(result["rows"])
        assert "outputs.response" in row_result_df.columns
        assert "inputs.query" in row_result_df.columns
        assert "outputs.query" in row_result_df.columns
        assert "outputs.question_ev.length" in row_result_df.columns
        query = "outputs.query"

        mapping = None
        if evaluation_config:
            config = evaluation_config.get("question_ev", evaluation_config.get("default", None))
            mapping = config.get("column_mapping", config)
        if mapping and ("another_question" in mapping or mapping["query"] == "${data.query}"):
            query = "inputs.query"
        expected = list(row_result_df[query].str.len())
        assert expected == list(row_result_df["outputs.question_ev.length"])

    @pytest.mark.parametrize(
        "evaluate_config",
        [
            (
                {
                    "f1_score": {
                        "column_mapping": {
                            "response": "${data.context}",
                            "ground_truth": "${data.ground_truth}",
                        }
                    },
                    "answer": {
                        "column_mapping": {
                            "response": "${target.response}",
                        }
                    },
                }
            ),
            (
                {
                    "default": {
                        "column_mapping": {
                            "response": "${target.response}",
                            "ground_truth": "${data.ground_truth}",
                        }
                    },
                }
            ),
        ],
    )
    def test_evaluate_with_evaluator_config(self, questions_file, evaluate_config, run_from_temp_dir):
        input_data = pd.read_json(questions_file, lines=True)
        from .target_fn import target_fn2

        # run the evaluation
        result = evaluate(
            data=questions_file,
            target=target_fn2,
            evaluators={"f1_score": F1ScoreEvaluator(), "answer": answer_evaluator},
            evaluator_config=evaluate_config,
        )

        row_result_df = pd.DataFrame(result["rows"])
        metrics = result["metrics"]

        # validate the results
        assert result is not None
        assert result["rows"] is not None
        assert row_result_df.shape[0] == len(input_data)

        assert "outputs.answer.length" in row_result_df.columns.to_list()
        assert "outputs.f1_score.f1_score" in row_result_df.columns.to_list()

        assert "answer.length" in metrics.keys()
        assert "f1_score.f1_score" in metrics.keys()

    @pytest.mark.skipif(in_ci(), reason="This test fails in CI and needs to be investigate. Bug: 3458432")
    @pytest.mark.azuretest
    def test_evaluate_track_in_cloud(
        self,
        questions_file,
        azure_ml_client,
        mock_trace_destination_to_cloud,
        project_scope,
    ):
        """Test evaluation with target function."""
        # We cannot define target in this file as pytest will load
        # all modules in test folder and target_fn will be imported from the first
        # module named test_evaluate and it will be a different module in unit test
        # folder. By keeping function in separate file we guarantee, it will be loaded
        # from there.
        # os.environ["AZURE_TEST_RUN_LIVE"] = "True"
        from .target_fn import target_fn

        f1_score_eval = F1ScoreEvaluator()
        evaluation_name = "test_evaluate_track_in_cloud"
        # run the evaluation with targets
        result = evaluate(
            # azure_ai_project=project_scope,
            evaluation_name=evaluation_name,
            data=questions_file,
            target=target_fn,
            evaluators={"answer": answer_evaluator, "f1": f1_score_eval},
        )
        row_result_df = pd.DataFrame(result["rows"])

        assert "outputs.answer.length" in row_result_df.columns
        assert list(row_result_df["outputs.answer.length"]) == [28, 76, 22]
        assert "outputs.f1.f1_score" in row_result_df.columns
        assert not any(math.isnan(f1) for f1 in row_result_df["outputs.f1.f1_score"])
        assert result["studio_url"] is not None

        # get remote run and validate if it exists
        run_id = result["studio_url"].split("?")[0].split("/")[5]
        remote_run = _get_run_from_run_history(run_id, azure_ml_client, project_scope)

        assert remote_run is not None
        assert remote_run["runMetadata"]["properties"]["runType"] == "eval_run"
        assert remote_run["runMetadata"]["properties"]["_azureml.evaluation_run"] == "promptflow.BatchRun"
        assert remote_run["runMetadata"]["displayName"] == evaluation_name

    @pytest.mark.skipif(in_ci(), reason="This test fails in CI and needs to be investigate. Bug: 3458432")
    @pytest.mark.azuretest
    def test_evaluate_track_in_cloud_no_target(
        self,
        data_file,
        azure_ml_client,
        mock_trace_destination_to_cloud,
        project_scope,
    ):
        # data
        input_data = pd.read_json(data_file, lines=True)

        f1_score_eval = F1ScoreEvaluator()
        evaluation_name = "test_evaluate_track_in_cloud_no_target"

        # run the evaluation
        result = evaluate(
            # azure_ai_project=project_scope,
            evaluation_name=evaluation_name,
            data=data_file,
            evaluators={"f1_score": f1_score_eval},
        )

        row_result_df = pd.DataFrame(result["rows"])
        metrics = result["metrics"]

        # validate the results
        assert result is not None
        assert result["rows"] is not None
        assert row_result_df.shape[0] == len(input_data)
        assert "outputs.f1_score.f1_score" in row_result_df.columns.to_list()
        assert "f1_score.f1_score" in metrics.keys()
        assert metrics.get("f1_score.f1_score") == list_mean_nan_safe(row_result_df["outputs.f1_score.f1_score"])
        assert row_result_df["outputs.f1_score.f1_score"][2] == 1
        assert result["studio_url"] is not None

        # get remote run and validate if it exists
        run_id = result["studio_url"].split("?")[0].split("/")[5]
        remote_run = _get_run_from_run_history(run_id, azure_ml_client, project_scope)

        assert remote_run is not None
        assert remote_run["runMetadata"]["properties"]["runType"] == "eval_run"
        assert remote_run["runMetadata"]["properties"]["_azureml.evaluation_run"] == "promptflow.BatchRun"
        assert remote_run["runMetadata"]["displayName"] == evaluation_name

    @pytest.mark.parametrize(
        "return_json, aggregate_return_json",
        [
            (True, True),
            (True, False),
            (False, True),
            (False, False),
        ],
    )
    def test_evaluate_aggregation_with_threadpool(self, data_file, return_json, aggregate_return_json):
        from .custom_evaluators.answer_length_with_aggregation import AnswerLength

        result = evaluate(
            data=data_file,
            evaluators={
                "answer_length": AnswerLength(return_json=return_json, aggregate_return_json=aggregate_return_json),
                "f1_score": F1ScoreEvaluator(),
            },
        )
        assert result is not None
        assert "metrics" in result
        if aggregate_return_json:
            assert "answer_length.median" in result["metrics"].keys()

    @pytest.mark.parametrize(
        "return_json, aggregate_return_json",
        [
            (True, True),
            (True, False),
            (False, True),
            (False, False),
        ],
    )
    def test_evaluate_aggregation(self, data_file, return_json, aggregate_return_json):
        from .custom_evaluators.answer_length_with_aggregation import AnswerLength

        result = evaluate(
            data=data_file,
            evaluators={
                "answer_length": AnswerLength(return_json=return_json, aggregate_return_json=aggregate_return_json),
                "f1_score": F1ScoreEvaluator(),
            },
        )
        assert result is not None
        assert "metrics" in result
        if aggregate_return_json:
            assert "answer_length.median" in result["metrics"].keys()

    @pytest.mark.skip(reason="TODO: Add test back")
    def test_prompty_with_threadpool_implementation(self):
        pass

    def test_evaluate_with_csv_data(self, csv_file, data_file):
        def remove_whitespace(s):
            import re

            return re.sub(r"\s+", "", s)

        # load identical data files in different formats
        jsonl_input_data = pd.read_json(data_file, lines=True)
        csv_input_data = pd.read_csv(csv_file)

        # create evaluator
        f1_score_eval = F1ScoreEvaluator()

        # run the evaluation on jsonl data
        jsonl_result = evaluate(
            data=data_file,
            evaluators={"f1_score": f1_score_eval},
        )

        jsonl_row_result_df = pd.DataFrame(jsonl_result["rows"])
        jsonl_metrics = jsonl_result["metrics"]

        # run the evaluation on csv data
        csv_result = evaluate(
            data=csv_file,
            evaluators={"f1_score": f1_score_eval},
        )

        csv_row_result_df = pd.DataFrame(csv_result["rows"])
        csv_metrics = csv_result["metrics"]

        # validate the results
        assert jsonl_result["metrics"] == csv_result["metrics"]
        assert jsonl_result["rows"][0]["inputs.context"] == csv_result["rows"][0]["inputs.context"]
        assert jsonl_result["rows"][0]["inputs.query"] == csv_result["rows"][0]["inputs.query"]
        assert jsonl_result["rows"][0]["inputs.ground_truth"] == csv_result["rows"][0]["inputs.ground_truth"]
        assert remove_whitespace(jsonl_result["rows"][0]["inputs.response"]) == remove_whitespace(
            csv_result["rows"][0]["inputs.response"]
        )
        assert (
            jsonl_row_result_df.shape[0] == len(jsonl_input_data) == csv_row_result_df.shape[0] == len(csv_input_data)
        )

        assert "outputs.f1_score.f1_score" in jsonl_row_result_df.columns.to_list()
        assert "outputs.f1_score.f1_score" in csv_row_result_df.columns.to_list()

        assert "f1_score.f1_score" in jsonl_metrics.keys()
        assert "f1_score.f1_score" in csv_metrics.keys()

        assert jsonl_metrics.get("f1_score.f1_score") == list_mean_nan_safe(
            jsonl_row_result_df["outputs.f1_score.f1_score"]
        )
        assert csv_metrics.get("f1_score.f1_score") == list_mean_nan_safe(
            csv_row_result_df["outputs.f1_score.f1_score"]
        )

        assert (
            jsonl_row_result_df["outputs.f1_score.f1_score"][2]
            == csv_row_result_df["outputs.f1_score.f1_score"][2]
            == 1
        )
        assert jsonl_result["studio_url"] == csv_result["studio_url"] == None