1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
# ---------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# ---------------------------------------------------------
import pytest
import re
from collections import defaultdict
from os import path
from pathlib import Path
from typing import Any, AsyncGenerator, DefaultDict, Dict, Final, Mapping, Optional, cast
from openai.types.chat import ChatCompletion
from azure.ai.evaluation._legacy.prompty import AsyncPrompty, InvalidInputError
from azure.ai.evaluation import AzureOpenAIModelConfiguration
PROMPTY_TEST_DIR: Final[Path] = Path(path.dirname(__file__), "data").resolve()
EVALUATOR_ROOT_DIR: Final[Path] = Path(path.dirname(__file__), "../../azure/ai/evaluation/_evaluators").resolve()
BASIC_PROMPTY: Final[Path] = PROMPTY_TEST_DIR / "basic.prompty"
IMAGE_PROMPTY: Final[Path] = PROMPTY_TEST_DIR / "image.prompty"
JSON_PROMPTY: Final[Path] = PROMPTY_TEST_DIR / "json.prompty"
COHERENCE_PROMPTY: Final[Path] = EVALUATOR_ROOT_DIR / "_coherence" / "coherence.prompty"
def recursive_defaultdict():
return defaultdict(recursive_defaultdict)
@pytest.fixture()
def prompty_config(model_config: AzureOpenAIModelConfiguration) -> DefaultDict[str, Any]:
cloned_model: Dict[str, Any] = defaultdict(recursive_defaultdict)
cloned_model.update({"type": "azure_openai", **model_config})
config: DefaultDict[str, Any] = defaultdict(recursive_defaultdict)
config["model"]["configuration"] = cloned_model
return config
@pytest.mark.usefixtures("recording_injection", "recorded_test")
class TestPrompty:
def test_load_basic(self, prompty_config: Dict[str, Any]):
expected_prompt: Final[str] = (
"[{'role': 'system', 'content': 'You are an AI assistant who helps people find information.\\nAs the assistant, you answer questions briefly, succinctly,\\nand in a personable manner using markdown and even add some personal flair with appropriate emojis.\\n\\n# Safety\\n- You **should always** reference factual statements to search results based on [relevant documents]\\n- Search results based on [relevant documents] may be incomplete or irrelevant. You do not make assumptions\\n# Customer\\nYou are helping Bob Doh to find answers to their questions.\\nUse their name to address them in your responses.'}, {'role': 'user', 'content': 'What is the answer?'}]"
)
prompty = AsyncPrompty(BASIC_PROMPTY, **prompty_config)
assert prompty
assert isinstance(prompty, AsyncPrompty)
assert prompty.name == "Basic Prompt"
assert prompty.description == "A basic prompt that uses the GPT-3 chat API to answer questions"
assert {"firstName", "lastName", "question"} == {k for k, _ in prompty._data.get("inputs", {}).items()}
rendered = prompty.render(firstName="Bob", question="What is the answer?")
assert str(rendered) == expected_prompt
def test_load_images(self, prompty_config: Dict[str, Any]):
prompty = AsyncPrompty(IMAGE_PROMPTY, **prompty_config)
assert prompty
assert isinstance(prompty, AsyncPrompty)
assert prompty.name == "Basic Prompt with Image"
assert prompty.description == "A basic prompt that uses the GPT-3 chat API to answer questions"
assert {"question", "image"} == {k for k, _ in prompty._data.get("inputs", {}).items()}
rendered = prompty.render(question="What is this a picture of?")
assert rendered[0]["role"] == "system"
assert (
rendered[0]["content"]
== "As an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\nDirectly give the answer, no more explanation is needed."
)
assert rendered[1]["role"] == "user"
assert len(rendered[1]["content"]) == 2
assert rendered[1]["content"][0]["type"] == "text"
assert rendered[1]["content"][0]["text"] == "What is this a picture of?"
assert rendered[1]["content"][1]["type"] == "image_url"
assert cast(str, rendered[1]["content"][1]["image_url"]["url"]).startswith(
""
)
assert rendered[1]["content"][1]["image_url"]["detail"] == "auto"
@pytest.mark.asyncio
async def test_first_match_text(self, prompty_config: Dict[str, Any]):
prompty = AsyncPrompty(COHERENCE_PROMPTY, **prompty_config)
result = await prompty(query="What is the capital of France?", response="France capital Paris")
# We expect an output string that contains <S0>chain of thoughts</S0> <S1>explanation<S1> <S2>int_score</S2>
assert isinstance(result, str)
matched = re.match(
r"^\s*<S0>(.*)</S0>\s*<S1>(.*)</S1>\s*<S2>(.*)</S2>\s*$",
result,
re.MULTILINE | re.DOTALL,
)
assert matched
assert isinstance(matched.group(1), str)
assert isinstance(matched.group(2), str)
score: int = int(matched.group(3))
assert score >= 0 and score <= 5
@pytest.mark.asyncio
async def test_first_match_image(self, prompty_config: Dict[str, Any]):
prompty = AsyncPrompty(IMAGE_PROMPTY, **prompty_config)
result = await prompty(image="image1.jpg", question="What is this a picture of?")
assert isinstance(result, str)
assert "apple" in result.lower()
@pytest.mark.asyncio
async def test_first_match_text_streaming(self, prompty_config: Dict[str, Any]):
prompty_config["model"]["parameters"]["stream"] = True
prompty = AsyncPrompty(BASIC_PROMPTY, **prompty_config)
result = await prompty(firstName="Bob", question="What is the capital of France?")
assert isinstance(result, AsyncGenerator)
combined = ""
async for chunk in result:
assert isinstance(chunk, str)
combined += chunk
assert "Paris" in combined
assert "Bob" in combined
@pytest.mark.asyncio
async def test_first_match_image_streaming(self, prompty_config: Dict[str, Any]):
prompty_config["model"]["parameters"]["stream"] = True
prompty = AsyncPrompty(IMAGE_PROMPTY, **prompty_config)
result = await prompty(image="image1.jpg", question="What is this a picture of?")
assert isinstance(result, AsyncGenerator)
combined = ""
async for chunk in result:
assert isinstance(chunk, str)
combined += chunk
assert "apple" in combined
@pytest.mark.asyncio
@pytest.mark.parametrize(
"outputs",
[
{},
{"firstName": {"type": "str"}, "answer": {"type": "str"}},
],
)
async def test_first_match_text_json(self, prompty_config: Dict[str, Any], outputs: Mapping[str, Any]):
prompty_config["outputs"] = outputs
prompty = AsyncPrompty(JSON_PROMPTY, **prompty_config)
result = await prompty(question="What is the capital of France?")
assert isinstance(result, Mapping)
assert "firstName" in result
assert result["firstName"] == "John"
assert "answer" in result
assert "Paris" in result["answer"]
if outputs:
# Should ahve only first name, and answer
assert "lastName" not in result
else:
assert "lastName" in result
assert result["lastName"] == "Doh"
@pytest.mark.asyncio
async def test_first_match_text_json_missing(self, prompty_config: Dict[str, Any]):
prompty_config["outputs"] = {"does_not_exist": {"type": "str"}}
prompty = AsyncPrompty(JSON_PROMPTY, **prompty_config)
with pytest.raises(InvalidInputError) as ex:
await prompty(question="What is the capital of France?")
assert "does_not_exist" in ex.value.message
@pytest.mark.asyncio
async def test_first_match_text_json_streaming(self, prompty_config: Dict[str, Any]):
prompty_config["model"]["parameters"]["stream"] = True
prompty = AsyncPrompty(JSON_PROMPTY, **prompty_config)
result = await prompty(question="What is the capital of France?", firstName="Barbra", lastName="Streisand")
assert isinstance(result, Mapping)
assert result["firstName"] == "Barbra"
assert result["lastName"] == "Streisand"
assert "Paris" in result["answer"]
@pytest.mark.asyncio
async def test_full_text(self, prompty_config: Dict[str, Any]):
prompty_config["model"]["response"] = "full"
prompty = AsyncPrompty(BASIC_PROMPTY, **prompty_config)
result = await prompty(firstName="Bob", question="What is the capital of France?")
assert isinstance(result, ChatCompletion)
response: str = result.choices[0].message.content or ""
assert "Bob" in response
assert "Paris" in response
|