1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
from unittest.mock import MagicMock
import pytest
from azure.ai.evaluation._exceptions import EvaluationException
from azure.ai.evaluation import FluencyEvaluator, SimilarityEvaluator, RetrievalEvaluator, RelevanceEvaluator
async def quality_response_async_mock():
return (
"<S0>Let's think step by step: The response 'Honolulu' is a single word. "
"It does not form a complete sentence, lacks grammatical structure, and does not "
"convey any clear idea or message. It is not possible to assess vocabulary range, "
"sentence complexity, coherence, or overall readability from a single word. Therefore,"
"it falls into the category of minimal command of the language.</S0>"
"<S1>The response is a single word and does not provide any meaningful content to evaluate"
" fluency. It is largely incomprehensible and does not meet the criteria for higher fluency "
"levels.</S1><S2>1</S2>"
)
async def quality_no_response_async_mock():
return "1"
@pytest.mark.usefixtures("mock_model_config")
@pytest.mark.unittest
class TestBuiltInEvaluators:
def test_fluency_evaluator(self, mock_model_config):
fluency_eval = FluencyEvaluator(model_config=mock_model_config)
fluency_eval._flow = MagicMock(return_value=quality_response_async_mock())
score = fluency_eval(response="The capital of Japan is Tokyo.")
assert score is not None
assert score["fluency"] == score["gpt_fluency"] == 1
def test_fluency_evaluator_non_string_inputs(self, mock_model_config):
fluency_eval = FluencyEvaluator(model_config=mock_model_config)
fluency_eval._flow = MagicMock(return_value=quality_response_async_mock())
score = fluency_eval(response={"bar": "2"})
assert score is not None
assert score["fluency"] == score["gpt_fluency"] == 1
def test_fluency_evaluator_empty_string(self, mock_model_config):
fluency_eval = FluencyEvaluator(model_config=mock_model_config)
fluency_eval._flow = MagicMock(return_value=quality_response_async_mock())
with pytest.raises(EvaluationException) as exc_info:
fluency_eval(response=None)
assert (
"FluencyEvaluator: Either 'conversation' or individual inputs must be provided." in exc_info.value.args[0]
)
def test_similarity_evaluator_keys(self, mock_model_config):
similarity_eval = SimilarityEvaluator(model_config=mock_model_config)
similarity_eval._flow = MagicMock(return_value=quality_no_response_async_mock())
result = similarity_eval(
query="What is the capital of Japan?",
response="The capital of Japan is Tokyo.",
ground_truth="Tokyo is Japan's capital, known for its blend of traditional culture and technological advancements.",
)
assert result["similarity"] == result["gpt_similarity"] == 1
# Updated assertion to expect 4 keys instead of 2
assert len(result) == 4
# Verify all expected keys are present
assert set(result.keys()) == {"similarity", "gpt_similarity", "similarity_result", "similarity_threshold"}
def test_retrieval_evaluator_keys(self, mock_model_config):
retrieval_eval = RetrievalEvaluator(model_config=mock_model_config)
retrieval_eval._flow = MagicMock(return_value=quality_response_async_mock())
result = retrieval_eval(
query="What is the value of 2 + 2?",
context="1 + 2 = 2",
)
assert result["retrieval"] == result["gpt_retrieval"] == 1
assert result["retrieval"] == result["gpt_retrieval"]
assert result["retrieval_reason"]
retrieval_eval = RetrievalEvaluator(model_config=mock_model_config)
retrieval_eval._flow = MagicMock(return_value=quality_response_async_mock())
conversation = {
"messages": [
{"role": "user", "content": "What is the value of 2 + 2?"},
{
"role": "assistant",
"content": "2 + 2 = 4",
"context": {
"citations": [
{"id": "math_doc.md", "content": "Information about additions: 1 + 2 = 3, 2 + 2 = 4"}
]
},
},
]
}
result = retrieval_eval(conversation=conversation)
assert result["retrieval"] == result["gpt_retrieval"] == 1
retrieval_eval = RetrievalEvaluator(model_config=mock_model_config)
retrieval_eval._flow = MagicMock(return_value=quality_response_async_mock())
conversation = {
"messages": [
{"role": "user", "content": "What is the value of 2 + 2?"},
{
"role": "assistant",
"content": "2 + 2 = 4",
"context": "Information about additions: 1 + 2 = 3, 2 + 2 = 4",
},
]
}
result = retrieval_eval(conversation=conversation)
assert result["retrieval"] == result["gpt_retrieval"] == 1
def test_quality_evaluator_missing_input(self, mock_model_config):
"""All evaluators that inherit from EvaluatorBase are covered by this test"""
quality_eval = RetrievalEvaluator(model_config=mock_model_config)
quality_eval._flow = MagicMock(return_value=quality_response_async_mock())
with pytest.raises(EvaluationException) as exc_info:
quality_eval(response="The capital of Japan is Tokyo.") # Retrieval requires query and context
assert (
"RetrievalEvaluator: Either 'conversation' or individual inputs must be provided." in exc_info.value.args[0]
)
|