1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
# ---------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# ---------------------------------------------------------
import pytest
import os
import json
import pathlib
import random
from azure.ai.evaluation import evaluate
from azure.ai.evaluation._exceptions import EvaluationException
from azure.ai.evaluation._evaluators._document_retrieval import (
DocumentRetrievalEvaluator,
RetrievalGroundTruthDocument,
RetrievedDocument
)
def _get_file(name):
"""Get the file from the unittest data folder."""
data_path = os.path.join(pathlib.Path(__file__).parent.resolve(), "data")
return os.path.join(data_path, name)
@pytest.fixture()
def doc_retrieval_eval_data():
filename = _get_file("beir_document_retrieval_evaluation.jsonl")
records = []
with open(filename) as f:
records.extend(
[json.loads(x) for x in f.readlines()]
)
return filename, records
@pytest.fixture()
def bad_doc_retrieval_eval_data():
filename = _get_file("bad_input_document_retrieval_evaluation.jsonl")
records = []
with open(filename) as f:
records.extend(
[json.loads(x) for x in f.readlines()]
)
return filename, records
def test_success(doc_retrieval_eval_data):
_, records = doc_retrieval_eval_data
evaluator = DocumentRetrievalEvaluator(ground_truth_label_min=0, ground_truth_label_max=3)
for record in records:
result = evaluator(**record)
assert isinstance(result, dict)
assert "ndcg@3" in result
def test_groundtruth_min_gte_max():
expected_exception_msg = "The ground truth label maximum must be strictly greater than the ground truth label minimum."
with pytest.raises(EvaluationException) as exc_info:
DocumentRetrievalEvaluator(ground_truth_label_min=2, ground_truth_label_max=1)
assert expected_exception_msg in str(
exc_info._excinfo[1]
)
with pytest.raises(EvaluationException) as exc_info:
DocumentRetrievalEvaluator(ground_truth_label_max=0, ground_truth_label_min=0)
assert expected_exception_msg in str(
exc_info._excinfo[1]
)
def test_incorrect_groundtruth_min():
expected_exception_msg = ("A query relevance label less than the configured minimum value was detected in the evaluation input data. "
"Check the range of ground truth label values in the input data and set the value of ground_truth_label_min to "
"the appropriate value for your data.")
data_groundtruth_min = 0
configured_groundtruth_min = 1
groundtruth_docs = [
RetrievalGroundTruthDocument({"document_id": f"doc_{x}", "query_relevance_label": x}) for x in range(data_groundtruth_min, 5)
]
retrieved_docs = [
RetrievedDocument({"document_id": f"doc_{x}", "relevance_score": random.uniform(-10, 10)}) for x in range(data_groundtruth_min, 5)
]
evaluator = DocumentRetrievalEvaluator(ground_truth_label_min=configured_groundtruth_min, ground_truth_label_max=4)
with pytest.raises(EvaluationException) as exc_info:
evaluator(retrieval_ground_truth=groundtruth_docs, retrieved_documents=retrieved_docs)
assert expected_exception_msg in str(
exc_info._excinfo[1]
)
def test_incorrect_groundtruth_max():
expected_exception_msg = ("A query relevance label greater than the configured maximum value was detected in the evaluation input data. "
"Check the range of ground truth label values in the input data and set the value of ground_truth_label_max to "
"the appropriate value for your data.")
data_groundtruth_max = 5
configured_groundtruth_max = 4
groundtruth_docs = [
RetrievalGroundTruthDocument({"document_id": f"doc_{x}", "query_relevance_label": x}) for x in range(0, data_groundtruth_max + 1)
]
retrieved_docs = [
RetrievedDocument({"document_id": f"doc_{x}", "relevance_score": random.uniform(-10, 10)}) for x in range(0, data_groundtruth_max + 1)
]
evaluator = DocumentRetrievalEvaluator(ground_truth_label_min=0, ground_truth_label_max=configured_groundtruth_max)
with pytest.raises(EvaluationException) as exc_info:
evaluator(retrieval_ground_truth=groundtruth_docs, retrieved_documents=retrieved_docs)
assert expected_exception_msg in str(
exc_info._excinfo[1]
)
def test_thresholds(doc_retrieval_eval_data):
_, records = doc_retrieval_eval_data
record = records[-1]
custom_threshold_subset = {
"ndcg_threshold": 0.7,
"xdcg_threshold": 0.7,
"fidelity_threshold": 0.7,
}
custom_threshold_superset = {
"ndcg_threshold": 0.7,
"xdcg_threshold": 0.7,
"fidelity_threshold": 0.7,
"top1_relevance_threshold": 70,
"top3_max_relevance_threshold": 70,
"total_retrieved_documents_threshold": 10,
"total_ground_truth_documents_threshold": 10
}
for threshold in [custom_threshold_subset, custom_threshold_superset]:
evaluator = DocumentRetrievalEvaluator(ground_truth_label_min=0, ground_truth_label_max=2, **threshold)
results = evaluator(**record)
expected_keys = [
"ndcg@3", "ndcg@3_result", "ndcg@3_threshold", "ndcg@3_higher_is_better",
"xdcg@3", "xdcg@3_result", "xdcg@3_threshold", "xdcg@3_higher_is_better",
"fidelity", "fidelity_result", "fidelity_threshold", "fidelity_higher_is_better",
"top1_relevance", "top1_relevance_result", "top1_relevance_threshold", "top1_relevance_higher_is_better",
"top3_max_relevance", "top3_max_relevance_result", "top3_max_relevance_threshold", "top3_max_relevance_higher_is_better",
"total_retrieved_documents", "total_retrieved_documents_result", "total_retrieved_documents_threshold", "total_retrieved_documents_higher_is_better",
"total_ground_truth_documents", "total_ground_truth_documents_result", "total_ground_truth_documents_threshold", "total_ground_truth_documents_higher_is_better",
"holes", "holes_result", "holes_threshold", "holes_higher_is_better",
"holes_ratio", "holes_ratio_result", "holes_ratio_threshold", "holes_ratio_higher_is_better"
]
assert set(expected_keys) == set(results.keys())
def test_invalid_input(bad_doc_retrieval_eval_data):
filename, records = bad_doc_retrieval_eval_data
for record in records:
expected_exception_msg = record.pop("expected_exception")
with pytest.raises(EvaluationException) as exc_info:
evaluator = DocumentRetrievalEvaluator(ground_truth_label_min=0, ground_truth_label_max=2)
evaluator(**record)
assert expected_exception_msg in str(
exc_info._excinfo[1]
)
def test_qrels_results_limit():
groundtruth_docs = [
RetrievalGroundTruthDocument({"document_id": f"doc_{x}", "query_relevance_label": random.choice([0, 1, 2, 3, 4])}) for x in range(0, 10000)
]
retrieved_docs = [
RetrievedDocument({"document_id": f"doc_{x}", "relevance_score": random.uniform(-10, 10)}) for x in range(0, 10000)
]
evaluator = DocumentRetrievalEvaluator()
evaluator(retrieval_ground_truth=groundtruth_docs, retrieved_documents=retrieved_docs)
def test_qrels_results_exceeds_max_allowed():
expected_exception_msg = "'retrieval_ground_truth' and 'retrieved_documents' inputs should contain no more than 10000 items."
groundtruth_docs = [
RetrievalGroundTruthDocument({"document_id": f"doc_{x}", "query_relevance_label": random.choice([0, 1, 2, 3, 4])}) for x in range(0, 10001)
]
retrieved_docs = [
RetrievedDocument({"document_id": f"doc_{x}", "relevance_score": random.uniform(-10, 10)}) for x in range(0, 10001)
]
evaluator = DocumentRetrievalEvaluator()
with pytest.raises(EvaluationException) as exc_info:
evaluator(retrieval_ground_truth=groundtruth_docs, retrieved_documents=retrieved_docs)
assert expected_exception_msg in str(
exc_info._excinfo[1]
)
def test_no_retrieved_documents():
groundtruth_docs = [
RetrievalGroundTruthDocument({"document_id": f"doc_{x}", "query_relevance_label": random.choice([0, 1, 2, 3, 4])}) for x in range(0, 9)
]
retrieved_docs = []
evaluator = DocumentRetrievalEvaluator()
result = evaluator(retrieval_ground_truth=groundtruth_docs, retrieved_documents=retrieved_docs)
assert result["ndcg@3"] == 0
assert result["holes"] == 0
def test_no_labeled_retrieved_documents():
groundtruth_docs = [
RetrievalGroundTruthDocument({"document_id": f"doc_{x}", "query_relevance_label": random.choice([0, 1, 2, 3, 4])}) for x in range(0, 9)
]
retrieved_docs = [
RetrievedDocument({"document_id": f"doc_{x}_nolabel", "relevance_score": random.uniform(-10, 10)}) for x in range(0, 9)
]
evaluator = DocumentRetrievalEvaluator()
result = evaluator(retrieval_ground_truth=groundtruth_docs, retrieved_documents=retrieved_docs)
assert result["ndcg@3"] == 0
assert result["holes"] == len(retrieved_docs)
|