1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
|
from typing import List, Dict, Union
import json
import math
import os
import pathlib
import numpy as np
from unittest.mock import patch
import pandas as pd
import pytest
from pandas.testing import assert_frame_equal
import test
from azure.ai.evaluation._legacy._adapters.client import PFClient
from azure.ai.evaluation._common.math import list_mean
from azure.ai.evaluation import (
ContentSafetyEvaluator,
F1ScoreEvaluator,
GroundednessEvaluator,
SimilarityEvaluator,
ProtectedMaterialEvaluator,
evaluate,
ViolenceEvaluator,
SexualEvaluator,
SelfHarmEvaluator,
HateUnfairnessEvaluator,
)
from azure.ai.evaluation._constants import (
DEFAULT_EVALUATION_RESULTS_FILE_NAME,
_AggregationType,
EvaluationRunProperties
)
from azure.ai.evaluation._evaluate._evaluate import (
_aggregate_metrics,
_apply_target_to_data,
_rename_columns_conditionally,
)
from azure.ai.evaluation._evaluate._utils import _convert_name_map_into_property_entries
from azure.ai.evaluation._evaluate._utils import _apply_column_mapping, _trace_destination_from_project_scope
from azure.ai.evaluation._evaluators._eci._eci import ECIEvaluator
from azure.ai.evaluation._exceptions import EvaluationException
def _get_file(name):
"""Get the file from the unittest data folder."""
data_path = os.path.join(pathlib.Path(__file__).parent.resolve(), "data")
return os.path.join(data_path, name)
@pytest.fixture
def unsupported_file_type():
return _get_file("unsupported_file_type.txt")
@pytest.fixture
def missing_header_csv_file():
return _get_file("no_header_evaluate_test_data.csv")
@pytest.fixture
def invalid_jsonl_file():
return _get_file("invalid_evaluate_test_data.jsonl")
@pytest.fixture
def missing_columns_jsonl_file():
return _get_file("missing_columns_evaluate_test_data.jsonl")
@pytest.fixture
def evaluate_test_data_jsonl_file():
return _get_file("evaluate_test_data.jsonl")
@pytest.fixture
def evaluate_test_data_conversion_jsonl_file():
return _get_file("evaluate_test_data_conversation.jsonl")
@pytest.fixture
def evaluate_test_data_alphanumeric():
return _get_file("evaluate_test_data_alphanumeric.jsonl")
@pytest.fixture
def questions_file():
return _get_file("questions.jsonl")
@pytest.fixture
def questions_wrong_file():
return _get_file("questions_wrong.jsonl")
@pytest.fixture
def questions_answers_file():
return _get_file("questions_answers.jsonl")
@pytest.fixture
def questions_answers_basic_file():
return _get_file("questions_answers_basic.jsonl")
@pytest.fixture
def questions_answers_korean_file():
return _get_file("questions_answers_korean.jsonl")
@pytest.fixture
def restore_env_vars():
"""Fixture to restore environment variables after the test."""
original_vars = os.environ.copy()
yield
os.environ.clear()
os.environ.update(original_vars)
def _target_fn(query):
"""An example target function."""
if "LV-426" in query:
return {"response": "There is nothing good there."}
if "central heating" in query:
return {"response": "There is no central heating on the streets today, but it will be, I promise."}
if "strange" in query:
return {"response": "The life is strange..."}
def _yeti_evaluator(query, response):
if "yeti" in query.lower():
raise ValueError("Do not ask about Yeti!")
return {"result": len(response)}
def _target_fn2(query):
response = _target_fn(query)
response["query"] = f"The query is as follows: {query}"
return response
def _target_that_fails(query):
raise Exception("I am failing")
def _new_answer_target():
return {"response": "new response"}
def _question_override_target(query):
return {"query": "new query"}
def _question_answer_override_target(query, response):
return {"query": "new query", "response": "new response"}
@pytest.mark.usefixtures("mock_model_config")
@pytest.mark.unittest
class TestEvaluate:
def test_evaluate_evaluators_not_a_dict(self, mock_model_config, questions_file):
with pytest.raises(EvaluationException) as exc_info:
evaluate(
data=questions_file,
evaluators=[GroundednessEvaluator(model_config=mock_model_config)],
)
assert "The 'evaluators' parameter must be a dictionary." in exc_info.value.args[0]
def test_evaluate_invalid_data(self, mock_model_config):
with pytest.raises(EvaluationException) as exc_info:
evaluate(
data=123,
evaluators={"g": GroundednessEvaluator(model_config=mock_model_config)},
)
assert "The 'data' parameter must be a string or a path-like object." in exc_info.value.args[0]
def test_evaluate_data_not_exist(self, mock_model_config):
with pytest.raises(EvaluationException) as exc_info:
evaluate(
data="not_exist.jsonl",
evaluators={"g": GroundednessEvaluator(model_config=mock_model_config)},
)
assert "The input data file path 'not_exist.jsonl' does not exist." in exc_info.value.args[0]
def test_target_not_callable(self, mock_model_config, questions_file):
with pytest.raises(EvaluationException) as exc_info:
evaluate(
data=questions_file,
evaluators={"g": GroundednessEvaluator(model_config=mock_model_config)},
target="not_callable",
)
assert "The 'target' parameter must be a callable function." in exc_info.value.args[0]
def test_evaluate_invalid_jsonl_data(self, mock_model_config, invalid_jsonl_file):
with pytest.raises(EvaluationException) as exc_info:
evaluate(
data=invalid_jsonl_file,
evaluators={"g": GroundednessEvaluator(model_config=mock_model_config)},
)
assert "Unable to load data from " in exc_info.value.args[0]
assert "Supported formats are JSONL and CSV. Detailed error:" in exc_info.value.args[0]
def test_evaluate_missing_required_inputs(self, missing_columns_jsonl_file):
with pytest.raises(EvaluationException) as exc_info:
evaluate(
data=missing_columns_jsonl_file, evaluators={"g": F1ScoreEvaluator()}, fail_on_evaluator_errors=True
)
expected_message = "Either 'conversation' or individual inputs must be provided."
assert expected_message in exc_info.value.args[0]
# Same call without failure flag shouldn't produce an exception.
evaluate(data=missing_columns_jsonl_file, evaluators={"g": F1ScoreEvaluator()})
def test_evaluate_missing_required_inputs_target(self, questions_wrong_file):
with pytest.raises(EvaluationException) as exc_info:
evaluate(data=questions_wrong_file, evaluators={"g": F1ScoreEvaluator()}, target=_target_fn)
assert "Missing required inputs for target: ['query']." in exc_info.value.args[0]
def test_target_not_generate_required_columns(self, questions_file):
with pytest.raises(EvaluationException) as exc_info:
# target_fn will generate the "response", but not "ground_truth".
evaluate(
data=questions_file,
evaluators={"g": F1ScoreEvaluator()},
target=_target_fn,
fail_on_evaluator_errors=True,
)
expected_message = "Either 'conversation' or individual inputs must be provided."
assert expected_message in exc_info.value.args[0]
# Same call without failure flag shouldn't produce an exception.
evaluate(data=questions_file, evaluators={"g": F1ScoreEvaluator()}, target=_target_fn)
def test_target_raises_on_outputs(self):
"""Test we are raising exception if the output is column is present in the input."""
data = _get_file("questions_answers_outputs.jsonl")
with pytest.raises(EvaluationException) as cm:
evaluate(
data=data,
target=_target_fn,
evaluators={"g": F1ScoreEvaluator()},
)
assert 'The column cannot start from "__outputs." if target was defined.' in cm.value.args[0]
@pytest.mark.parametrize(
"input_file,out_file,expected_columns,fun",
[
("questions.jsonl", "questions_answers.jsonl", {"response"}, _target_fn),
(
"questions_ground_truth.jsonl",
"questions_answers_ground_truth.jsonl",
{"response", "query"},
_target_fn2,
),
],
)
@pytest.mark.skip(reason="Breaking CI by crashing pytest somehow")
def test_apply_target_to_data(self, pf_client, input_file, out_file, expected_columns, fun):
"""Test that target was applied correctly."""
data = _get_file(input_file)
expexted_out = _get_file(out_file)
initial_data = pd.read_json(data, lines=True)
qa_df, columns, _ = _apply_target_to_data(fun, data, pf_client, initial_data)
assert columns == expected_columns
ground_truth = pd.read_json(expexted_out, lines=True)
assert_frame_equal(qa_df, ground_truth, check_like=True)
@pytest.mark.skip(reason="Breaking CI by crashing pytest somehow")
def test_apply_column_mapping(self):
json_data = [
{
"query": "How are you?",
"ground_truth": "I'm fine",
}
]
inputs_mapping = {
"query": "${data.query}",
"response": "${data.ground_truth}",
}
data_df = pd.DataFrame(json_data)
new_data_df = _apply_column_mapping(data_df, inputs_mapping)
assert "query" in new_data_df.columns
assert "response" in new_data_df.columns
assert new_data_df["query"][0] == "How are you?"
assert new_data_df["response"][0] == "I'm fine"
@pytest.mark.parametrize(
"json_data,inputs_mapping,response",
[
(
[
{
"query": "How are you?",
"__outputs.response": "I'm fine",
}
],
{
"query": "${data.query}",
"response": "${run.outputs.response}",
},
"I'm fine",
),
(
[
{
"query": "How are you?",
"response": "I'm fine",
"__outputs.response": "I'm great",
}
],
{
"query": "${data.query}",
"response": "${run.outputs.response}",
},
"I'm great",
),
(
[
{
"query": "How are you?",
"response": "I'm fine",
"__outputs.response": "I'm great",
}
],
{
"query": "${data.query}",
"response": "${data.response}",
},
"I'm fine",
),
(
[
{
"query": "How are you?",
"response": "I'm fine",
"__outputs.response": "I'm great",
}
],
{
"query": "${data.query}",
"response": "${data.response}",
"another_response": "${run.outputs.response}",
},
"I'm fine",
),
(
[
{
"query": "How are you?",
"response": "I'm fine",
"__outputs.response": "I'm great",
}
],
{
"query": "${data.query}",
"response": "${run.outputs.response}",
"another_response": "${data.response}",
},
"I'm great",
),
(
[
{
"query": "How are you?",
"__outputs.response": "I'm fine",
"else": "Another column",
"else1": "Another column 1",
}
],
{
"query": "${data.query}",
"response": "${run.outputs.response}",
"else1": "${data.else}",
"else2": "${data.else1}",
},
"I'm fine",
),
],
)
def test_apply_column_mapping_target(self, json_data, inputs_mapping, response):
data_df = pd.DataFrame(json_data)
new_data_df = _apply_column_mapping(data_df, inputs_mapping)
assert "query" in new_data_df.columns
assert "response" in new_data_df.columns
assert new_data_df["query"][0] == "How are you?"
assert new_data_df["response"][0] == response
if "another_response" in inputs_mapping:
assert "another_response" in new_data_df.columns
assert new_data_df["another_response"][0] != response
if "else" in inputs_mapping:
assert "else1" in new_data_df.columns
assert new_data_df["else1"][0] == "Another column"
assert "else2" in new_data_df.columns
assert new_data_df["else2"][0] == "Another column 1"
@pytest.mark.parametrize(
"column_mapping",
[
{"query": "${foo.query}"},
{"query": "${data.query"},
{"query": "data.query", "response": "target.response"},
{"query": "${data.query}", "response": "${target.response.one}"},
],
)
def test_evaluate_invalid_column_mapping(self, mock_model_config, evaluate_test_data_jsonl_file, column_mapping):
# Invalid source reference
with pytest.raises(EvaluationException) as exc_info:
evaluate(
data=evaluate_test_data_jsonl_file,
evaluators={"g": GroundednessEvaluator(model_config=mock_model_config)},
evaluator_config={
"g": {
"column_mapping": column_mapping,
}
},
)
assert (
"Unexpected references detected in 'column_mapping'. Ensure only ${target.} and ${data.} are used."
in exc_info.value.args[0]
)
def test_evaluate_valid_column_mapping_with_numeric_chars(self, mock_model_config, evaluate_test_data_alphanumeric):
# Valid column mappings that include numeric characters
# This test validates the fix for the regex pattern that now accepts numeric characters
# Previous regex was `re.compile(r"^\$\{(target|data)\.[a-zA-Z_]+\}$")`
# New regex is `re.compile(r"^\$\{(target|data)\.[a-zA-Z0-9_]+\}$")`
column_mappings_with_numbers = {
"response": "${data.response123}",
"query": "${data.query456}",
"context": "${data.context789}"
} # This should not raise an exception with the updated regex for column mapping format validation
# The test passes if no exception about "Unexpected references" is raised
result = evaluate(
data=evaluate_test_data_alphanumeric,
evaluators={"g": GroundednessEvaluator(model_config=mock_model_config)},
evaluator_config={
"g": {
"column_mapping": column_mappings_with_numbers,
}
},
fail_on_evaluator_errors=False
)
# Verify that the test completed without errors related to column mapping format
# The test data has the fields with numeric characters, so it should work correctly
assert result is not None
# Verify we're getting data from the numerically-named fields
row_result_df = pd.DataFrame(result["rows"])
assert "inputs.response123" in row_result_df.columns
assert "inputs.query456" in row_result_df.columns
assert "inputs.context789" in row_result_df.columns
def test_renaming_column(self):
"""Test that the columns are renamed correctly."""
df = pd.DataFrame(
{
"just_column": ["just_column."],
"presnt_generated": ["Is present in data set."],
"__outputs.presnt_generated": ["This was generated by target."],
"__outputs.generated": ["Generaged by target"],
"outputs.before": ["Despite prefix this column was before target."],
}
)
df_expected = pd.DataFrame(
{
"inputs.just_column": ["just_column."],
"inputs.presnt_generated": ["Is present in data set."],
"outputs.presnt_generated": ["This was generated by target."],
"outputs.generated": ["Generaged by target"],
"inputs.outputs.before": ["Despite prefix this column was before target."],
}
)
df_actuals = _rename_columns_conditionally(df)
assert_frame_equal(df_actuals.sort_index(axis=1), df_expected.sort_index(axis=1))
def test_evaluate_output_dir_not_exist(self, mock_model_config, questions_file):
with pytest.raises(EvaluationException) as exc_info:
evaluate(
data=questions_file,
evaluators={"g": GroundednessEvaluator(model_config=mock_model_config)},
output_path="./not_exist_dir/output.jsonl",
)
assert "The output directory './not_exist_dir' does not exist." in exc_info.value.args[0]
@pytest.mark.parametrize("use_relative_path", [True, False])
def test_evaluate_output_path(self, evaluate_test_data_jsonl_file, tmpdir, use_relative_path):
# output_path is a file
if use_relative_path:
output_path = os.path.join(tmpdir, "eval_test_results.jsonl")
else:
output_path = "eval_test_results.jsonl"
result = evaluate(
data=evaluate_test_data_jsonl_file,
evaluators={"g": F1ScoreEvaluator()},
output_path=output_path,
)
assert result is not None
assert os.path.exists(output_path)
assert os.path.isfile(output_path)
with open(output_path, "r") as f:
content = f.read()
data_from_file = json.loads(content)
assert result["metrics"] == data_from_file["metrics"]
os.remove(output_path)
# output_path is a directory
result = evaluate(
data=evaluate_test_data_jsonl_file,
evaluators={"g": F1ScoreEvaluator()},
output_path=os.path.join(tmpdir),
)
with open(os.path.join(tmpdir, DEFAULT_EVALUATION_RESULTS_FILE_NAME), "r") as f:
content = f.read()
data_from_file = json.loads(content)
assert result["metrics"] == data_from_file["metrics"]
def test_evaluate_with_errors(self):
"""Test evaluate_handle_errors"""
data = _get_file("yeti_questions.jsonl")
result = evaluate(data=data, evaluators={"yeti": _yeti_evaluator})
result_df = pd.DataFrame(result["rows"])
expected = pd.read_json(data, lines=True)
expected.rename(columns={"query": "inputs.query", "response": "inputs.response"}, inplace=True)
expected["outputs.yeti.result"] = expected["inputs.response"].str.len()
expected.at[0, "outputs.yeti.result"] = math.nan
expected.at[2, "outputs.yeti.result"] = math.nan
expected.at[3, "outputs.yeti.result"] = math.nan
assert_frame_equal(expected, result_df)
@patch("azure.ai.evaluation._evaluate._evaluate._evaluate")
def test_evaluate_main_entry_guard(self, mock_evaluate, evaluate_test_data_jsonl_file):
err_msg = (
"An attempt has been made to start a new process before the\n "
"current process has finished its bootstrapping phase."
)
mock_evaluate.side_effect = RuntimeError(err_msg)
with pytest.raises(EvaluationException) as exc_info:
evaluate(
data=evaluate_test_data_jsonl_file,
evaluators={"f1_score": F1ScoreEvaluator()},
)
assert "Please ensure the evaluate API is properly guarded with the '__main__' block" in exc_info.value.args[0]
def test_get_trace_destination(self, mock_validate_trace_destination, mock_project_scope):
pf_client = PFClient()
trace_destination_without_override = pf_client._config.get_trace_destination()
pf_client = PFClient(
config={
"trace.destination": (
_trace_destination_from_project_scope(mock_project_scope) if mock_project_scope else None
)
}
)
trace_destination_with_override = pf_client._config.get_trace_destination()
assert trace_destination_with_override != trace_destination_without_override
assert trace_destination_with_override == _trace_destination_from_project_scope(mock_project_scope)
def test_content_safety_aggregation(self):
data = {
# 10 zeroes in a list fully written out
"content_safety.violence_score": [0, 0, 1, 2, 5, 5, 6, 7, np.nan, None],
"content_safety.sexual_score": [0, 0, 2, 3, 3, 3, 8, 8, np.nan, None],
"content_safety.self_harm_score": [0, 0, 0, 0, 1, 1, 1, 1, np.nan, None],
"content_safety.hate_unfairness_score": [0, 0, 1, 1, 2, 2, 3, 5, 6, 7],
"content_safety.violence": [
"low",
"low",
"low",
"low",
"high",
"high",
"high",
"high",
"high",
"high",
], # TODO DETERMINE ACTUAL BASED ON SCORES
"content_safety.sexual": ["low", "low", "low", "low", "low", "low", "high", "high", "high", "high"],
"content_safety.self_harm": ["low", "low", "low", "low", "low", "low", "low", "low", "high", "high"],
"content_safety.hate_unfairness": ["low", "low", "low", "low", "low", "low", "low", "low", "low", "high"],
"content_safety.violence_reason": ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j"],
"content_safety.sexual_reason": ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j"],
"content_safety.self_harm_reason": ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j"],
"content_safety.hate_unfairness_reason": ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j"],
}
data_df = pd.DataFrame(data)
evaluators = {
"content_safety": ContentSafetyEvaluator,
}
aggregation = _aggregate_metrics(data_df, evaluators)
assert len(aggregation) == 4
assert aggregation["content_safety.violence_defect_rate"] == 0.5
assert aggregation["content_safety.sexual_defect_rate"] == 0.25
assert aggregation["content_safety.self_harm_defect_rate"] == 0.0
assert aggregation["content_safety.hate_unfairness_defect_rate"] == 0.3
no_results = _aggregate_metrics(pd.DataFrame({"content_safety.violence_score": [np.nan, None]}), evaluators)
assert len(no_results) == 0
def test_label_based_aggregation(self):
data = {
"eci.eci_label": [True, True, True, np.nan, None],
"eci.eci_reasoning": ["a", "b", "c", "d", "e"],
"protected_material.protected_material_label": [False, False, False, False, True],
"protected_material.protected_material_reasoning": ["f", "g", "h", "i", "j"],
"unknown.unaccounted_label": [False, False, False, True, True],
"unknown.unaccounted_reasoning": ["k", "l", "m", "n", "o"],
}
data_df = pd.DataFrame(data)
evaluators = {
"eci": ECIEvaluator,
"protected_material": ProtectedMaterialEvaluator,
}
aggregation = _aggregate_metrics(data_df, evaluators)
# ECI and PM labels should be replaced with defect rates, unaccounted should not
assert len(aggregation) == 3
assert "eci.eci_label" not in aggregation
assert "protected_material.protected_material_label" not in aggregation
assert aggregation["unknown.unaccounted_label"] == 0.4
assert aggregation["eci.eci_defect_rate"] == 1.0
assert aggregation["protected_material.protected_material_defect_rate"] == 0.2
assert "unaccounted_defect_rate" not in aggregation
no_results = _aggregate_metrics(pd.DataFrame({"eci.eci_label": [np.nan, None]}), evaluators)
assert len(no_results) == 0
def test_other_aggregation(self):
data = {
"thing.groundedness_pro_label": [True, False, True, False, np.nan, None],
}
data_df = pd.DataFrame(data)
evaluators = {}
aggregation = _aggregate_metrics(data_df, evaluators)
assert len(aggregation) == 1
assert aggregation["thing.groundedness_pro_passing_rate"] == 0.5
no_results = _aggregate_metrics(pd.DataFrame({"thing.groundedness_pro_label": [np.nan, None]}), {})
assert len(no_results) == 0
def test_general_aggregation(self):
data = {
"thing.metric": [1, 2, 3, 4, 5, np.nan, None],
"thing.reasoning": ["a", "b", "c", "d", "e", "f", "g"],
"other_thing.other_meteric": [-1, -2, -3, -4, -5, np.nan, None],
"other_thing.other_reasoning": ["f", "g", "h", "i", "j", "i", "j"],
"final_thing.final_metric": [False, False, False, True, True, True, False],
"bad_thing.mixed_metric": [0, 1, False, True, 0.5, True, False],
"bad_thing.boolean_with_nan": [True, False, True, False, True, False, np.nan],
"bad_thing.boolean_with_none": [True, False, True, False, True, False, None],
}
data_df = pd.DataFrame(data)
evaluators = {}
aggregation = _aggregate_metrics(data_df, evaluators)
assert len(aggregation) == 3
assert aggregation["thing.metric"] == 3
assert aggregation["other_thing.other_meteric"] == -3
assert aggregation["final_thing.final_metric"] == 3 / 7.0
assert "bad_thing.mixed_metric" not in aggregation
assert "bad_thing.boolean_with_nan" not in aggregation
assert "bad_thing.boolean_with_none" not in aggregation
@pytest.mark.skip(reason="Breaking CI by crashing pytest somehow")
def test_optional_inputs_with_data(self, questions_file, questions_answers_basic_file):
from test_evaluators.test_inputs_evaluators import HalfOptionalEval, NoInputEval, NonOptionalEval, OptionalEval
# All variants work with both keyworded inputs
results = evaluate(
data=questions_answers_basic_file,
evaluators={
"non": NonOptionalEval(),
"half": HalfOptionalEval(),
"opt": OptionalEval(),
"no": NoInputEval(),
},
_use_pf_client=False,
) # type: ignore
first_row = results["rows"][0]
assert first_row["outputs.non.non_score"] == 0
assert first_row["outputs.half.half_score"] == 1
assert first_row["outputs.opt.opt_score"] == 3
# Variant with no default inputs fails on single input
with pytest.raises(EvaluationException) as exc_info:
evaluate(
data=questions_file,
evaluators={
"non": NonOptionalEval(),
},
_use_pf_client=False,
) # type: ignore
expected_message = "Some evaluators are missing required inputs:\n" "- non: ['response']\n"
assert expected_message in exc_info.value.args[0]
# Variants with default answer work when only question is inputted
only_question_results = evaluate(
data=questions_file,
evaluators={"half": HalfOptionalEval(), "opt": OptionalEval(), "no": NoInputEval()},
_use_pf_client=False,
) # type: ignore
first_row_2 = only_question_results["rows"][0]
assert first_row_2["outputs.half.half_score"] == 0
assert first_row_2["outputs.opt.opt_score"] == 1
@pytest.mark.skip(reason="Breaking CI by crashing pytest somehow")
def test_optional_inputs_with_target(self, questions_file, questions_answers_basic_file):
from test_evaluators.test_inputs_evaluators import EchoEval
# Check that target overrides default inputs
target_answer_results = evaluate(
data=questions_file,
target=_new_answer_target,
evaluators={"echo": EchoEval()},
_use_pf_client=False,
) # type: ignore
assert target_answer_results["rows"][0]["outputs.echo.echo_query"] == "How long is flight from Earth to LV-426?"
assert target_answer_results["rows"][0]["outputs.echo.echo_response"] == "new response"
# Check that target replaces inputs from data (I.E. if both data and target have same output
# the target output is sent to the evaluator.)
question_override_results = evaluate(
data=questions_answers_basic_file,
target=_question_override_target,
evaluators={"echo": EchoEval()},
_use_pf_client=False,
) # type: ignore
assert question_override_results["rows"][0]["outputs.echo.echo_query"] == "new query"
assert question_override_results["rows"][0]["outputs.echo.echo_response"] == "There is nothing good there."
# Check that target can replace default and data inputs at the same time.
double_override_results = evaluate(
data=questions_answers_basic_file,
target=_question_answer_override_target,
evaluators={"echo": EchoEval()},
_use_pf_client=False,
) # type: ignore
assert double_override_results["rows"][0]["outputs.echo.echo_query"] == "new query"
assert double_override_results["rows"][0]["outputs.echo.echo_response"] == "new response"
def test_conversation_aggregation_types(self, evaluate_test_data_conversion_jsonl_file):
from test_evaluators.test_inputs_evaluators import CountingEval
counting_eval = CountingEval()
evaluators = {"count": counting_eval}
# test default behavior - mean
results = evaluate(data=evaluate_test_data_conversion_jsonl_file, evaluators=evaluators)
assert results["rows"][0]["outputs.count.response"] == 1.5 # average of 1 and 2
assert results["rows"][1]["outputs.count.response"] == 3.5 # average of 3 and 4
# test maxing
counting_eval.reset()
counting_eval._set_conversation_aggregation_type(_AggregationType.MAX)
results = evaluate(data=evaluate_test_data_conversion_jsonl_file, evaluators=evaluators)
assert results["rows"][0]["outputs.count.response"] == 2
assert results["rows"][1]["outputs.count.response"] == 4
# test minimizing
counting_eval.reset()
counting_eval._set_conversation_aggregation_type(_AggregationType.MIN)
results = evaluate(data=evaluate_test_data_conversion_jsonl_file, evaluators=evaluators)
assert results["rows"][0]["outputs.count.response"] == 1
assert results["rows"][1]["outputs.count.response"] == 3
# test sum
counting_eval.reset()
counting_eval._set_conversation_aggregation_type(_AggregationType.SUM)
results = evaluate(data=evaluate_test_data_conversion_jsonl_file, evaluators=evaluators)
assert results["rows"][0]["outputs.count.response"] == 3
assert results["rows"][1]["outputs.count.response"] == 7
# test custom aggregator
def custom_aggregator(values):
return sum(values) + 1
counting_eval.reset()
counting_eval._set_conversation_aggregator(custom_aggregator)
results = evaluate(data=evaluate_test_data_conversion_jsonl_file, evaluators=evaluators)
assert results["rows"][0]["outputs.count.response"] == 4
assert results["rows"][1]["outputs.count.response"] == 8
def test_default_conversation_aggregation_overrides(self):
fake_project = {"subscription_id": "123", "resource_group_name": "123", "project_name": "123"}
eval1 = ViolenceEvaluator(None, fake_project)
eval2 = SexualEvaluator(None, fake_project)
eval3 = SelfHarmEvaluator(None, fake_project)
eval4 = HateUnfairnessEvaluator(None, fake_project)
eval5 = F1ScoreEvaluator() # Test default
assert eval1._conversation_aggregation_function == max
assert eval2._conversation_aggregation_function == max
assert eval3._conversation_aggregation_function == max
assert eval4._conversation_aggregation_function == max
assert eval5._conversation_aggregation_function == list_mean
def test_conversation_aggregation_type_returns(self):
fake_project = {"subscription_id": "123", "resource_group_name": "123", "project_name": "123"}
eval1 = ViolenceEvaluator(None, fake_project)
# Test builtins
assert eval1._get_conversation_aggregator_type() == _AggregationType.MAX
eval1._set_conversation_aggregation_type(_AggregationType.SUM)
assert eval1._get_conversation_aggregator_type() == _AggregationType.SUM
eval1._set_conversation_aggregation_type(_AggregationType.MAX)
assert eval1._get_conversation_aggregator_type() == _AggregationType.MAX
eval1._set_conversation_aggregation_type(_AggregationType.MIN)
assert eval1._get_conversation_aggregator_type() == _AggregationType.MIN
# test custom
def custom_aggregator(values):
return sum(values) + 1
eval1._set_conversation_aggregator(custom_aggregator)
assert eval1._get_conversation_aggregator_type() == _AggregationType.CUSTOM
@pytest.mark.parametrize("use_async", ["true", "false"]) # Strings intended
@pytest.mark.usefixtures("restore_env_vars")
def test_aggregation_serialization(self, evaluate_test_data_conversion_jsonl_file, use_async):
# This test exists to ensure that PF doesn't crash when trying to serialize a
# complex aggregation function.
from test_evaluators.test_inputs_evaluators import CountingEval
counting_eval = CountingEval()
evaluators = {"count": counting_eval}
def custom_aggregator(values: List[float]) -> float:
return sum(values) + 1
os.environ["AI_EVALS_BATCH_USE_ASYNC"] = use_async
_ = evaluate(data=evaluate_test_data_conversion_jsonl_file, evaluators=evaluators)
counting_eval._set_conversation_aggregation_type(_AggregationType.MIN)
_ = evaluate(data=evaluate_test_data_conversion_jsonl_file, evaluators=evaluators)
counting_eval._set_conversation_aggregation_type(_AggregationType.SUM)
_ = evaluate(data=evaluate_test_data_conversion_jsonl_file, evaluators=evaluators)
counting_eval._set_conversation_aggregation_type(_AggregationType.MAX)
_ = evaluate(data=evaluate_test_data_conversion_jsonl_file, evaluators=evaluators)
if use_async == "true":
counting_eval._set_conversation_aggregator(custom_aggregator)
_ = evaluate(data=evaluate_test_data_conversion_jsonl_file, evaluators=evaluators)
else:
with pytest.raises(EvaluationException) as exc_info:
counting_eval._set_conversation_aggregator(custom_aggregator)
_ = evaluate(data=evaluate_test_data_conversion_jsonl_file, evaluators=evaluators)
assert "TestEvaluate.test_aggregation_serialization.<locals>.custom_aggregator" in exc_info.value.args[0]
def test_unsupported_file_inputs(self, mock_model_config, unsupported_file_type):
with pytest.raises(EvaluationException) as cm:
evaluate(
data=unsupported_file_type,
evaluators={"groundedness": GroundednessEvaluator(model_config=mock_model_config)},
)
assert "Unable to load data from " in cm.value.args[0]
assert "Supported formats are JSONL and CSV. Detailed error:" in cm.value.args[0]
def test_malformed_file_inputs(self, model_config, missing_header_csv_file, missing_columns_jsonl_file):
with pytest.raises(EvaluationException) as exc_info:
evaluate(
data=missing_columns_jsonl_file,
evaluators={"similarity": SimilarityEvaluator(model_config=model_config)},
fail_on_evaluator_errors=True,
)
assert "Either 'conversation' or individual inputs must be provided." in str(exc_info.value)
with pytest.raises(EvaluationException) as exc_info:
evaluate(
data=missing_header_csv_file,
evaluators={"similarity": SimilarityEvaluator(model_config=model_config)},
fail_on_evaluator_errors=True,
)
assert "Either 'conversation' or individual inputs must be provided." in str(exc_info.value)
def test_target_failure_error_message(self, questions_file):
with pytest.raises(EvaluationException) as exc_info:
evaluate(
data=questions_file,
evaluators={"f1_score": F1ScoreEvaluator()},
target=_target_that_fails,
)
assert "Evaluation target failed to produce any results. Please check the logs at " in str(exc_info.value)
def test_evaluate_korean_characters_result(self, questions_answers_korean_file):
output_path = "eval_test_results_korean.jsonl"
result = evaluate(
data=questions_answers_korean_file,
evaluators={"g": F1ScoreEvaluator()},
output_path=output_path,
)
assert result is not None
with open(questions_answers_korean_file, "r", encoding="utf-8") as f:
first_line = f.readline()
data_from_file = json.loads(first_line)
assert result["rows"][0]["inputs.query"] == data_from_file["query"]
os.remove(output_path)
def test_name_map_conversion(self):
test_map = {
"name1": "property1",
"name2": "property2",
"name3": "property3",
}
map_dump = json.dumps(test_map)
# Test basic
result = _convert_name_map_into_property_entries(test_map)
assert result[EvaluationRunProperties.NAME_MAP_LENGTH] == 1
assert result[f"{EvaluationRunProperties.NAME_MAP}_0"] == map_dump
# Test with splits (dump of test map is 66 characters long)
result = _convert_name_map_into_property_entries(test_map, segment_length=40)
assert result[EvaluationRunProperties.NAME_MAP_LENGTH] == 2
combined_strings = (result[f"{EvaluationRunProperties.NAME_MAP}_0"] +
result[f"{EvaluationRunProperties.NAME_MAP}_1"])
#breakpoint()
assert result[f"{EvaluationRunProperties.NAME_MAP}_0"] == map_dump[0:40]
assert result[f"{EvaluationRunProperties.NAME_MAP}_1"] == map_dump[40:]
assert combined_strings == map_dump
# Test with exact split
result = _convert_name_map_into_property_entries(test_map, segment_length=22)
assert result[EvaluationRunProperties.NAME_MAP_LENGTH] == 3
combined_strings = (result[f"{EvaluationRunProperties.NAME_MAP}_0"] +
result[f"{EvaluationRunProperties.NAME_MAP}_1"] +
result[f"{EvaluationRunProperties.NAME_MAP}_2"])
assert result[f"{EvaluationRunProperties.NAME_MAP}_0"] == map_dump[0:22]
assert result[f"{EvaluationRunProperties.NAME_MAP}_1"] == map_dump[22:44]
assert result[f"{EvaluationRunProperties.NAME_MAP}_2"] == map_dump[44:]
assert combined_strings == map_dump
# Test failure case
result = _convert_name_map_into_property_entries(test_map, segment_length=10, max_segments = 1)
assert result[EvaluationRunProperties.NAME_MAP_LENGTH] == -1
assert len(result) == 1
|