File: test_evaluate.py

package info (click to toggle)
python-azure 20250603%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 851,724 kB
  • sloc: python: 7,362,925; ansic: 804; javascript: 287; makefile: 195; sh: 145; xml: 109
file content (966 lines) | stat: -rw-r--r-- 40,808 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
from typing import List, Dict, Union
import json
import math
import os
import pathlib
import numpy as np
from unittest.mock import patch

import pandas as pd
import pytest
from pandas.testing import assert_frame_equal
import test
from azure.ai.evaluation._legacy._adapters.client import PFClient

from azure.ai.evaluation._common.math import list_mean
from azure.ai.evaluation import (
    ContentSafetyEvaluator,
    F1ScoreEvaluator,
    GroundednessEvaluator,
    SimilarityEvaluator,
    ProtectedMaterialEvaluator,
    evaluate,
    ViolenceEvaluator,
    SexualEvaluator,
    SelfHarmEvaluator,
    HateUnfairnessEvaluator,
)
from azure.ai.evaluation._constants import (
    DEFAULT_EVALUATION_RESULTS_FILE_NAME,
    _AggregationType,
    EvaluationRunProperties
)
from azure.ai.evaluation._evaluate._evaluate import (
    _aggregate_metrics,
    _apply_target_to_data,
    _rename_columns_conditionally,
)
from azure.ai.evaluation._evaluate._utils import _convert_name_map_into_property_entries
from azure.ai.evaluation._evaluate._utils import _apply_column_mapping, _trace_destination_from_project_scope
from azure.ai.evaluation._evaluators._eci._eci import ECIEvaluator
from azure.ai.evaluation._exceptions import EvaluationException


def _get_file(name):
    """Get the file from the unittest data folder."""
    data_path = os.path.join(pathlib.Path(__file__).parent.resolve(), "data")
    return os.path.join(data_path, name)


@pytest.fixture
def unsupported_file_type():
    return _get_file("unsupported_file_type.txt")


@pytest.fixture
def missing_header_csv_file():
    return _get_file("no_header_evaluate_test_data.csv")


@pytest.fixture
def invalid_jsonl_file():
    return _get_file("invalid_evaluate_test_data.jsonl")


@pytest.fixture
def missing_columns_jsonl_file():
    return _get_file("missing_columns_evaluate_test_data.jsonl")


@pytest.fixture
def evaluate_test_data_jsonl_file():
    return _get_file("evaluate_test_data.jsonl")


@pytest.fixture
def evaluate_test_data_conversion_jsonl_file():
    return _get_file("evaluate_test_data_conversation.jsonl")

@pytest.fixture
def evaluate_test_data_alphanumeric():
    return _get_file("evaluate_test_data_alphanumeric.jsonl")

@pytest.fixture
def questions_file():
    return _get_file("questions.jsonl")


@pytest.fixture
def questions_wrong_file():
    return _get_file("questions_wrong.jsonl")


@pytest.fixture
def questions_answers_file():
    return _get_file("questions_answers.jsonl")


@pytest.fixture
def questions_answers_basic_file():
    return _get_file("questions_answers_basic.jsonl")

@pytest.fixture
def questions_answers_korean_file():
    return _get_file("questions_answers_korean.jsonl")


@pytest.fixture
def restore_env_vars():
    """Fixture to restore environment variables after the test."""
    original_vars = os.environ.copy()
    yield
    os.environ.clear()
    os.environ.update(original_vars)


def _target_fn(query):
    """An example target function."""
    if "LV-426" in query:
        return {"response": "There is nothing good there."}
    if "central heating" in query:
        return {"response": "There is no central heating on the streets today, but it will be, I promise."}
    if "strange" in query:
        return {"response": "The life is strange..."}


def _yeti_evaluator(query, response):
    if "yeti" in query.lower():
        raise ValueError("Do not ask about Yeti!")
    return {"result": len(response)}


def _target_fn2(query):
    response = _target_fn(query)
    response["query"] = f"The query is as follows: {query}"
    return response


def _target_that_fails(query):
    raise Exception("I am failing")


def _new_answer_target():
    return {"response": "new response"}


def _question_override_target(query):
    return {"query": "new query"}


def _question_answer_override_target(query, response):
    return {"query": "new query", "response": "new response"}


@pytest.mark.usefixtures("mock_model_config")
@pytest.mark.unittest
class TestEvaluate:
    def test_evaluate_evaluators_not_a_dict(self, mock_model_config, questions_file):
        with pytest.raises(EvaluationException) as exc_info:
            evaluate(
                data=questions_file,
                evaluators=[GroundednessEvaluator(model_config=mock_model_config)],
            )

        assert "The 'evaluators' parameter must be a dictionary." in exc_info.value.args[0]

    def test_evaluate_invalid_data(self, mock_model_config):
        with pytest.raises(EvaluationException) as exc_info:
            evaluate(
                data=123,
                evaluators={"g": GroundednessEvaluator(model_config=mock_model_config)},
            )

        assert "The 'data' parameter must be a string or a path-like object." in exc_info.value.args[0]

    def test_evaluate_data_not_exist(self, mock_model_config):
        with pytest.raises(EvaluationException) as exc_info:
            evaluate(
                data="not_exist.jsonl",
                evaluators={"g": GroundednessEvaluator(model_config=mock_model_config)},
            )

        assert "The input data file path 'not_exist.jsonl' does not exist." in exc_info.value.args[0]

    def test_target_not_callable(self, mock_model_config, questions_file):
        with pytest.raises(EvaluationException) as exc_info:
            evaluate(
                data=questions_file,
                evaluators={"g": GroundednessEvaluator(model_config=mock_model_config)},
                target="not_callable",
            )

        assert "The 'target' parameter must be a callable function." in exc_info.value.args[0]

    def test_evaluate_invalid_jsonl_data(self, mock_model_config, invalid_jsonl_file):
        with pytest.raises(EvaluationException) as exc_info:
            evaluate(
                data=invalid_jsonl_file,
                evaluators={"g": GroundednessEvaluator(model_config=mock_model_config)},
            )

        assert "Unable to load data from " in exc_info.value.args[0]
        assert "Supported formats are JSONL and CSV. Detailed error:" in exc_info.value.args[0]

    def test_evaluate_missing_required_inputs(self, missing_columns_jsonl_file):
        with pytest.raises(EvaluationException) as exc_info:
            evaluate(
                data=missing_columns_jsonl_file, evaluators={"g": F1ScoreEvaluator()}, fail_on_evaluator_errors=True
            )
        expected_message = "Either 'conversation' or individual inputs must be provided."
        assert expected_message in exc_info.value.args[0]
        # Same call without failure flag shouldn't produce an exception.
        evaluate(data=missing_columns_jsonl_file, evaluators={"g": F1ScoreEvaluator()})

    def test_evaluate_missing_required_inputs_target(self, questions_wrong_file):
        with pytest.raises(EvaluationException) as exc_info:
            evaluate(data=questions_wrong_file, evaluators={"g": F1ScoreEvaluator()}, target=_target_fn)
        assert "Missing required inputs for target: ['query']." in exc_info.value.args[0]

    def test_target_not_generate_required_columns(self, questions_file):
        with pytest.raises(EvaluationException) as exc_info:
            # target_fn will generate the "response", but not "ground_truth".
            evaluate(
                data=questions_file,
                evaluators={"g": F1ScoreEvaluator()},
                target=_target_fn,
                fail_on_evaluator_errors=True,
            )

        expected_message = "Either 'conversation' or individual inputs must be provided."

        assert expected_message in exc_info.value.args[0]

        # Same call without failure flag shouldn't produce an exception.
        evaluate(data=questions_file, evaluators={"g": F1ScoreEvaluator()}, target=_target_fn)

    def test_target_raises_on_outputs(self):
        """Test we are raising exception if the output is column is present in the input."""
        data = _get_file("questions_answers_outputs.jsonl")
        with pytest.raises(EvaluationException) as cm:
            evaluate(
                data=data,
                target=_target_fn,
                evaluators={"g": F1ScoreEvaluator()},
            )
        assert 'The column cannot start from "__outputs." if target was defined.' in cm.value.args[0]

    @pytest.mark.parametrize(
        "input_file,out_file,expected_columns,fun",
        [
            ("questions.jsonl", "questions_answers.jsonl", {"response"}, _target_fn),
            (
                "questions_ground_truth.jsonl",
                "questions_answers_ground_truth.jsonl",
                {"response", "query"},
                _target_fn2,
            ),
        ],
    )
    @pytest.mark.skip(reason="Breaking CI by crashing pytest somehow")
    def test_apply_target_to_data(self, pf_client, input_file, out_file, expected_columns, fun):
        """Test that target was applied correctly."""
        data = _get_file(input_file)
        expexted_out = _get_file(out_file)
        initial_data = pd.read_json(data, lines=True)
        qa_df, columns, _ = _apply_target_to_data(fun, data, pf_client, initial_data)
        assert columns == expected_columns
        ground_truth = pd.read_json(expexted_out, lines=True)
        assert_frame_equal(qa_df, ground_truth, check_like=True)

    @pytest.mark.skip(reason="Breaking CI by crashing pytest somehow")
    def test_apply_column_mapping(self):
        json_data = [
            {
                "query": "How are you?",
                "ground_truth": "I'm fine",
            }
        ]
        inputs_mapping = {
            "query": "${data.query}",
            "response": "${data.ground_truth}",
        }

        data_df = pd.DataFrame(json_data)
        new_data_df = _apply_column_mapping(data_df, inputs_mapping)

        assert "query" in new_data_df.columns
        assert "response" in new_data_df.columns

        assert new_data_df["query"][0] == "How are you?"
        assert new_data_df["response"][0] == "I'm fine"

    @pytest.mark.parametrize(
        "json_data,inputs_mapping,response",
        [
            (
                [
                    {
                        "query": "How are you?",
                        "__outputs.response": "I'm fine",
                    }
                ],
                {
                    "query": "${data.query}",
                    "response": "${run.outputs.response}",
                },
                "I'm fine",
            ),
            (
                [
                    {
                        "query": "How are you?",
                        "response": "I'm fine",
                        "__outputs.response": "I'm great",
                    }
                ],
                {
                    "query": "${data.query}",
                    "response": "${run.outputs.response}",
                },
                "I'm great",
            ),
            (
                [
                    {
                        "query": "How are you?",
                        "response": "I'm fine",
                        "__outputs.response": "I'm great",
                    }
                ],
                {
                    "query": "${data.query}",
                    "response": "${data.response}",
                },
                "I'm fine",
            ),
            (
                [
                    {
                        "query": "How are you?",
                        "response": "I'm fine",
                        "__outputs.response": "I'm great",
                    }
                ],
                {
                    "query": "${data.query}",
                    "response": "${data.response}",
                    "another_response": "${run.outputs.response}",
                },
                "I'm fine",
            ),
            (
                [
                    {
                        "query": "How are you?",
                        "response": "I'm fine",
                        "__outputs.response": "I'm great",
                    }
                ],
                {
                    "query": "${data.query}",
                    "response": "${run.outputs.response}",
                    "another_response": "${data.response}",
                },
                "I'm great",
            ),
            (
                [
                    {
                        "query": "How are you?",
                        "__outputs.response": "I'm fine",
                        "else": "Another column",
                        "else1": "Another column 1",
                    }
                ],
                {
                    "query": "${data.query}",
                    "response": "${run.outputs.response}",
                    "else1": "${data.else}",
                    "else2": "${data.else1}",
                },
                "I'm fine",
            ),
        ],
    )
    def test_apply_column_mapping_target(self, json_data, inputs_mapping, response):

        data_df = pd.DataFrame(json_data)
        new_data_df = _apply_column_mapping(data_df, inputs_mapping)

        assert "query" in new_data_df.columns
        assert "response" in new_data_df.columns

        assert new_data_df["query"][0] == "How are you?"
        assert new_data_df["response"][0] == response
        if "another_response" in inputs_mapping:
            assert "another_response" in new_data_df.columns
            assert new_data_df["another_response"][0] != response
        if "else" in inputs_mapping:
            assert "else1" in new_data_df.columns
            assert new_data_df["else1"][0] == "Another column"
            assert "else2" in new_data_df.columns
            assert new_data_df["else2"][0] == "Another column 1"

    @pytest.mark.parametrize(
        "column_mapping",
        [
            {"query": "${foo.query}"},
            {"query": "${data.query"},
            {"query": "data.query", "response": "target.response"},
            {"query": "${data.query}", "response": "${target.response.one}"},
        ],
    )
    def test_evaluate_invalid_column_mapping(self, mock_model_config, evaluate_test_data_jsonl_file, column_mapping):
        # Invalid source reference
        with pytest.raises(EvaluationException) as exc_info:
            evaluate(
                data=evaluate_test_data_jsonl_file,
                evaluators={"g": GroundednessEvaluator(model_config=mock_model_config)},
                evaluator_config={
                    "g": {
                        "column_mapping": column_mapping,
                    }
                },
            )

            assert (
                "Unexpected references detected in 'column_mapping'. Ensure only ${target.} and ${data.} are used."
                in exc_info.value.args[0]
            )

    def test_evaluate_valid_column_mapping_with_numeric_chars(self, mock_model_config, evaluate_test_data_alphanumeric):
        # Valid column mappings that include numeric characters
        # This test validates the fix for the regex pattern that now accepts numeric characters
        # Previous regex was `re.compile(r"^\$\{(target|data)\.[a-zA-Z_]+\}$")`
        # New regex is `re.compile(r"^\$\{(target|data)\.[a-zA-Z0-9_]+\}$")`

        column_mappings_with_numbers = {
            "response": "${data.response123}",
            "query": "${data.query456}",
            "context": "${data.context789}"
        } # This should not raise an exception with the updated regex for column mapping format validation
        # The test passes if no exception about "Unexpected references" is raised
        result = evaluate(
            data=evaluate_test_data_alphanumeric,
            evaluators={"g": GroundednessEvaluator(model_config=mock_model_config)},
            evaluator_config={
                "g": {
                    "column_mapping": column_mappings_with_numbers,
                }
            },
            fail_on_evaluator_errors=False
        )
        
        # Verify that the test completed without errors related to column mapping format
        # The test data has the fields with numeric characters, so it should work correctly
        assert result is not None
        # Verify we're getting data from the numerically-named fields
        row_result_df = pd.DataFrame(result["rows"])
        assert "inputs.response123" in row_result_df.columns
        assert "inputs.query456" in row_result_df.columns
        assert "inputs.context789" in row_result_df.columns

    def test_renaming_column(self):
        """Test that the columns are renamed correctly."""
        df = pd.DataFrame(
            {
                "just_column": ["just_column."],
                "presnt_generated": ["Is present in data set."],
                "__outputs.presnt_generated": ["This was generated by target."],
                "__outputs.generated": ["Generaged by target"],
                "outputs.before": ["Despite prefix this column was before target."],
            }
        )
        df_expected = pd.DataFrame(
            {
                "inputs.just_column": ["just_column."],
                "inputs.presnt_generated": ["Is present in data set."],
                "outputs.presnt_generated": ["This was generated by target."],
                "outputs.generated": ["Generaged by target"],
                "inputs.outputs.before": ["Despite prefix this column was before target."],
            }
        )
        df_actuals = _rename_columns_conditionally(df)
        assert_frame_equal(df_actuals.sort_index(axis=1), df_expected.sort_index(axis=1))

    def test_evaluate_output_dir_not_exist(self, mock_model_config, questions_file):
        with pytest.raises(EvaluationException) as exc_info:
            evaluate(
                data=questions_file,
                evaluators={"g": GroundednessEvaluator(model_config=mock_model_config)},
                output_path="./not_exist_dir/output.jsonl",
            )

        assert "The output directory './not_exist_dir' does not exist." in exc_info.value.args[0]

    @pytest.mark.parametrize("use_relative_path", [True, False])
    def test_evaluate_output_path(self, evaluate_test_data_jsonl_file, tmpdir, use_relative_path):
        # output_path is a file
        if use_relative_path:
            output_path = os.path.join(tmpdir, "eval_test_results.jsonl")
        else:
            output_path = "eval_test_results.jsonl"

        result = evaluate(
            data=evaluate_test_data_jsonl_file,
            evaluators={"g": F1ScoreEvaluator()},
            output_path=output_path,
        )

        assert result is not None
        assert os.path.exists(output_path)
        assert os.path.isfile(output_path)

        with open(output_path, "r") as f:
            content = f.read()
            data_from_file = json.loads(content)
            assert result["metrics"] == data_from_file["metrics"]

        os.remove(output_path)

        # output_path is a directory
        result = evaluate(
            data=evaluate_test_data_jsonl_file,
            evaluators={"g": F1ScoreEvaluator()},
            output_path=os.path.join(tmpdir),
        )

        with open(os.path.join(tmpdir, DEFAULT_EVALUATION_RESULTS_FILE_NAME), "r") as f:
            content = f.read()
            data_from_file = json.loads(content)
            assert result["metrics"] == data_from_file["metrics"]

    def test_evaluate_with_errors(self):
        """Test evaluate_handle_errors"""
        data = _get_file("yeti_questions.jsonl")
        result = evaluate(data=data, evaluators={"yeti": _yeti_evaluator})
        result_df = pd.DataFrame(result["rows"])
        expected = pd.read_json(data, lines=True)
        expected.rename(columns={"query": "inputs.query", "response": "inputs.response"}, inplace=True)

        expected["outputs.yeti.result"] = expected["inputs.response"].str.len()
        expected.at[0, "outputs.yeti.result"] = math.nan
        expected.at[2, "outputs.yeti.result"] = math.nan
        expected.at[3, "outputs.yeti.result"] = math.nan
        assert_frame_equal(expected, result_df)

    @patch("azure.ai.evaluation._evaluate._evaluate._evaluate")
    def test_evaluate_main_entry_guard(self, mock_evaluate, evaluate_test_data_jsonl_file):
        err_msg = (
            "An attempt has been made to start a new process before the\n        "
            "current process has finished its bootstrapping phase."
        )
        mock_evaluate.side_effect = RuntimeError(err_msg)

        with pytest.raises(EvaluationException) as exc_info:
            evaluate(
                data=evaluate_test_data_jsonl_file,
                evaluators={"f1_score": F1ScoreEvaluator()},
            )

        assert "Please ensure the evaluate API is properly guarded with the '__main__' block" in exc_info.value.args[0]

    def test_get_trace_destination(self, mock_validate_trace_destination, mock_project_scope):
        pf_client = PFClient()
        trace_destination_without_override = pf_client._config.get_trace_destination()

        pf_client = PFClient(
            config={
                "trace.destination": (
                    _trace_destination_from_project_scope(mock_project_scope) if mock_project_scope else None
                )
            }
        )

        trace_destination_with_override = pf_client._config.get_trace_destination()

        assert trace_destination_with_override != trace_destination_without_override
        assert trace_destination_with_override == _trace_destination_from_project_scope(mock_project_scope)

    def test_content_safety_aggregation(self):
        data = {
            # 10 zeroes in a list fully written out
            "content_safety.violence_score": [0, 0, 1, 2, 5, 5, 6, 7, np.nan, None],
            "content_safety.sexual_score": [0, 0, 2, 3, 3, 3, 8, 8, np.nan, None],
            "content_safety.self_harm_score": [0, 0, 0, 0, 1, 1, 1, 1, np.nan, None],
            "content_safety.hate_unfairness_score": [0, 0, 1, 1, 2, 2, 3, 5, 6, 7],
            "content_safety.violence": [
                "low",
                "low",
                "low",
                "low",
                "high",
                "high",
                "high",
                "high",
                "high",
                "high",
            ],  # TODO DETERMINE ACTUAL BASED ON SCORES
            "content_safety.sexual": ["low", "low", "low", "low", "low", "low", "high", "high", "high", "high"],
            "content_safety.self_harm": ["low", "low", "low", "low", "low", "low", "low", "low", "high", "high"],
            "content_safety.hate_unfairness": ["low", "low", "low", "low", "low", "low", "low", "low", "low", "high"],
            "content_safety.violence_reason": ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j"],
            "content_safety.sexual_reason": ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j"],
            "content_safety.self_harm_reason": ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j"],
            "content_safety.hate_unfairness_reason": ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j"],
        }
        data_df = pd.DataFrame(data)
        evaluators = {
            "content_safety": ContentSafetyEvaluator,
        }
        aggregation = _aggregate_metrics(data_df, evaluators)

        assert len(aggregation) == 4
        assert aggregation["content_safety.violence_defect_rate"] == 0.5
        assert aggregation["content_safety.sexual_defect_rate"] == 0.25
        assert aggregation["content_safety.self_harm_defect_rate"] == 0.0
        assert aggregation["content_safety.hate_unfairness_defect_rate"] == 0.3

        no_results = _aggregate_metrics(pd.DataFrame({"content_safety.violence_score": [np.nan, None]}), evaluators)
        assert len(no_results) == 0

    def test_label_based_aggregation(self):
        data = {
            "eci.eci_label": [True, True, True, np.nan, None],
            "eci.eci_reasoning": ["a", "b", "c", "d", "e"],
            "protected_material.protected_material_label": [False, False, False, False, True],
            "protected_material.protected_material_reasoning": ["f", "g", "h", "i", "j"],
            "unknown.unaccounted_label": [False, False, False, True, True],
            "unknown.unaccounted_reasoning": ["k", "l", "m", "n", "o"],
        }
        data_df = pd.DataFrame(data)
        evaluators = {
            "eci": ECIEvaluator,
            "protected_material": ProtectedMaterialEvaluator,
        }
        aggregation = _aggregate_metrics(data_df, evaluators)
        # ECI and PM labels should be replaced with defect rates, unaccounted should not
        assert len(aggregation) == 3
        assert "eci.eci_label" not in aggregation
        assert "protected_material.protected_material_label" not in aggregation
        assert aggregation["unknown.unaccounted_label"] == 0.4

        assert aggregation["eci.eci_defect_rate"] == 1.0
        assert aggregation["protected_material.protected_material_defect_rate"] == 0.2
        assert "unaccounted_defect_rate" not in aggregation

        no_results = _aggregate_metrics(pd.DataFrame({"eci.eci_label": [np.nan, None]}), evaluators)
        assert len(no_results) == 0

    def test_other_aggregation(self):
        data = {
            "thing.groundedness_pro_label": [True, False, True, False, np.nan, None],
        }
        data_df = pd.DataFrame(data)
        evaluators = {}
        aggregation = _aggregate_metrics(data_df, evaluators)

        assert len(aggregation) == 1
        assert aggregation["thing.groundedness_pro_passing_rate"] == 0.5

        no_results = _aggregate_metrics(pd.DataFrame({"thing.groundedness_pro_label": [np.nan, None]}), {})
        assert len(no_results) == 0

    def test_general_aggregation(self):
        data = {
            "thing.metric": [1, 2, 3, 4, 5, np.nan, None],
            "thing.reasoning": ["a", "b", "c", "d", "e", "f", "g"],
            "other_thing.other_meteric": [-1, -2, -3, -4, -5, np.nan, None],
            "other_thing.other_reasoning": ["f", "g", "h", "i", "j", "i", "j"],
            "final_thing.final_metric": [False, False, False, True, True, True, False],
            "bad_thing.mixed_metric": [0, 1, False, True, 0.5, True, False],
            "bad_thing.boolean_with_nan": [True, False, True, False, True, False, np.nan],
            "bad_thing.boolean_with_none": [True, False, True, False, True, False, None],
        }
        data_df = pd.DataFrame(data)
        evaluators = {}
        aggregation = _aggregate_metrics(data_df, evaluators)

        assert len(aggregation) == 3
        assert aggregation["thing.metric"] == 3
        assert aggregation["other_thing.other_meteric"] == -3
        assert aggregation["final_thing.final_metric"] == 3 / 7.0
        assert "bad_thing.mixed_metric" not in aggregation
        assert "bad_thing.boolean_with_nan" not in aggregation
        assert "bad_thing.boolean_with_none" not in aggregation

    @pytest.mark.skip(reason="Breaking CI by crashing pytest somehow")
    def test_optional_inputs_with_data(self, questions_file, questions_answers_basic_file):
        from test_evaluators.test_inputs_evaluators import HalfOptionalEval, NoInputEval, NonOptionalEval, OptionalEval

        # All variants work with both keyworded inputs
        results = evaluate(
            data=questions_answers_basic_file,
            evaluators={
                "non": NonOptionalEval(),
                "half": HalfOptionalEval(),
                "opt": OptionalEval(),
                "no": NoInputEval(),
            },
            _use_pf_client=False,
        )  # type: ignore

        first_row = results["rows"][0]
        assert first_row["outputs.non.non_score"] == 0
        assert first_row["outputs.half.half_score"] == 1
        assert first_row["outputs.opt.opt_score"] == 3

        # Variant with no default inputs fails on single input
        with pytest.raises(EvaluationException) as exc_info:
            evaluate(
                data=questions_file,
                evaluators={
                    "non": NonOptionalEval(),
                },
                _use_pf_client=False,
            )  # type: ignore

        expected_message = "Some evaluators are missing required inputs:\n" "- non: ['response']\n"
        assert expected_message in exc_info.value.args[0]

        # Variants with default answer work when only question is inputted
        only_question_results = evaluate(
            data=questions_file,
            evaluators={"half": HalfOptionalEval(), "opt": OptionalEval(), "no": NoInputEval()},
            _use_pf_client=False,
        )  # type: ignore

        first_row_2 = only_question_results["rows"][0]
        assert first_row_2["outputs.half.half_score"] == 0
        assert first_row_2["outputs.opt.opt_score"] == 1

    @pytest.mark.skip(reason="Breaking CI by crashing pytest somehow")
    def test_optional_inputs_with_target(self, questions_file, questions_answers_basic_file):
        from test_evaluators.test_inputs_evaluators import EchoEval

        # Check that target overrides default inputs
        target_answer_results = evaluate(
            data=questions_file,
            target=_new_answer_target,
            evaluators={"echo": EchoEval()},
            _use_pf_client=False,
        )  # type: ignore

        assert target_answer_results["rows"][0]["outputs.echo.echo_query"] == "How long is flight from Earth to LV-426?"
        assert target_answer_results["rows"][0]["outputs.echo.echo_response"] == "new response"

        # Check that target replaces inputs from data (I.E. if both data and target have same output
        # the target output is sent to the evaluator.)
        question_override_results = evaluate(
            data=questions_answers_basic_file,
            target=_question_override_target,
            evaluators={"echo": EchoEval()},
            _use_pf_client=False,
        )  # type: ignore

        assert question_override_results["rows"][0]["outputs.echo.echo_query"] == "new query"
        assert question_override_results["rows"][0]["outputs.echo.echo_response"] == "There is nothing good there."

        # Check that target can replace default and data inputs at the same time.
        double_override_results = evaluate(
            data=questions_answers_basic_file,
            target=_question_answer_override_target,
            evaluators={"echo": EchoEval()},
            _use_pf_client=False,
        )  # type: ignore
        assert double_override_results["rows"][0]["outputs.echo.echo_query"] == "new query"
        assert double_override_results["rows"][0]["outputs.echo.echo_response"] == "new response"

    def test_conversation_aggregation_types(self, evaluate_test_data_conversion_jsonl_file):
        from test_evaluators.test_inputs_evaluators import CountingEval

        counting_eval = CountingEval()
        evaluators = {"count": counting_eval}
        # test default behavior - mean
        results = evaluate(data=evaluate_test_data_conversion_jsonl_file, evaluators=evaluators)
        assert results["rows"][0]["outputs.count.response"] == 1.5  # average of 1 and 2
        assert results["rows"][1]["outputs.count.response"] == 3.5  # average of 3 and 4

        # test maxing
        counting_eval.reset()
        counting_eval._set_conversation_aggregation_type(_AggregationType.MAX)
        results = evaluate(data=evaluate_test_data_conversion_jsonl_file, evaluators=evaluators)
        assert results["rows"][0]["outputs.count.response"] == 2
        assert results["rows"][1]["outputs.count.response"] == 4

        # test minimizing
        counting_eval.reset()
        counting_eval._set_conversation_aggregation_type(_AggregationType.MIN)
        results = evaluate(data=evaluate_test_data_conversion_jsonl_file, evaluators=evaluators)
        assert results["rows"][0]["outputs.count.response"] == 1
        assert results["rows"][1]["outputs.count.response"] == 3

        # test sum
        counting_eval.reset()
        counting_eval._set_conversation_aggregation_type(_AggregationType.SUM)
        results = evaluate(data=evaluate_test_data_conversion_jsonl_file, evaluators=evaluators)
        assert results["rows"][0]["outputs.count.response"] == 3
        assert results["rows"][1]["outputs.count.response"] == 7

        # test custom aggregator
        def custom_aggregator(values):
            return sum(values) + 1

        counting_eval.reset()
        counting_eval._set_conversation_aggregator(custom_aggregator)
        results = evaluate(data=evaluate_test_data_conversion_jsonl_file, evaluators=evaluators)
        assert results["rows"][0]["outputs.count.response"] == 4
        assert results["rows"][1]["outputs.count.response"] == 8

    def test_default_conversation_aggregation_overrides(self):
        fake_project = {"subscription_id": "123", "resource_group_name": "123", "project_name": "123"}
        eval1 = ViolenceEvaluator(None, fake_project)
        eval2 = SexualEvaluator(None, fake_project)
        eval3 = SelfHarmEvaluator(None, fake_project)
        eval4 = HateUnfairnessEvaluator(None, fake_project)
        eval5 = F1ScoreEvaluator()  # Test default
        assert eval1._conversation_aggregation_function == max
        assert eval2._conversation_aggregation_function == max
        assert eval3._conversation_aggregation_function == max
        assert eval4._conversation_aggregation_function == max
        assert eval5._conversation_aggregation_function == list_mean

    def test_conversation_aggregation_type_returns(self):
        fake_project = {"subscription_id": "123", "resource_group_name": "123", "project_name": "123"}
        eval1 = ViolenceEvaluator(None, fake_project)
        # Test builtins
        assert eval1._get_conversation_aggregator_type() == _AggregationType.MAX
        eval1._set_conversation_aggregation_type(_AggregationType.SUM)
        assert eval1._get_conversation_aggregator_type() == _AggregationType.SUM
        eval1._set_conversation_aggregation_type(_AggregationType.MAX)
        assert eval1._get_conversation_aggregator_type() == _AggregationType.MAX
        eval1._set_conversation_aggregation_type(_AggregationType.MIN)
        assert eval1._get_conversation_aggregator_type() == _AggregationType.MIN

        # test custom
        def custom_aggregator(values):
            return sum(values) + 1

        eval1._set_conversation_aggregator(custom_aggregator)
        assert eval1._get_conversation_aggregator_type() == _AggregationType.CUSTOM

    @pytest.mark.parametrize("use_async", ["true", "false"])  # Strings intended
    @pytest.mark.usefixtures("restore_env_vars")
    def test_aggregation_serialization(self, evaluate_test_data_conversion_jsonl_file, use_async):
        # This test exists to ensure that PF doesn't crash when trying to serialize a
        # complex aggregation function.
        from test_evaluators.test_inputs_evaluators import CountingEval

        counting_eval = CountingEval()
        evaluators = {"count": counting_eval}

        def custom_aggregator(values: List[float]) -> float:
            return sum(values) + 1

        os.environ["AI_EVALS_BATCH_USE_ASYNC"] = use_async
        _ = evaluate(data=evaluate_test_data_conversion_jsonl_file, evaluators=evaluators)
        counting_eval._set_conversation_aggregation_type(_AggregationType.MIN)
        _ = evaluate(data=evaluate_test_data_conversion_jsonl_file, evaluators=evaluators)
        counting_eval._set_conversation_aggregation_type(_AggregationType.SUM)
        _ = evaluate(data=evaluate_test_data_conversion_jsonl_file, evaluators=evaluators)
        counting_eval._set_conversation_aggregation_type(_AggregationType.MAX)
        _ = evaluate(data=evaluate_test_data_conversion_jsonl_file, evaluators=evaluators)
        if use_async == "true":
            counting_eval._set_conversation_aggregator(custom_aggregator)
            _ = evaluate(data=evaluate_test_data_conversion_jsonl_file, evaluators=evaluators)
        else:
            with pytest.raises(EvaluationException) as exc_info:
                counting_eval._set_conversation_aggregator(custom_aggregator)
                _ = evaluate(data=evaluate_test_data_conversion_jsonl_file, evaluators=evaluators)
            assert "TestEvaluate.test_aggregation_serialization.<locals>.custom_aggregator" in exc_info.value.args[0]

    def test_unsupported_file_inputs(self, mock_model_config, unsupported_file_type):
        with pytest.raises(EvaluationException) as cm:
            evaluate(
                data=unsupported_file_type,
                evaluators={"groundedness": GroundednessEvaluator(model_config=mock_model_config)},
            )
        assert "Unable to load data from " in cm.value.args[0]
        assert "Supported formats are JSONL and CSV. Detailed error:" in cm.value.args[0]

    def test_malformed_file_inputs(self, model_config, missing_header_csv_file, missing_columns_jsonl_file):
        with pytest.raises(EvaluationException) as exc_info:
            evaluate(
                data=missing_columns_jsonl_file,
                evaluators={"similarity": SimilarityEvaluator(model_config=model_config)},
                fail_on_evaluator_errors=True,
            )

        assert "Either 'conversation' or individual inputs must be provided." in str(exc_info.value)

        with pytest.raises(EvaluationException) as exc_info:
            evaluate(
                data=missing_header_csv_file,
                evaluators={"similarity": SimilarityEvaluator(model_config=model_config)},
                fail_on_evaluator_errors=True,
            )

        assert "Either 'conversation' or individual inputs must be provided." in str(exc_info.value)

    def test_target_failure_error_message(self, questions_file):
        with pytest.raises(EvaluationException) as exc_info:
            evaluate(
                data=questions_file,
                evaluators={"f1_score": F1ScoreEvaluator()},
                target=_target_that_fails,
            )

        assert "Evaluation target failed to produce any results. Please check the logs at " in str(exc_info.value)
    
    def test_evaluate_korean_characters_result(self, questions_answers_korean_file):
        output_path = "eval_test_results_korean.jsonl"

        result = evaluate(
            data=questions_answers_korean_file,
            evaluators={"g": F1ScoreEvaluator()},
            output_path=output_path,
        )

        assert result is not None

        with open(questions_answers_korean_file, "r", encoding="utf-8") as f:
            first_line = f.readline()
            data_from_file = json.loads(first_line)

        assert result["rows"][0]["inputs.query"] == data_from_file["query"]

        os.remove(output_path)

    def test_name_map_conversion(self):
        test_map = {
            "name1": "property1",
            "name2": "property2",
            "name3": "property3",
        }
        map_dump = json.dumps(test_map)

        # Test basic
        result = _convert_name_map_into_property_entries(test_map)
        assert result[EvaluationRunProperties.NAME_MAP_LENGTH] == 1
        assert result[f"{EvaluationRunProperties.NAME_MAP}_0"] == map_dump

        # Test with splits (dump of test map is 66 characters long)
        result = _convert_name_map_into_property_entries(test_map, segment_length=40)
        assert result[EvaluationRunProperties.NAME_MAP_LENGTH] == 2
        combined_strings = (result[f"{EvaluationRunProperties.NAME_MAP}_0"] + 
                            result[f"{EvaluationRunProperties.NAME_MAP}_1"])
        #breakpoint()
        assert result[f"{EvaluationRunProperties.NAME_MAP}_0"] == map_dump[0:40]
        assert result[f"{EvaluationRunProperties.NAME_MAP}_1"] == map_dump[40:]
        assert combined_strings == map_dump

        # Test with exact split
        result = _convert_name_map_into_property_entries(test_map, segment_length=22)
        assert result[EvaluationRunProperties.NAME_MAP_LENGTH] == 3
        combined_strings = (result[f"{EvaluationRunProperties.NAME_MAP}_0"] + 
                            result[f"{EvaluationRunProperties.NAME_MAP}_1"] + 
                            result[f"{EvaluationRunProperties.NAME_MAP}_2"])
        assert result[f"{EvaluationRunProperties.NAME_MAP}_0"] == map_dump[0:22]
        assert result[f"{EvaluationRunProperties.NAME_MAP}_1"] == map_dump[22:44]
        assert result[f"{EvaluationRunProperties.NAME_MAP}_2"] == map_dump[44:]
        assert combined_strings == map_dump

        # Test failure case
        result = _convert_name_map_into_property_entries(test_map, segment_length=10, max_segments = 1)
        assert result[EvaluationRunProperties.NAME_MAP_LENGTH] == -1
        assert len(result) == 1