1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
|
#!/usr/bin/env python
# --------------------------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for license information.
# --------------------------------------------------------------------------------------------
"""
Examples to show sending events with different options to an Event Hub partition.
"""
import time
import os
from azure.eventhub import EventHubProducerClient, EventData
from azure.eventhub.exceptions import EventHubError
from azure.identity import DefaultAzureCredential
FULLY_QUALIFIED_NAMESPACE = os.environ["EVENT_HUB_HOSTNAME"]
EVENTHUB_NAME = os.environ["EVENT_HUB_NAME"]
# [START send_event_data_batch]
def send_event_data_batch(producer):
# Without specifying partition_id or partition_key
# the events will be distributed to available partitions via round-robin.
event_data_batch = producer.create_batch()
event_data_batch.add(EventData("Single message"))
producer.send_batch(event_data_batch)
# [END send_event_data_batch]
def send_event_data_batch_with_limited_size(producer):
# Without specifying partition_id or partition_key
# the events will be distributed to available partitions via round-robin.
event_data_batch_with_limited_size = producer.create_batch(max_size_in_bytes=1000)
while True:
try:
event_data_batch_with_limited_size.add(EventData("Message inside EventBatchData"))
except ValueError:
# EventDataBatch object reaches max_size.
# New EventDataBatch object can be created here to send more data.
break
producer.send_batch(event_data_batch_with_limited_size)
def send_event_data_batch_with_partition_key(producer):
# Specifying partition_key.
event_data_batch_with_partition_key = producer.create_batch(partition_key="pkey")
event_data_batch_with_partition_key.add(
EventData("Message will be sent to a partition determined by the partition key")
)
producer.send_batch(event_data_batch_with_partition_key)
def send_event_data_batch_with_partition_id(producer):
# Specifying partition_id.
event_data_batch_with_partition_id = producer.create_batch(partition_id="0")
event_data_batch_with_partition_id.add(EventData("Message will be sent to target-id partition"))
producer.send_batch(event_data_batch_with_partition_id)
def send_event_data_batch_with_properties(producer):
event_data_batch = producer.create_batch()
event_data = EventData("Message with properties")
event_data.properties = {"prop_key": "prop_value"}
event_data_batch.add(event_data)
producer.send_batch(event_data_batch)
def send_event_data_list(producer):
# If you know beforehand that the list of events you have will not exceed the
# size limits, you can use the `send_batch()` api directly without creating an EventDataBatch
# Without specifying partition_id or partition_key
# the events will be distributed to available partitions via round-robin.
event_data_list = [EventData("Event Data {}".format(i)) for i in range(10)]
try:
producer.send_batch(event_data_list)
except ValueError: # Size exceeds limit. This shouldn't happen if you make sure before hand.
print("Size of the event data list exceeds the size limit of a single send")
except EventHubError as eh_err:
print("Sending error: ", eh_err)
producer = EventHubProducerClient(
fully_qualified_namespace=FULLY_QUALIFIED_NAMESPACE,
eventhub_name=EVENTHUB_NAME,
credential=DefaultAzureCredential(),
)
start_time = time.time()
with producer:
send_event_data_batch(producer)
send_event_data_batch_with_limited_size(producer)
send_event_data_batch_with_partition_key(producer)
send_event_data_batch_with_partition_id(producer)
send_event_data_batch_with_properties(producer)
send_event_data_list(producer)
print("Send messages in {} seconds.".format(time.time() - start_time))
|