File: sample_find_similar_faces_async.py

package info (click to toggle)
python-azure 20250603%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 851,724 kB
  • sloc: python: 7,362,925; ansic: 804; javascript: 287; makefile: 195; sh: 145; xml: 109
file content (181 lines) | stat: -rw-r--r-- 8,243 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# coding: utf-8

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
"""
FILE: sample_find_similar_faces_async.py

DESCRIPTION:
    This sample demonstrates how to find similar faces from a specified list of face ids or a largeFaceList.

USAGE:
    python sample_find_similar_faces_async.py

    Set the environment variables with your own values before running this sample:
    1) AZURE_FACE_API_ENDPOINT - the endpoint to your Face resource.
    2) AZURE_FACE_API_ACCOUNT_KEY - your Face API key.
"""
import asyncio
import os

from dotenv import find_dotenv, load_dotenv

from shared.constants import (
    CONFIGURATION_NAME_FACE_API_ACCOUNT_KEY,
    CONFIGURATION_NAME_FACE_API_ENDPOINT,
    DEFAULT_FACE_API_ACCOUNT_KEY,
    DEFAULT_FACE_API_ENDPOINT,
    TestImages,
)
from shared import helpers
from shared.helpers import beautify_json, get_logger


class FindSimilarFaces:
    def __init__(self):
        load_dotenv(find_dotenv())
        self.endpoint = os.getenv(CONFIGURATION_NAME_FACE_API_ENDPOINT, DEFAULT_FACE_API_ENDPOINT)
        self.key = os.getenv(CONFIGURATION_NAME_FACE_API_ACCOUNT_KEY, DEFAULT_FACE_API_ACCOUNT_KEY)
        self.logger = get_logger("sample_findsimilar_faces_async")

    async def find_similar_from_face_ids(self):
        from azure.core.credentials import AzureKeyCredential
        from azure.ai.vision.face.aio import FaceClient
        from azure.ai.vision.face.models import FaceDetectionModel, FaceRecognitionModel

        async with FaceClient(endpoint=self.endpoint, credential=AzureKeyCredential(self.key)) as face_client:
            # Detect faces from 'IMAGE_NINE_FACES'
            nine_faces_file_path = helpers.get_image_path(TestImages.IMAGE_NINE_FACES)
            detect_result1 = await face_client.detect(
                helpers.read_file_content(nine_faces_file_path),
                detection_model=FaceDetectionModel.DETECTION03,
                recognition_model=FaceRecognitionModel.RECOGNITION04,
                return_face_id=True,
            )

            face_ids = [str(face.face_id) for face in detect_result1]
            self.logger.info(f"Detect {len(face_ids)} faces from the file '{nine_faces_file_path}': {face_ids}")

            # Detect face from 'IMAGE_FINDSIMILAR'
            find_similar_file_path = helpers.get_image_path(TestImages.IMAGE_FINDSIMILAR)
            detect_result2 = await face_client.detect(
                helpers.read_file_content(find_similar_file_path),
                detection_model=FaceDetectionModel.DETECTION03,
                recognition_model=FaceRecognitionModel.RECOGNITION04,
                return_face_id=True,
            )

            assert len(detect_result2) == 1
            face_id = str(detect_result2[0].face_id)
            self.logger.info(f"Detect 1 face from the file '{find_similar_file_path}': {face_id}")

            # Call Find Similar
            # The default find similar mode is MATCH_PERSON
            find_similar_result1 = await face_client.find_similar(face_id=face_id, face_ids=face_ids)
            self.logger.info("Find Similar with matchPerson mode:")
            for r in find_similar_result1:
                self.logger.info(f"{beautify_json(r.as_dict())}")

    async def find_similar_from_large_face_list(self):
        from azure.core.credentials import AzureKeyCredential
        from azure.ai.vision.face.aio import FaceAdministrationClient, FaceClient
        from azure.ai.vision.face.models import (
            FaceDetectionModel,
            FaceRecognitionModel,
            FindSimilarMatchMode,
        )

        async with FaceAdministrationClient(
            endpoint=self.endpoint, credential=AzureKeyCredential(self.key)
        ) as face_admin_client, FaceClient(
            endpoint=self.endpoint, credential=AzureKeyCredential(self.key)
        ) as face_client:

            large_face_list_id = "lfl01"
            # Prepare a LargeFaceList which contains several faces.
            self.logger.info(f"Create a LargeFaceList, id = {large_face_list_id}")
            await face_admin_client.large_face_list.create(
                large_face_list_id,
                name="List of Face",
                user_data="Large Face List for Test",
                recognition_model=FaceRecognitionModel.RECOGNITION04,
            )

            # Add faces into the largeFaceList
            self.logger.info(f"Add faces into the LargeFaceList {large_face_list_id}")
            await face_admin_client.large_face_list.add_face(
                large_face_list_id,
                helpers.read_file_content(helpers.get_image_path(TestImages.IMAGE_FAMILY_1_MOM_1)),
                detection_model=FaceDetectionModel.DETECTION02,
                user_data="Lady1-1",
            )
            await face_admin_client.large_face_list.add_face(
                large_face_list_id,
                helpers.read_file_content(helpers.get_image_path(TestImages.IMAGE_FAMILY_1_MOM_2)),
                detection_model=FaceDetectionModel.DETECTION02,
                user_data="Lady1-2",
            )
            await face_admin_client.large_face_list.add_face(
                large_face_list_id,
                helpers.read_file_content(helpers.get_image_path(TestImages.IMAGE_FAMILY_2_LADY_1)),
                detection_model=FaceDetectionModel.DETECTION02,
                user_data="Lady2-1",
            )
            await face_admin_client.large_face_list.add_face(
                large_face_list_id,
                helpers.read_file_content(helpers.get_image_path(TestImages.IMAGE_FAMILY_2_LADY_2)),
                detection_model=FaceDetectionModel.DETECTION02,
                user_data="Lady2-2",
            )
            await face_admin_client.large_face_list.add_face(
                large_face_list_id,
                helpers.read_file_content(helpers.get_image_path(TestImages.IMAGE_FAMILY_3_LADY_1)),
                detection_model=FaceDetectionModel.DETECTION02,
                user_data="Lady3-1",
            )

            # The LargeFaceList should be trained to make it ready for find similar operation.
            self.logger.info(f"Train the LargeFaceList {large_face_list_id}, and wait until the operation completes.")
            poller = await face_admin_client.large_face_list.begin_train(large_face_list_id, polling_interval=30)
            await poller.wait()  # Keep polling until the "Train" operation completes.

            # Detect face from 'IMAGE_FINDSIMILAR'
            find_similar_file_path = helpers.get_image_path(TestImages.IMAGE_FINDSIMILAR)
            detect_result = await face_client.detect(
                helpers.read_file_content(find_similar_file_path),
                detection_model=FaceDetectionModel.DETECTION03,
                recognition_model=FaceRecognitionModel.RECOGNITION04,
                return_face_id=True,
            )

            assert len(detect_result) == 1
            face_id = str(detect_result[0].face_id)
            self.logger.info(f"Detect 1 face from the file '{find_similar_file_path}': {face_id}")

            # Call Find Similar
            find_similar_result = await face_client.find_similar_from_large_face_list(
                face_id=face_id,
                large_face_list_id=large_face_list_id,
                max_num_of_candidates_returned=3,
                mode=FindSimilarMatchMode.MATCH_FACE,
            )
            self.logger.info("Find Similar with matchFace mode:")
            for r in find_similar_result:
                self.logger.info(f"{beautify_json(r.as_dict())}")

            # Clean up: Remove the LargeFaceList
            self.logger.info(f"Remove the LargeFaceList {large_face_list_id}")
            await face_admin_client.large_face_list.delete(large_face_list_id)


async def main():
    sample = FindSimilarFaces()
    await sample.find_similar_from_face_ids()
    await sample.find_similar_from_large_face_list()


if __name__ == "__main__":
    asyncio.run(main())