File: sample_recognize_content.py

package info (click to toggle)
python-azure 20250603%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 851,724 kB
  • sloc: python: 7,362,925; ansic: 804; javascript: 287; makefile: 195; sh: 145; xml: 109
file content (98 lines) | stat: -rw-r--r-- 4,328 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# coding: utf-8

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------

"""
FILE: sample_recognize_content.py

DESCRIPTION:
    This sample demonstrates how to extract text, selection marks, and content information from a document
    given through a file.

    Note that selection marks returned from begin_recognize_content() do not return the text associated with
    the checkbox. For the API to return this information, train a custom model to recognize the checkbox and its text.
    See sample_train_model_with_labels.py for more information.

USAGE:
    python sample_recognize_content.py

    Set the environment variables with your own values before running the sample:
    1) AZURE_FORM_RECOGNIZER_ENDPOINT - the endpoint to your Form Recognizer resource.
    2) AZURE_FORM_RECOGNIZER_KEY - your Form Recognizer API key
"""

import os


def format_bounding_box(bounding_box):
    if not bounding_box:
        return "N/A"
    return ", ".join(["[{}, {}]".format(p.x, p.y) for p in bounding_box])


class RecognizeContentSample(object):

    def recognize_content(self):
        path_to_sample_forms = os.path.abspath(os.path.join(os.path.abspath(__file__),
                                                            "..", "..", "./sample_forms/forms/form_selection_mark.png"))
        # [START recognize_content]
        from azure.core.credentials import AzureKeyCredential
        from azure.ai.formrecognizer import FormRecognizerClient

        endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"]
        key = os.environ["AZURE_FORM_RECOGNIZER_KEY"]

        form_recognizer_client = FormRecognizerClient(endpoint=endpoint, credential=AzureKeyCredential(key))
        with open(path_to_sample_forms, "rb") as f:
            poller = form_recognizer_client.begin_recognize_content(form=f)
        form_pages = poller.result()

        for idx, content in enumerate(form_pages):
            print("----Recognizing content from page #{}----".format(idx+1))
            print("Page has width: {} and height: {}, measured with unit: {}".format(
                content.width,
                content.height,
                content.unit
            ))
            for table_idx, table in enumerate(content.tables):
                print("Table # {} has {} rows and {} columns".format(table_idx, table.row_count, table.column_count))
                print("Table # {} location on page: {}".format(table_idx, format_bounding_box(table.bounding_box)))
                for cell in table.cells:
                    print("...Cell[{}][{}] has text '{}' within bounding box '{}'".format(
                        cell.row_index,
                        cell.column_index,
                        cell.text,
                        format_bounding_box(cell.bounding_box)
                    ))

            for line_idx, line in enumerate(content.lines):
                print("Line # {} has word count '{}' and text '{}' within bounding box '{}'".format(
                    line_idx,
                    len(line.words),
                    line.text,
                    format_bounding_box(line.bounding_box)
                ))
                if line.appearance:
                    if line.appearance.style_name == "handwriting" and line.appearance.style_confidence > 0.8:
                        print("Text line '{}' is handwritten and might be a signature.".format(line.text))
                for word in line.words:
                    print("...Word '{}' has a confidence of {}".format(word.text, word.confidence))

            for selection_mark in content.selection_marks:
                print("Selection mark is '{}' within bounding box '{}' and has a confidence of {}".format(
                    selection_mark.state,
                    format_bounding_box(selection_mark.bounding_box),
                    selection_mark.confidence
                ))
            print("----------------------------------------")

        # [END recognize_content]


if __name__ == '__main__':
    sample = RecognizeContentSample()
    sample.recognize_content()