File: sample_complete_order_discrepancy_inference.py

package info (click to toggle)
python-azure 20250603%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 851,724 kB
  • sloc: python: 7,362,925; ansic: 804; javascript: 287; makefile: 195; sh: 145; xml: 109
file content (148 lines) | stat: -rw-r--r-- 6,664 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.


"""
FILE: sample_complete_order_discrepancy_inference.py

DESCRIPTION:
The sample_complete_order_discrepancy_inference.py module processes a sample radiology document with the Radiology Insights service.
It will initialize a RadiologyInsightsClient, build a Radiology Insights request with the sample document,
submit it to the client, RadiologyInsightsClient, and display
-the Complete Order Discrepancy order type,
-the missing body parts, and
-the missing body part measurements     


USAGE:

1. Set the environment variables with your own values before running the sample:
    - AZURE_HEALTH_INSIGHTS_ENDPOINT - the endpoint to your source Health Insights resource.
    - For more details how to use DefaultAzureCredential, please take a look at https://learn.microsoft.com/python/api/azure-identity/azure.identity.defaultazurecredential

2. python sample_complete_order_discrepancy_inference.py
   
"""
import datetime
import os
import uuid

from azure.identity import DefaultAzureCredential
from azure.healthinsights.radiologyinsights import RadiologyInsightsClient
from azure.healthinsights.radiologyinsights import models


def radiology_insights_sync() -> None:
    credential = DefaultAzureCredential()
    ENDPOINT = os.environ["AZURE_HEALTH_INSIGHTS_ENDPOINT"]

    job_id = str(uuid.uuid4())

    radiology_insights_client = RadiologyInsightsClient(endpoint=ENDPOINT, credential=credential)

    doc_content1 = """CLINICAL HISTORY:   
    20-year-old female presenting with abdominal pain. Surgical history significant for appendectomy.
    COMPARISON:   
    Right upper quadrant sonographic performed 1 day prior.
    TECHNIQUE:   
    Transabdominal grayscale pelvic sonography with duplex color Doppler and spectral waveform analysis of the ovaries.
    FINDINGS:   
    The uterus is unremarkable given the transabdominal technique with endometrial echo complex within physiologic normal limits. The ovaries are symmetric in size, measuring 2.5 x 1.2 x 3.0 cm and the left measuring 2.8 x 1.5 x 1.9 cm.\n On duplex imaging, Doppler signal is symmetric.
    IMPRESSION:   
    1. Normal pelvic sonography. Findings of testicular torsion.
    A new US pelvis within the next 6 months is recommended.
    These results have been discussed with Dr. Jones at 3 PM on November 5 2020."""

    # Create ordered procedure
    procedure_coding = models.Coding(
        system="Http://hl7.org/fhir/ValueSet/cpt-all",
        code="USPELVIS",
        display="US PELVIS COMPLETE",
    )
    procedure_code = models.CodeableConcept(coding=[procedure_coding])
    ordered_procedure = models.OrderedProcedure(description="US PELVIS COMPLETE", code=procedure_code)
    # Create encounter
    start = datetime.datetime(2021, 8, 28, 0, 0, 0, 0)
    end = datetime.datetime(2021, 8, 28, 0, 0, 0, 0)
    encounter = models.PatientEncounter(
        id="encounter2",
        class_property=models.EncounterClass.IN_PATIENT,
        period=models.TimePeriod(start=start, end=end),
    )
    # Create patient info
    birth_date = datetime.date(1959, 11, 11)
    patient_info = models.PatientDetails(sex=models.PatientSex.FEMALE, birth_date=birth_date)
    # Create author
    author = models.DocumentAuthor(id="author2", full_name="authorName2")

    create_date_time = datetime.datetime(2024, 2, 19, 0, 0, 0, 0, tzinfo=datetime.timezone.utc)
    patient_document1 = models.PatientDocument(
        type=models.DocumentType.NOTE,
        clinical_type=models.ClinicalDocumentType.RADIOLOGY_REPORT,
        id="doc2",
        content=models.DocumentContent(source_type=models.DocumentContentSourceType.INLINE, value=doc_content1),
        created_at=create_date_time,
        specialty_type=models.SpecialtyType.RADIOLOGY,
        administrative_metadata=models.DocumentAdministrativeMetadata(
            ordered_procedures=[ordered_procedure], encounter_id="encounter2"
        ),
        authors=[author],
        language="en",
    )

    # Construct patient
    patient1 = models.PatientRecord(
        id="patient_id2",
        details=patient_info,
        encounters=[encounter],
        patient_documents=[patient_document1],
    )

    # Create a configuration
    configuration = models.RadiologyInsightsModelConfiguration(verbose=False, include_evidence=True, locale="en-US")

    # Construct the request with the patient and configuration
    patient_data = models.RadiologyInsightsJob(
        job_data=models.RadiologyInsightsData(patients=[patient1], configuration=configuration)
    )

    # Health Insights Radiology Insights
    try:
        poller = radiology_insights_client.begin_infer_radiology_insights(
            id=job_id,
            resource=patient_data,
        )
        radiology_insights_result = poller.result()
        display_complete_order_discrepancy(radiology_insights_result)
    except Exception as ex:
        raise ex


def display_complete_order_discrepancy(radiology_insights_result):
    for patient_result in radiology_insights_result.patient_results:
        for ri_inference in patient_result.inferences:
            if ri_inference.kind == models.RadiologyInsightsInferenceType.COMPLETE_ORDER_DISCREPANCY:
                print(f"Complete Order Discrepancy Inference found")
                ordertype = ri_inference.order_type
                for coding in ordertype.coding:
                    print(f"Complete Order Discrepancy: Order Type: {coding.system} {coding.code} {coding.display}")
                if not ri_inference.missing_body_parts:
                    print(f"Complete Order Discrepancy: Missing Body Parts: empty list")
                else:
                    for missingbodypart in ri_inference.missing_body_parts:
                        for coding in missingbodypart.coding:
                            print(
                                f"Complete Order Discrepancy: Missing Body Part: {coding.system} {coding.code} {coding.display}"
                            )
                if not ri_inference.missing_body_part_measurements:
                    print(f"Complete Order Discrepancy: Missing Body Part Measurements: empty list")
                else:
                    for missingbodypartmeasurement in ri_inference.missing_body_part_measurements:
                        for coding in missingbodypartmeasurement.coding:
                            print(
                                f"Complete Order Discrepancy: Missing Body Part Measurement: {coding.system} {coding.code} {coding.display}"
                            )


if __name__ == "__main__":
    radiology_insights_sync()