File: sample_laterality_discrepancy_inference_async.py

package info (click to toggle)
python-azure 20250603%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 851,724 kB
  • sloc: python: 7,362,925; ansic: 804; javascript: 287; makefile: 195; sh: 145; xml: 109
file content (133 lines) | stat: -rw-r--r-- 5,447 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.

"""
FILE: sample_laterality_discrepancy_inference_async.py

DESCRIPTION:
The sample_laterality_discrepancy_inference_async.py module processes a sample radiology document with the Radiology Insights service.
It will initialize an asynchronous RadiologyInsightsClient, build a Radiology Insights request with the sample document,
submit it to the client, RadiologyInsightsClient, and display the Laterality Mismatch indication and discrepancy type.     


USAGE:

1. Set the environment variables with your own values before running the sample:
    - AZURE_HEALTH_INSIGHTS_ENDPOINT - the endpoint to your source Health Insights resource.
    - For more details how to use DefaultAzureCredential, please take a look at https://learn.microsoft.com/python/api/azure-identity/azure.identity.defaultazurecredential

2. python sample_laterality_discrepancy_inference_async.py
   
"""
import asyncio
import datetime
import os
import uuid


from azure.identity.aio import DefaultAzureCredential
from azure.healthinsights.radiologyinsights.aio import RadiologyInsightsClient
from azure.healthinsights.radiologyinsights import models


async def radiology_insights_async() -> None:

    credential = DefaultAzureCredential()
    ENDPOINT = os.environ["AZURE_HEALTH_INSIGHTS_ENDPOINT"]

    job_id = str(uuid.uuid4())

    radiology_insights_client = RadiologyInsightsClient(endpoint=ENDPOINT, credential=credential)

    doc_content1 = """Exam:   US LT BREAST TARGETED
    Technique:  Targeted imaging of the  right breast  is performed.
    Findings:
    Targeted imaging of the left breast is performed from the 6:00 to the 9:00 position.
    At the 6:00 position, 5 cm from the nipple, there is a 3 x 2 x 4 mm minimally hypoechoic mass with a peripheral calcification. 
    This may correspond to the mammographic finding. No other cystic or solid masses visualized."""

    # Create ordered procedure
    procedure_coding = models.Coding(
        system="Https://loinc.org",
        code="26688-1",
        display="US BREAST - LEFT LIMITED",
    )
    procedure_code = models.CodeableConcept(coding=[procedure_coding])
    ordered_procedure = models.OrderedProcedure(description="US BREAST - LEFT LIMITED", code=procedure_code)
    # Create encounter
    start = datetime.datetime(2021, 8, 28, 0, 0, 0, 0)
    end = datetime.datetime(2021, 8, 28, 0, 0, 0, 0)
    encounter = models.PatientEncounter(
        id="encounter2",
        class_property=models.EncounterClass.IN_PATIENT,
        period=models.TimePeriod(start=start, end=end),
    )
    # Create patient info
    birth_date = datetime.date(1959, 11, 11)
    patient_info = models.PatientDetails(sex=models.PatientSex.FEMALE, birth_date=birth_date)
    # Create author
    author = models.DocumentAuthor(id="author2", full_name="authorName2")

    create_date_time = datetime.datetime(2024, 2, 19, 0, 0, 0, 0, tzinfo=datetime.timezone.utc)
    patient_document1 = models.PatientDocument(
        type=models.DocumentType.NOTE,
        clinical_type=models.ClinicalDocumentType.RADIOLOGY_REPORT,
        id="doc2",
        content=models.DocumentContent(source_type=models.DocumentContentSourceType.INLINE, value=doc_content1),
        created_at=create_date_time,
        specialty_type=models.SpecialtyType.RADIOLOGY,
        administrative_metadata=models.DocumentAdministrativeMetadata(
            ordered_procedures=[ordered_procedure], encounter_id="encounter2"
        ),
        authors=[author],
        language="en",
    )

    # Construct patient
    patient1 = models.PatientRecord(
        id="patient_id2",
        details=patient_info,
        encounters=[encounter],
        patient_documents=[patient_document1],
    )

    # Create a configuration
    configuration = models.RadiologyInsightsModelConfiguration(verbose=False, include_evidence=True, locale="en-US")

    # Construct the request with the patient and configuration
    patient_data = models.RadiologyInsightsJob(
        job_data=models.RadiologyInsightsData(patients=[patient1], configuration=configuration)
    )

    try:
        async with radiology_insights_client:
            poller = await radiology_insights_client.begin_infer_radiology_insights(
                id=job_id,
                resource=patient_data,
            )
            radiology_insights_result = await poller.result()

            display_laterality_discrepancy(radiology_insights_result)
    except Exception as ex:
        raise ex


def display_laterality_discrepancy(radiology_insights_result):
    # [START display_laterality_discrepancy]
    for patient_result in radiology_insights_result.patient_results:
        for ri_inference in patient_result.inferences:
            if ri_inference.kind == models.RadiologyInsightsInferenceType.LATERALITY_DISCREPANCY:
                print(f"Laterality Discrepancy Inference found")
                indication = ri_inference.laterality_indication
                for code in indication.coding:
                    print(f"Laterality Discrepancy: Laterality Indication: {code.system} {code.code} {code.display}")
                print(f"Laterality Discrepancy: Discrepancy Type: {ri_inference.discrepancy_type}")

    # [END display_laterality_discrepancy]


if __name__ == "__main__":
    try:
        asyncio.run(radiology_insights_async())
    except Exception as ex:
        raise ex