File: _models_py3.py

package info (click to toggle)
python-azure 20250603%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 851,724 kB
  • sloc: python: 7,362,925; ansic: 804; javascript: 287; makefile: 195; sh: 145; xml: 109
file content (22807 lines) | stat: -rw-r--r-- 1,032,464 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
21049
21050
21051
21052
21053
21054
21055
21056
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081
21082
21083
21084
21085
21086
21087
21088
21089
21090
21091
21092
21093
21094
21095
21096
21097
21098
21099
21100
21101
21102
21103
21104
21105
21106
21107
21108
21109
21110
21111
21112
21113
21114
21115
21116
21117
21118
21119
21120
21121
21122
21123
21124
21125
21126
21127
21128
21129
21130
21131
21132
21133
21134
21135
21136
21137
21138
21139
21140
21141
21142
21143
21144
21145
21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
21156
21157
21158
21159
21160
21161
21162
21163
21164
21165
21166
21167
21168
21169
21170
21171
21172
21173
21174
21175
21176
21177
21178
21179
21180
21181
21182
21183
21184
21185
21186
21187
21188
21189
21190
21191
21192
21193
21194
21195
21196
21197
21198
21199
21200
21201
21202
21203
21204
21205
21206
21207
21208
21209
21210
21211
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
21233
21234
21235
21236
21237
21238
21239
21240
21241
21242
21243
21244
21245
21246
21247
21248
21249
21250
21251
21252
21253
21254
21255
21256
21257
21258
21259
21260
21261
21262
21263
21264
21265
21266
21267
21268
21269
21270
21271
21272
21273
21274
21275
21276
21277
21278
21279
21280
21281
21282
21283
21284
21285
21286
21287
21288
21289
21290
21291
21292
21293
21294
21295
21296
21297
21298
21299
21300
21301
21302
21303
21304
21305
21306
21307
21308
21309
21310
21311
21312
21313
21314
21315
21316
21317
21318
21319
21320
21321
21322
21323
21324
21325
21326
21327
21328
21329
21330
21331
21332
21333
21334
21335
21336
21337
21338
21339
21340
21341
21342
21343
21344
21345
21346
21347
21348
21349
21350
21351
21352
21353
21354
21355
21356
21357
21358
21359
21360
21361
21362
21363
21364
21365
21366
21367
21368
21369
21370
21371
21372
21373
21374
21375
21376
21377
21378
21379
21380
21381
21382
21383
21384
21385
21386
21387
21388
21389
21390
21391
21392
21393
21394
21395
21396
21397
21398
21399
21400
21401
21402
21403
21404
21405
21406
21407
21408
21409
21410
21411
21412
21413
21414
21415
21416
21417
21418
21419
21420
21421
21422
21423
21424
21425
21426
21427
21428
21429
21430
21431
21432
21433
21434
21435
21436
21437
21438
21439
21440
21441
21442
21443
21444
21445
21446
21447
21448
21449
21450
21451
21452
21453
21454
21455
21456
21457
21458
21459
21460
21461
21462
21463
21464
21465
21466
21467
21468
21469
21470
21471
21472
21473
21474
21475
21476
21477
21478
21479
21480
21481
21482
21483
21484
21485
21486
21487
21488
21489
21490
21491
21492
21493
21494
21495
21496
21497
21498
21499
21500
21501
21502
21503
21504
21505
21506
21507
21508
21509
21510
21511
21512
21513
21514
21515
21516
21517
21518
21519
21520
21521
21522
21523
21524
21525
21526
21527
21528
21529
21530
21531
21532
21533
21534
21535
21536
21537
21538
21539
21540
21541
21542
21543
21544
21545
21546
21547
21548
21549
21550
21551
21552
21553
21554
21555
21556
21557
21558
21559
21560
21561
21562
21563
21564
21565
21566
21567
21568
21569
21570
21571
21572
21573
21574
21575
21576
21577
21578
21579
21580
21581
21582
21583
21584
21585
21586
21587
21588
21589
21590
21591
21592
21593
21594
21595
21596
21597
21598
21599
21600
21601
21602
21603
21604
21605
21606
21607
21608
21609
21610
21611
21612
21613
21614
21615
21616
21617
21618
21619
21620
21621
21622
21623
21624
21625
21626
21627
21628
21629
21630
21631
21632
21633
21634
21635
21636
21637
21638
21639
21640
21641
21642
21643
21644
21645
21646
21647
21648
21649
21650
21651
21652
21653
21654
21655
21656
21657
21658
21659
21660
21661
21662
21663
21664
21665
21666
21667
21668
21669
21670
21671
21672
21673
21674
21675
21676
21677
21678
21679
21680
21681
21682
21683
21684
21685
21686
21687
21688
21689
21690
21691
21692
21693
21694
21695
21696
21697
21698
21699
21700
21701
21702
21703
21704
21705
21706
21707
21708
21709
21710
21711
21712
21713
21714
21715
21716
21717
21718
21719
21720
21721
21722
21723
21724
21725
21726
21727
21728
21729
21730
21731
21732
21733
21734
21735
21736
21737
21738
21739
21740
21741
21742
21743
21744
21745
21746
21747
21748
21749
21750
21751
21752
21753
21754
21755
21756
21757
21758
21759
21760
21761
21762
21763
21764
21765
21766
21767
21768
21769
21770
21771
21772
21773
21774
21775
21776
21777
21778
21779
21780
21781
21782
21783
21784
21785
21786
21787
21788
21789
21790
21791
21792
21793
21794
21795
21796
21797
21798
21799
21800
21801
21802
21803
21804
21805
21806
21807
21808
21809
21810
21811
21812
21813
21814
21815
21816
21817
21818
21819
21820
21821
21822
21823
21824
21825
21826
21827
21828
21829
21830
21831
21832
21833
21834
21835
21836
21837
21838
21839
21840
21841
21842
21843
21844
21845
21846
21847
21848
21849
21850
21851
21852
21853
21854
21855
21856
21857
21858
21859
21860
21861
21862
21863
21864
21865
21866
21867
21868
21869
21870
21871
21872
21873
21874
21875
21876
21877
21878
21879
21880
21881
21882
21883
21884
21885
21886
21887
21888
21889
21890
21891
21892
21893
21894
21895
21896
21897
21898
21899
21900
21901
21902
21903
21904
21905
21906
21907
21908
21909
21910
21911
21912
21913
21914
21915
21916
21917
21918
21919
21920
21921
21922
21923
21924
21925
21926
21927
21928
21929
21930
21931
21932
21933
21934
21935
21936
21937
21938
21939
21940
21941
21942
21943
21944
21945
21946
21947
21948
21949
21950
21951
21952
21953
21954
21955
21956
21957
21958
21959
21960
21961
21962
21963
21964
21965
21966
21967
21968
21969
21970
21971
21972
21973
21974
21975
21976
21977
21978
21979
21980
21981
21982
21983
21984
21985
21986
21987
21988
21989
21990
21991
21992
21993
21994
21995
21996
21997
21998
21999
22000
22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22022
22023
22024
22025
22026
22027
22028
22029
22030
22031
22032
22033
22034
22035
22036
22037
22038
22039
22040
22041
22042
22043
22044
22045
22046
22047
22048
22049
22050
22051
22052
22053
22054
22055
22056
22057
22058
22059
22060
22061
22062
22063
22064
22065
22066
22067
22068
22069
22070
22071
22072
22073
22074
22075
22076
22077
22078
22079
22080
22081
22082
22083
22084
22085
22086
22087
22088
22089
22090
22091
22092
22093
22094
22095
22096
22097
22098
22099
22100
22101
22102
22103
22104
22105
22106
22107
22108
22109
22110
22111
22112
22113
22114
22115
22116
22117
22118
22119
22120
22121
22122
22123
22124
22125
22126
22127
22128
22129
22130
22131
22132
22133
22134
22135
22136
22137
22138
22139
22140
22141
22142
22143
22144
22145
22146
22147
22148
22149
22150
22151
22152
22153
22154
22155
22156
22157
22158
22159
22160
22161
22162
22163
22164
22165
22166
22167
22168
22169
22170
22171
22172
22173
22174
22175
22176
22177
22178
22179
22180
22181
22182
22183
22184
22185
22186
22187
22188
22189
22190
22191
22192
22193
22194
22195
22196
22197
22198
22199
22200
22201
22202
22203
22204
22205
22206
22207
22208
22209
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
22240
22241
22242
22243
22244
22245
22246
22247
22248
22249
22250
22251
22252
22253
22254
22255
22256
22257
22258
22259
22260
22261
22262
22263
22264
22265
22266
22267
22268
22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
22279
22280
22281
22282
22283
22284
22285
22286
22287
22288
22289
22290
22291
22292
22293
22294
22295
22296
22297
22298
22299
22300
22301
22302
22303
22304
22305
22306
22307
22308
22309
22310
22311
22312
22313
22314
22315
22316
22317
22318
22319
22320
22321
22322
22323
22324
22325
22326
22327
22328
22329
22330
22331
22332
22333
22334
22335
22336
22337
22338
22339
22340
22341
22342
22343
22344
22345
22346
22347
22348
22349
22350
22351
22352
22353
22354
22355
22356
22357
22358
22359
22360
22361
22362
22363
22364
22365
22366
22367
22368
22369
22370
22371
22372
22373
22374
22375
22376
22377
22378
22379
22380
22381
22382
22383
22384
22385
22386
22387
22388
22389
22390
22391
22392
22393
22394
22395
22396
22397
22398
22399
22400
22401
22402
22403
22404
22405
22406
22407
22408
22409
22410
22411
22412
22413
22414
22415
22416
22417
22418
22419
22420
22421
22422
22423
22424
22425
22426
22427
22428
22429
22430
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
22446
22447
22448
22449
22450
22451
22452
22453
22454
22455
22456
22457
22458
22459
22460
22461
22462
22463
22464
22465
22466
22467
22468
22469
22470
22471
22472
22473
22474
22475
22476
22477
22478
22479
22480
22481
22482
22483
22484
22485
22486
22487
22488
22489
22490
22491
22492
22493
22494
22495
22496
22497
22498
22499
22500
22501
22502
22503
22504
22505
22506
22507
22508
22509
22510
22511
22512
22513
22514
22515
22516
22517
22518
22519
22520
22521
22522
22523
22524
22525
22526
22527
22528
22529
22530
22531
22532
22533
22534
22535
22536
22537
22538
22539
22540
22541
22542
22543
22544
22545
22546
22547
22548
22549
22550
22551
22552
22553
22554
22555
22556
22557
22558
22559
22560
22561
22562
22563
22564
22565
22566
22567
22568
22569
22570
22571
22572
22573
22574
22575
22576
22577
22578
22579
22580
22581
22582
22583
22584
22585
22586
22587
22588
22589
22590
22591
22592
22593
22594
22595
22596
22597
22598
22599
22600
22601
22602
22603
22604
22605
22606
22607
22608
22609
22610
22611
22612
22613
22614
22615
22616
22617
22618
22619
22620
22621
22622
22623
22624
22625
22626
22627
22628
22629
22630
22631
22632
22633
22634
22635
22636
22637
22638
22639
22640
22641
22642
22643
22644
22645
22646
22647
22648
22649
22650
22651
22652
22653
22654
22655
22656
22657
22658
22659
22660
22661
22662
22663
22664
22665
22666
22667
22668
22669
22670
22671
22672
22673
22674
22675
22676
22677
22678
22679
22680
22681
22682
22683
22684
22685
22686
22687
22688
22689
22690
22691
22692
22693
22694
22695
22696
22697
22698
22699
22700
22701
22702
22703
22704
22705
22706
22707
22708
22709
22710
22711
22712
22713
22714
22715
22716
22717
22718
22719
22720
22721
22722
22723
22724
22725
22726
22727
22728
22729
22730
22731
22732
22733
22734
22735
22736
22737
22738
22739
22740
22741
22742
22743
22744
22745
22746
22747
22748
22749
22750
22751
22752
22753
22754
22755
22756
22757
22758
22759
22760
22761
22762
22763
22764
22765
22766
22767
22768
22769
22770
22771
22772
22773
22774
22775
22776
22777
22778
22779
22780
22781
22782
22783
22784
22785
22786
22787
22788
22789
22790
22791
22792
22793
22794
22795
22796
22797
22798
22799
22800
22801
22802
22803
22804
22805
22806
22807
# coding=utf-8
# pylint: disable=too-many-lines
# --------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for license information.
# Code generated by Microsoft (R) AutoRest Code Generator.
# Changes may cause incorrect behavior and will be lost if the code is regenerated.
# --------------------------------------------------------------------------

import datetime
import sys
from typing import Any, Dict, List, Optional, TYPE_CHECKING, Union

from .. import _serialization

if sys.version_info >= (3, 9):
    from collections.abc import MutableMapping
else:
    from typing import MutableMapping  # type: ignore  # pylint: disable=ungrouped-imports

if TYPE_CHECKING:
    # pylint: disable=unused-import,ungrouped-imports
    from .. import models as _models
JSON = MutableMapping[str, Any]  # pylint: disable=unsubscriptable-object


class DatastoreCredentials(_serialization.Model):
    """Base definition for datastore credentials.

    You probably want to use the sub-classes and not this class directly. Known sub-classes are:
    AccountKeyDatastoreCredentials, CertificateDatastoreCredentials, NoneDatastoreCredentials,
    SasDatastoreCredentials, ServicePrincipalDatastoreCredentials

    All required parameters must be populated in order to send to Azure.

    :ivar credentials_type: [Required] Credential type used to authentication with storage.
     Required. Known values are: "AccountKey", "Certificate", "None", "Sas", and "ServicePrincipal".
    :vartype credentials_type: str or ~azure.mgmt.machinelearningservices.models.CredentialsType
    """

    _validation = {
        "credentials_type": {"required": True},
    }

    _attribute_map = {
        "credentials_type": {"key": "credentialsType", "type": "str"},
    }

    _subtype_map = {
        "credentials_type": {
            "AccountKey": "AccountKeyDatastoreCredentials",
            "Certificate": "CertificateDatastoreCredentials",
            "None": "NoneDatastoreCredentials",
            "Sas": "SasDatastoreCredentials",
            "ServicePrincipal": "ServicePrincipalDatastoreCredentials",
        }
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.credentials_type: Optional[str] = None


class AccountKeyDatastoreCredentials(DatastoreCredentials):
    """Account key datastore credentials configuration.

    All required parameters must be populated in order to send to Azure.

    :ivar credentials_type: [Required] Credential type used to authentication with storage.
     Required. Known values are: "AccountKey", "Certificate", "None", "Sas", and "ServicePrincipal".
    :vartype credentials_type: str or ~azure.mgmt.machinelearningservices.models.CredentialsType
    :ivar secrets: [Required] Storage account secrets. Required.
    :vartype secrets: ~azure.mgmt.machinelearningservices.models.AccountKeyDatastoreSecrets
    """

    _validation = {
        "credentials_type": {"required": True},
        "secrets": {"required": True},
    }

    _attribute_map = {
        "credentials_type": {"key": "credentialsType", "type": "str"},
        "secrets": {"key": "secrets", "type": "AccountKeyDatastoreSecrets"},
    }

    def __init__(self, *, secrets: "_models.AccountKeyDatastoreSecrets", **kwargs: Any) -> None:
        """
        :keyword secrets: [Required] Storage account secrets. Required.
        :paramtype secrets: ~azure.mgmt.machinelearningservices.models.AccountKeyDatastoreSecrets
        """
        super().__init__(**kwargs)
        self.credentials_type: str = "AccountKey"
        self.secrets = secrets


class DatastoreSecrets(_serialization.Model):
    """Base definition for datastore secrets.

    You probably want to use the sub-classes and not this class directly. Known sub-classes are:
    AccountKeyDatastoreSecrets, CertificateDatastoreSecrets, SasDatastoreSecrets,
    ServicePrincipalDatastoreSecrets

    All required parameters must be populated in order to send to Azure.

    :ivar secrets_type: [Required] Credential type used to authentication with storage. Required.
     Known values are: "AccountKey", "Certificate", "Sas", and "ServicePrincipal".
    :vartype secrets_type: str or ~azure.mgmt.machinelearningservices.models.SecretsType
    """

    _validation = {
        "secrets_type": {"required": True},
    }

    _attribute_map = {
        "secrets_type": {"key": "secretsType", "type": "str"},
    }

    _subtype_map = {
        "secrets_type": {
            "AccountKey": "AccountKeyDatastoreSecrets",
            "Certificate": "CertificateDatastoreSecrets",
            "Sas": "SasDatastoreSecrets",
            "ServicePrincipal": "ServicePrincipalDatastoreSecrets",
        }
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.secrets_type: Optional[str] = None


class AccountKeyDatastoreSecrets(DatastoreSecrets):
    """Datastore account key secrets.

    All required parameters must be populated in order to send to Azure.

    :ivar secrets_type: [Required] Credential type used to authentication with storage. Required.
     Known values are: "AccountKey", "Certificate", "Sas", and "ServicePrincipal".
    :vartype secrets_type: str or ~azure.mgmt.machinelearningservices.models.SecretsType
    :ivar key: Storage account key.
    :vartype key: str
    """

    _validation = {
        "secrets_type": {"required": True},
    }

    _attribute_map = {
        "secrets_type": {"key": "secretsType", "type": "str"},
        "key": {"key": "key", "type": "str"},
    }

    def __init__(self, *, key: Optional[str] = None, **kwargs: Any) -> None:
        """
        :keyword key: Storage account key.
        :paramtype key: str
        """
        super().__init__(**kwargs)
        self.secrets_type: str = "AccountKey"
        self.key = key


class AcrDetails(_serialization.Model):
    """Details of ACR account to be used for the Registry.

    :ivar system_created_acr_account: Details of system created ACR account to be used for the
     Registry.
    :vartype system_created_acr_account:
     ~azure.mgmt.machinelearningservices.models.SystemCreatedAcrAccount
    :ivar user_created_acr_account: Details of user created ACR account to be used for the
     Registry.
    :vartype user_created_acr_account:
     ~azure.mgmt.machinelearningservices.models.UserCreatedAcrAccount
    """

    _attribute_map = {
        "system_created_acr_account": {"key": "systemCreatedAcrAccount", "type": "SystemCreatedAcrAccount"},
        "user_created_acr_account": {"key": "userCreatedAcrAccount", "type": "UserCreatedAcrAccount"},
    }

    def __init__(
        self,
        *,
        system_created_acr_account: Optional["_models.SystemCreatedAcrAccount"] = None,
        user_created_acr_account: Optional["_models.UserCreatedAcrAccount"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword system_created_acr_account: Details of system created ACR account to be used for the
         Registry.
        :paramtype system_created_acr_account:
         ~azure.mgmt.machinelearningservices.models.SystemCreatedAcrAccount
        :keyword user_created_acr_account: Details of user created ACR account to be used for the
         Registry.
        :paramtype user_created_acr_account:
         ~azure.mgmt.machinelearningservices.models.UserCreatedAcrAccount
        """
        super().__init__(**kwargs)
        self.system_created_acr_account = system_created_acr_account
        self.user_created_acr_account = user_created_acr_account


class AKSSchema(_serialization.Model):
    """AKSSchema.

    :ivar properties: AKS properties.
    :vartype properties: ~azure.mgmt.machinelearningservices.models.AKSSchemaProperties
    """

    _attribute_map = {
        "properties": {"key": "properties", "type": "AKSSchemaProperties"},
    }

    def __init__(self, *, properties: Optional["_models.AKSSchemaProperties"] = None, **kwargs: Any) -> None:
        """
        :keyword properties: AKS properties.
        :paramtype properties: ~azure.mgmt.machinelearningservices.models.AKSSchemaProperties
        """
        super().__init__(**kwargs)
        self.properties = properties


class Compute(_serialization.Model):
    """Machine Learning compute object.

    You probably want to use the sub-classes and not this class directly. Known sub-classes are:
    AKS, AmlCompute, ComputeInstance, DataFactory, DataLakeAnalytics, Databricks, HDInsight,
    Kubernetes, SynapseSpark, VirtualMachine

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar compute_type: The type of compute. Required. Known values are: "AKS", "Kubernetes",
     "AmlCompute", "ComputeInstance", "DataFactory", "VirtualMachine", "HDInsight", "Databricks",
     "DataLakeAnalytics", and "SynapseSpark".
    :vartype compute_type: str or ~azure.mgmt.machinelearningservices.models.ComputeType
    :ivar compute_location: Location for the underlying compute.
    :vartype compute_location: str
    :ivar provisioning_state: The provision state of the cluster. Valid values are Unknown,
     Updating, Provisioning, Succeeded, and Failed. Known values are: "Unknown", "Updating",
     "Creating", "Deleting", "Succeeded", "Failed", and "Canceled".
    :vartype provisioning_state: str or
     ~azure.mgmt.machinelearningservices.models.ProvisioningState
    :ivar description: The description of the Machine Learning compute.
    :vartype description: str
    :ivar created_on: The time at which the compute was created.
    :vartype created_on: ~datetime.datetime
    :ivar modified_on: The time at which the compute was last modified.
    :vartype modified_on: ~datetime.datetime
    :ivar resource_id: ARM resource id of the underlying compute.
    :vartype resource_id: str
    :ivar provisioning_errors: Errors during provisioning.
    :vartype provisioning_errors: list[~azure.mgmt.machinelearningservices.models.ErrorResponse]
    :ivar is_attached_compute: Indicating whether the compute was provisioned by user and brought
     from outside if true, or machine learning service provisioned it if false.
    :vartype is_attached_compute: bool
    :ivar disable_local_auth: Opt-out of local authentication and ensure customers can use only MSI
     and AAD exclusively for authentication.
    :vartype disable_local_auth: bool
    """

    _validation = {
        "compute_type": {"required": True},
        "provisioning_state": {"readonly": True},
        "created_on": {"readonly": True},
        "modified_on": {"readonly": True},
        "provisioning_errors": {"readonly": True},
        "is_attached_compute": {"readonly": True},
    }

    _attribute_map = {
        "compute_type": {"key": "computeType", "type": "str"},
        "compute_location": {"key": "computeLocation", "type": "str"},
        "provisioning_state": {"key": "provisioningState", "type": "str"},
        "description": {"key": "description", "type": "str"},
        "created_on": {"key": "createdOn", "type": "iso-8601"},
        "modified_on": {"key": "modifiedOn", "type": "iso-8601"},
        "resource_id": {"key": "resourceId", "type": "str"},
        "provisioning_errors": {"key": "provisioningErrors", "type": "[ErrorResponse]"},
        "is_attached_compute": {"key": "isAttachedCompute", "type": "bool"},
        "disable_local_auth": {"key": "disableLocalAuth", "type": "bool"},
    }

    _subtype_map = {
        "compute_type": {
            "AKS": "AKS",
            "AmlCompute": "AmlCompute",
            "ComputeInstance": "ComputeInstance",
            "DataFactory": "DataFactory",
            "DataLakeAnalytics": "DataLakeAnalytics",
            "Databricks": "Databricks",
            "HDInsight": "HDInsight",
            "Kubernetes": "Kubernetes",
            "SynapseSpark": "SynapseSpark",
            "VirtualMachine": "VirtualMachine",
        }
    }

    def __init__(
        self,
        *,
        compute_location: Optional[str] = None,
        description: Optional[str] = None,
        resource_id: Optional[str] = None,
        disable_local_auth: Optional[bool] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword compute_location: Location for the underlying compute.
        :paramtype compute_location: str
        :keyword description: The description of the Machine Learning compute.
        :paramtype description: str
        :keyword resource_id: ARM resource id of the underlying compute.
        :paramtype resource_id: str
        :keyword disable_local_auth: Opt-out of local authentication and ensure customers can use only
         MSI and AAD exclusively for authentication.
        :paramtype disable_local_auth: bool
        """
        super().__init__(**kwargs)
        self.compute_type: Optional[str] = None
        self.compute_location = compute_location
        self.provisioning_state = None
        self.description = description
        self.created_on = None
        self.modified_on = None
        self.resource_id = resource_id
        self.provisioning_errors = None
        self.is_attached_compute = None
        self.disable_local_auth = disable_local_auth


class AKS(Compute, AKSSchema):  # pylint: disable=too-many-instance-attributes
    """A Machine Learning compute based on AKS.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar properties: AKS properties.
    :vartype properties: ~azure.mgmt.machinelearningservices.models.AKSSchemaProperties
    :ivar compute_type: The type of compute. Required. Known values are: "AKS", "Kubernetes",
     "AmlCompute", "ComputeInstance", "DataFactory", "VirtualMachine", "HDInsight", "Databricks",
     "DataLakeAnalytics", and "SynapseSpark".
    :vartype compute_type: str or ~azure.mgmt.machinelearningservices.models.ComputeType
    :ivar compute_location: Location for the underlying compute.
    :vartype compute_location: str
    :ivar provisioning_state: The provision state of the cluster. Valid values are Unknown,
     Updating, Provisioning, Succeeded, and Failed. Known values are: "Unknown", "Updating",
     "Creating", "Deleting", "Succeeded", "Failed", and "Canceled".
    :vartype provisioning_state: str or
     ~azure.mgmt.machinelearningservices.models.ProvisioningState
    :ivar description: The description of the Machine Learning compute.
    :vartype description: str
    :ivar created_on: The time at which the compute was created.
    :vartype created_on: ~datetime.datetime
    :ivar modified_on: The time at which the compute was last modified.
    :vartype modified_on: ~datetime.datetime
    :ivar resource_id: ARM resource id of the underlying compute.
    :vartype resource_id: str
    :ivar provisioning_errors: Errors during provisioning.
    :vartype provisioning_errors: list[~azure.mgmt.machinelearningservices.models.ErrorResponse]
    :ivar is_attached_compute: Indicating whether the compute was provisioned by user and brought
     from outside if true, or machine learning service provisioned it if false.
    :vartype is_attached_compute: bool
    :ivar disable_local_auth: Opt-out of local authentication and ensure customers can use only MSI
     and AAD exclusively for authentication.
    :vartype disable_local_auth: bool
    """

    _validation = {
        "compute_type": {"required": True},
        "provisioning_state": {"readonly": True},
        "created_on": {"readonly": True},
        "modified_on": {"readonly": True},
        "provisioning_errors": {"readonly": True},
        "is_attached_compute": {"readonly": True},
    }

    _attribute_map = {
        "properties": {"key": "properties", "type": "AKSSchemaProperties"},
        "compute_type": {"key": "computeType", "type": "str"},
        "compute_location": {"key": "computeLocation", "type": "str"},
        "provisioning_state": {"key": "provisioningState", "type": "str"},
        "description": {"key": "description", "type": "str"},
        "created_on": {"key": "createdOn", "type": "iso-8601"},
        "modified_on": {"key": "modifiedOn", "type": "iso-8601"},
        "resource_id": {"key": "resourceId", "type": "str"},
        "provisioning_errors": {"key": "provisioningErrors", "type": "[ErrorResponse]"},
        "is_attached_compute": {"key": "isAttachedCompute", "type": "bool"},
        "disable_local_auth": {"key": "disableLocalAuth", "type": "bool"},
    }

    def __init__(
        self,
        *,
        properties: Optional["_models.AKSSchemaProperties"] = None,
        compute_location: Optional[str] = None,
        description: Optional[str] = None,
        resource_id: Optional[str] = None,
        disable_local_auth: Optional[bool] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword properties: AKS properties.
        :paramtype properties: ~azure.mgmt.machinelearningservices.models.AKSSchemaProperties
        :keyword compute_location: Location for the underlying compute.
        :paramtype compute_location: str
        :keyword description: The description of the Machine Learning compute.
        :paramtype description: str
        :keyword resource_id: ARM resource id of the underlying compute.
        :paramtype resource_id: str
        :keyword disable_local_auth: Opt-out of local authentication and ensure customers can use only
         MSI and AAD exclusively for authentication.
        :paramtype disable_local_auth: bool
        """
        super().__init__(
            compute_location=compute_location,
            description=description,
            resource_id=resource_id,
            disable_local_auth=disable_local_auth,
            properties=properties,
            **kwargs
        )
        self.properties = properties
        self.compute_type: str = "AKS"
        self.compute_location = compute_location
        self.provisioning_state = None
        self.description = description
        self.created_on = None
        self.modified_on = None
        self.resource_id = resource_id
        self.provisioning_errors = None
        self.is_attached_compute = None
        self.disable_local_auth = disable_local_auth


class AksComputeSecretsProperties(_serialization.Model):
    """Properties of AksComputeSecrets.

    :ivar user_kube_config: Content of kubeconfig file that can be used to connect to the
     Kubernetes cluster.
    :vartype user_kube_config: str
    :ivar admin_kube_config: Content of kubeconfig file that can be used to connect to the
     Kubernetes cluster.
    :vartype admin_kube_config: str
    :ivar image_pull_secret_name: Image registry pull secret.
    :vartype image_pull_secret_name: str
    """

    _attribute_map = {
        "user_kube_config": {"key": "userKubeConfig", "type": "str"},
        "admin_kube_config": {"key": "adminKubeConfig", "type": "str"},
        "image_pull_secret_name": {"key": "imagePullSecretName", "type": "str"},
    }

    def __init__(
        self,
        *,
        user_kube_config: Optional[str] = None,
        admin_kube_config: Optional[str] = None,
        image_pull_secret_name: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword user_kube_config: Content of kubeconfig file that can be used to connect to the
         Kubernetes cluster.
        :paramtype user_kube_config: str
        :keyword admin_kube_config: Content of kubeconfig file that can be used to connect to the
         Kubernetes cluster.
        :paramtype admin_kube_config: str
        :keyword image_pull_secret_name: Image registry pull secret.
        :paramtype image_pull_secret_name: str
        """
        super().__init__(**kwargs)
        self.user_kube_config = user_kube_config
        self.admin_kube_config = admin_kube_config
        self.image_pull_secret_name = image_pull_secret_name


class ComputeSecrets(_serialization.Model):
    """Secrets related to a Machine Learning compute. Might differ for every type of compute.

    You probably want to use the sub-classes and not this class directly. Known sub-classes are:
    AksComputeSecrets, DatabricksComputeSecrets, VirtualMachineSecrets

    All required parameters must be populated in order to send to Azure.

    :ivar compute_type: The type of compute. Required. Known values are: "AKS", "Kubernetes",
     "AmlCompute", "ComputeInstance", "DataFactory", "VirtualMachine", "HDInsight", "Databricks",
     "DataLakeAnalytics", and "SynapseSpark".
    :vartype compute_type: str or ~azure.mgmt.machinelearningservices.models.ComputeType
    """

    _validation = {
        "compute_type": {"required": True},
    }

    _attribute_map = {
        "compute_type": {"key": "computeType", "type": "str"},
    }

    _subtype_map = {
        "compute_type": {
            "AKS": "AksComputeSecrets",
            "Databricks": "DatabricksComputeSecrets",
            "VirtualMachine": "VirtualMachineSecrets",
        }
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.compute_type: Optional[str] = None


class AksComputeSecrets(ComputeSecrets, AksComputeSecretsProperties):
    """Secrets related to a Machine Learning compute based on AKS.

    All required parameters must be populated in order to send to Azure.

    :ivar user_kube_config: Content of kubeconfig file that can be used to connect to the
     Kubernetes cluster.
    :vartype user_kube_config: str
    :ivar admin_kube_config: Content of kubeconfig file that can be used to connect to the
     Kubernetes cluster.
    :vartype admin_kube_config: str
    :ivar image_pull_secret_name: Image registry pull secret.
    :vartype image_pull_secret_name: str
    :ivar compute_type: The type of compute. Required. Known values are: "AKS", "Kubernetes",
     "AmlCompute", "ComputeInstance", "DataFactory", "VirtualMachine", "HDInsight", "Databricks",
     "DataLakeAnalytics", and "SynapseSpark".
    :vartype compute_type: str or ~azure.mgmt.machinelearningservices.models.ComputeType
    """

    _validation = {
        "compute_type": {"required": True},
    }

    _attribute_map = {
        "user_kube_config": {"key": "userKubeConfig", "type": "str"},
        "admin_kube_config": {"key": "adminKubeConfig", "type": "str"},
        "image_pull_secret_name": {"key": "imagePullSecretName", "type": "str"},
        "compute_type": {"key": "computeType", "type": "str"},
    }

    def __init__(
        self,
        *,
        user_kube_config: Optional[str] = None,
        admin_kube_config: Optional[str] = None,
        image_pull_secret_name: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword user_kube_config: Content of kubeconfig file that can be used to connect to the
         Kubernetes cluster.
        :paramtype user_kube_config: str
        :keyword admin_kube_config: Content of kubeconfig file that can be used to connect to the
         Kubernetes cluster.
        :paramtype admin_kube_config: str
        :keyword image_pull_secret_name: Image registry pull secret.
        :paramtype image_pull_secret_name: str
        """
        super().__init__(
            user_kube_config=user_kube_config,
            admin_kube_config=admin_kube_config,
            image_pull_secret_name=image_pull_secret_name,
            **kwargs
        )
        self.user_kube_config = user_kube_config
        self.admin_kube_config = admin_kube_config
        self.image_pull_secret_name = image_pull_secret_name
        self.compute_type: str = "AKS"


class AksNetworkingConfiguration(_serialization.Model):
    """Advance configuration for AKS networking.

    :ivar subnet_id: Virtual network subnet resource ID the compute nodes belong to.
    :vartype subnet_id: str
    :ivar service_cidr: A CIDR notation IP range from which to assign service cluster IPs. It must
     not overlap with any Subnet IP ranges.
    :vartype service_cidr: str
    :ivar dns_service_ip: An IP address assigned to the Kubernetes DNS service. It must be within
     the Kubernetes service address range specified in serviceCidr.
    :vartype dns_service_ip: str
    :ivar docker_bridge_cidr: A CIDR notation IP range assigned to the Docker bridge network. It
     must not overlap with any Subnet IP ranges or the Kubernetes service address range.
    :vartype docker_bridge_cidr: str
    """

    _validation = {
        "service_cidr": {"pattern": r"^([0-9]{1,3}\.){3}[0-9]{1,3}(\/([0-9]|[1-2][0-9]|3[0-2]))?$"},
        "dns_service_ip": {
            "pattern": r"^(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)$"
        },
        "docker_bridge_cidr": {"pattern": r"^([0-9]{1,3}\.){3}[0-9]{1,3}(\/([0-9]|[1-2][0-9]|3[0-2]))?$"},
    }

    _attribute_map = {
        "subnet_id": {"key": "subnetId", "type": "str"},
        "service_cidr": {"key": "serviceCidr", "type": "str"},
        "dns_service_ip": {"key": "dnsServiceIP", "type": "str"},
        "docker_bridge_cidr": {"key": "dockerBridgeCidr", "type": "str"},
    }

    def __init__(
        self,
        *,
        subnet_id: Optional[str] = None,
        service_cidr: Optional[str] = None,
        dns_service_ip: Optional[str] = None,
        docker_bridge_cidr: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword subnet_id: Virtual network subnet resource ID the compute nodes belong to.
        :paramtype subnet_id: str
        :keyword service_cidr: A CIDR notation IP range from which to assign service cluster IPs. It
         must not overlap with any Subnet IP ranges.
        :paramtype service_cidr: str
        :keyword dns_service_ip: An IP address assigned to the Kubernetes DNS service. It must be
         within the Kubernetes service address range specified in serviceCidr.
        :paramtype dns_service_ip: str
        :keyword docker_bridge_cidr: A CIDR notation IP range assigned to the Docker bridge network. It
         must not overlap with any Subnet IP ranges or the Kubernetes service address range.
        :paramtype docker_bridge_cidr: str
        """
        super().__init__(**kwargs)
        self.subnet_id = subnet_id
        self.service_cidr = service_cidr
        self.dns_service_ip = dns_service_ip
        self.docker_bridge_cidr = docker_bridge_cidr


class AKSSchemaProperties(_serialization.Model):
    """AKS properties.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar cluster_fqdn: Cluster full qualified domain name.
    :vartype cluster_fqdn: str
    :ivar system_services: System services.
    :vartype system_services: list[~azure.mgmt.machinelearningservices.models.SystemService]
    :ivar agent_count: Number of agents.
    :vartype agent_count: int
    :ivar agent_vm_size: Agent virtual machine size.
    :vartype agent_vm_size: str
    :ivar cluster_purpose: Intended usage of the cluster. Known values are: "FastProd",
     "DenseProd", and "DevTest".
    :vartype cluster_purpose: str or ~azure.mgmt.machinelearningservices.models.ClusterPurpose
    :ivar ssl_configuration: SSL configuration.
    :vartype ssl_configuration: ~azure.mgmt.machinelearningservices.models.SslConfiguration
    :ivar aks_networking_configuration: AKS networking configuration for vnet.
    :vartype aks_networking_configuration:
     ~azure.mgmt.machinelearningservices.models.AksNetworkingConfiguration
    :ivar load_balancer_type: Load Balancer Type. Known values are: "PublicIp" and
     "InternalLoadBalancer".
    :vartype load_balancer_type: str or ~azure.mgmt.machinelearningservices.models.LoadBalancerType
    :ivar load_balancer_subnet: Load Balancer Subnet.
    :vartype load_balancer_subnet: str
    """

    _validation = {
        "system_services": {"readonly": True},
        "agent_count": {"minimum": 0},
    }

    _attribute_map = {
        "cluster_fqdn": {"key": "clusterFqdn", "type": "str"},
        "system_services": {"key": "systemServices", "type": "[SystemService]"},
        "agent_count": {"key": "agentCount", "type": "int"},
        "agent_vm_size": {"key": "agentVmSize", "type": "str"},
        "cluster_purpose": {"key": "clusterPurpose", "type": "str"},
        "ssl_configuration": {"key": "sslConfiguration", "type": "SslConfiguration"},
        "aks_networking_configuration": {"key": "aksNetworkingConfiguration", "type": "AksNetworkingConfiguration"},
        "load_balancer_type": {"key": "loadBalancerType", "type": "str"},
        "load_balancer_subnet": {"key": "loadBalancerSubnet", "type": "str"},
    }

    def __init__(
        self,
        *,
        cluster_fqdn: Optional[str] = None,
        agent_count: Optional[int] = None,
        agent_vm_size: Optional[str] = None,
        cluster_purpose: Union[str, "_models.ClusterPurpose"] = "FastProd",
        ssl_configuration: Optional["_models.SslConfiguration"] = None,
        aks_networking_configuration: Optional["_models.AksNetworkingConfiguration"] = None,
        load_balancer_type: Union[str, "_models.LoadBalancerType"] = "PublicIp",
        load_balancer_subnet: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword cluster_fqdn: Cluster full qualified domain name.
        :paramtype cluster_fqdn: str
        :keyword agent_count: Number of agents.
        :paramtype agent_count: int
        :keyword agent_vm_size: Agent virtual machine size.
        :paramtype agent_vm_size: str
        :keyword cluster_purpose: Intended usage of the cluster. Known values are: "FastProd",
         "DenseProd", and "DevTest".
        :paramtype cluster_purpose: str or ~azure.mgmt.machinelearningservices.models.ClusterPurpose
        :keyword ssl_configuration: SSL configuration.
        :paramtype ssl_configuration: ~azure.mgmt.machinelearningservices.models.SslConfiguration
        :keyword aks_networking_configuration: AKS networking configuration for vnet.
        :paramtype aks_networking_configuration:
         ~azure.mgmt.machinelearningservices.models.AksNetworkingConfiguration
        :keyword load_balancer_type: Load Balancer Type. Known values are: "PublicIp" and
         "InternalLoadBalancer".
        :paramtype load_balancer_type: str or
         ~azure.mgmt.machinelearningservices.models.LoadBalancerType
        :keyword load_balancer_subnet: Load Balancer Subnet.
        :paramtype load_balancer_subnet: str
        """
        super().__init__(**kwargs)
        self.cluster_fqdn = cluster_fqdn
        self.system_services = None
        self.agent_count = agent_count
        self.agent_vm_size = agent_vm_size
        self.cluster_purpose = cluster_purpose
        self.ssl_configuration = ssl_configuration
        self.aks_networking_configuration = aks_networking_configuration
        self.load_balancer_type = load_balancer_type
        self.load_balancer_subnet = load_balancer_subnet


class Nodes(_serialization.Model):
    """Abstract Nodes definition.

    You probably want to use the sub-classes and not this class directly. Known sub-classes are:
    AllNodes

    All required parameters must be populated in order to send to Azure.

    :ivar nodes_value_type: [Required] Type of the Nodes value. Required. "All"
    :vartype nodes_value_type: str or ~azure.mgmt.machinelearningservices.models.NodesValueType
    """

    _validation = {
        "nodes_value_type": {"required": True},
    }

    _attribute_map = {
        "nodes_value_type": {"key": "nodesValueType", "type": "str"},
    }

    _subtype_map = {"nodes_value_type": {"All": "AllNodes"}}

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.nodes_value_type: Optional[str] = None


class AllNodes(Nodes):
    """All nodes means the service will be running on all of the nodes of the job.

    All required parameters must be populated in order to send to Azure.

    :ivar nodes_value_type: [Required] Type of the Nodes value. Required. "All"
    :vartype nodes_value_type: str or ~azure.mgmt.machinelearningservices.models.NodesValueType
    """

    _validation = {
        "nodes_value_type": {"required": True},
    }

    _attribute_map = {
        "nodes_value_type": {"key": "nodesValueType", "type": "str"},
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.nodes_value_type: str = "All"


class AmlComputeSchema(_serialization.Model):
    """Properties(top level) of AmlCompute.

    :ivar properties: Properties of AmlCompute.
    :vartype properties: ~azure.mgmt.machinelearningservices.models.AmlComputeProperties
    """

    _attribute_map = {
        "properties": {"key": "properties", "type": "AmlComputeProperties"},
    }

    def __init__(self, *, properties: Optional["_models.AmlComputeProperties"] = None, **kwargs: Any) -> None:
        """
        :keyword properties: Properties of AmlCompute.
        :paramtype properties: ~azure.mgmt.machinelearningservices.models.AmlComputeProperties
        """
        super().__init__(**kwargs)
        self.properties = properties


class AmlCompute(Compute, AmlComputeSchema):  # pylint: disable=too-many-instance-attributes
    """An Azure Machine Learning compute.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar properties: Properties of AmlCompute.
    :vartype properties: ~azure.mgmt.machinelearningservices.models.AmlComputeProperties
    :ivar compute_type: The type of compute. Required. Known values are: "AKS", "Kubernetes",
     "AmlCompute", "ComputeInstance", "DataFactory", "VirtualMachine", "HDInsight", "Databricks",
     "DataLakeAnalytics", and "SynapseSpark".
    :vartype compute_type: str or ~azure.mgmt.machinelearningservices.models.ComputeType
    :ivar compute_location: Location for the underlying compute.
    :vartype compute_location: str
    :ivar provisioning_state: The provision state of the cluster. Valid values are Unknown,
     Updating, Provisioning, Succeeded, and Failed. Known values are: "Unknown", "Updating",
     "Creating", "Deleting", "Succeeded", "Failed", and "Canceled".
    :vartype provisioning_state: str or
     ~azure.mgmt.machinelearningservices.models.ProvisioningState
    :ivar description: The description of the Machine Learning compute.
    :vartype description: str
    :ivar created_on: The time at which the compute was created.
    :vartype created_on: ~datetime.datetime
    :ivar modified_on: The time at which the compute was last modified.
    :vartype modified_on: ~datetime.datetime
    :ivar resource_id: ARM resource id of the underlying compute.
    :vartype resource_id: str
    :ivar provisioning_errors: Errors during provisioning.
    :vartype provisioning_errors: list[~azure.mgmt.machinelearningservices.models.ErrorResponse]
    :ivar is_attached_compute: Indicating whether the compute was provisioned by user and brought
     from outside if true, or machine learning service provisioned it if false.
    :vartype is_attached_compute: bool
    :ivar disable_local_auth: Opt-out of local authentication and ensure customers can use only MSI
     and AAD exclusively for authentication.
    :vartype disable_local_auth: bool
    """

    _validation = {
        "compute_type": {"required": True},
        "provisioning_state": {"readonly": True},
        "created_on": {"readonly": True},
        "modified_on": {"readonly": True},
        "provisioning_errors": {"readonly": True},
        "is_attached_compute": {"readonly": True},
    }

    _attribute_map = {
        "properties": {"key": "properties", "type": "AmlComputeProperties"},
        "compute_type": {"key": "computeType", "type": "str"},
        "compute_location": {"key": "computeLocation", "type": "str"},
        "provisioning_state": {"key": "provisioningState", "type": "str"},
        "description": {"key": "description", "type": "str"},
        "created_on": {"key": "createdOn", "type": "iso-8601"},
        "modified_on": {"key": "modifiedOn", "type": "iso-8601"},
        "resource_id": {"key": "resourceId", "type": "str"},
        "provisioning_errors": {"key": "provisioningErrors", "type": "[ErrorResponse]"},
        "is_attached_compute": {"key": "isAttachedCompute", "type": "bool"},
        "disable_local_auth": {"key": "disableLocalAuth", "type": "bool"},
    }

    def __init__(
        self,
        *,
        properties: Optional["_models.AmlComputeProperties"] = None,
        compute_location: Optional[str] = None,
        description: Optional[str] = None,
        resource_id: Optional[str] = None,
        disable_local_auth: Optional[bool] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword properties: Properties of AmlCompute.
        :paramtype properties: ~azure.mgmt.machinelearningservices.models.AmlComputeProperties
        :keyword compute_location: Location for the underlying compute.
        :paramtype compute_location: str
        :keyword description: The description of the Machine Learning compute.
        :paramtype description: str
        :keyword resource_id: ARM resource id of the underlying compute.
        :paramtype resource_id: str
        :keyword disable_local_auth: Opt-out of local authentication and ensure customers can use only
         MSI and AAD exclusively for authentication.
        :paramtype disable_local_auth: bool
        """
        super().__init__(
            compute_location=compute_location,
            description=description,
            resource_id=resource_id,
            disable_local_auth=disable_local_auth,
            properties=properties,
            **kwargs
        )
        self.properties = properties
        self.compute_type: str = "AmlCompute"
        self.compute_location = compute_location
        self.provisioning_state = None
        self.description = description
        self.created_on = None
        self.modified_on = None
        self.resource_id = resource_id
        self.provisioning_errors = None
        self.is_attached_compute = None
        self.disable_local_auth = disable_local_auth


class AmlComputeNodeInformation(_serialization.Model):
    """Compute node information related to a AmlCompute.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar node_id: ID of the compute node.
    :vartype node_id: str
    :ivar private_ip_address: Private IP address of the compute node.
    :vartype private_ip_address: str
    :ivar public_ip_address: Public IP address of the compute node.
    :vartype public_ip_address: str
    :ivar port: SSH port number of the node.
    :vartype port: int
    :ivar node_state: State of the compute node. Values are idle, running, preparing, unusable,
     leaving and preempted. Known values are: "idle", "running", "preparing", "unusable", "leaving",
     and "preempted".
    :vartype node_state: str or ~azure.mgmt.machinelearningservices.models.NodeState
    :ivar run_id: ID of the Experiment running on the node, if any else null.
    :vartype run_id: str
    """

    _validation = {
        "node_id": {"readonly": True},
        "private_ip_address": {"readonly": True},
        "public_ip_address": {"readonly": True},
        "port": {"readonly": True},
        "node_state": {"readonly": True},
        "run_id": {"readonly": True},
    }

    _attribute_map = {
        "node_id": {"key": "nodeId", "type": "str"},
        "private_ip_address": {"key": "privateIpAddress", "type": "str"},
        "public_ip_address": {"key": "publicIpAddress", "type": "str"},
        "port": {"key": "port", "type": "int"},
        "node_state": {"key": "nodeState", "type": "str"},
        "run_id": {"key": "runId", "type": "str"},
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.node_id = None
        self.private_ip_address = None
        self.public_ip_address = None
        self.port = None
        self.node_state = None
        self.run_id = None


class AmlComputeNodesInformation(_serialization.Model):
    """Result of AmlCompute Nodes.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar nodes: The collection of returned AmlCompute nodes details.
    :vartype nodes: list[~azure.mgmt.machinelearningservices.models.AmlComputeNodeInformation]
    :ivar next_link: The continuation token.
    :vartype next_link: str
    """

    _validation = {
        "nodes": {"readonly": True},
        "next_link": {"readonly": True},
    }

    _attribute_map = {
        "nodes": {"key": "nodes", "type": "[AmlComputeNodeInformation]"},
        "next_link": {"key": "nextLink", "type": "str"},
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.nodes = None
        self.next_link = None


class AmlComputeProperties(_serialization.Model):  # pylint: disable=too-many-instance-attributes
    """AML Compute properties.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar os_type: Compute OS Type. Known values are: "Linux" and "Windows".
    :vartype os_type: str or ~azure.mgmt.machinelearningservices.models.OsType
    :ivar vm_size: Virtual Machine Size.
    :vartype vm_size: str
    :ivar vm_priority: Virtual Machine priority. Known values are: "Dedicated" and "LowPriority".
    :vartype vm_priority: str or ~azure.mgmt.machinelearningservices.models.VmPriority
    :ivar virtual_machine_image: Virtual Machine image for AML Compute - windows only.
    :vartype virtual_machine_image: ~azure.mgmt.machinelearningservices.models.VirtualMachineImage
    :ivar isolated_network: Network is isolated or not.
    :vartype isolated_network: bool
    :ivar scale_settings: Scale settings for AML Compute.
    :vartype scale_settings: ~azure.mgmt.machinelearningservices.models.ScaleSettings
    :ivar user_account_credentials: Credentials for an administrator user account that will be
     created on each compute node.
    :vartype user_account_credentials:
     ~azure.mgmt.machinelearningservices.models.UserAccountCredentials
    :ivar subnet: Virtual network subnet resource ID the compute nodes belong to.
    :vartype subnet: ~azure.mgmt.machinelearningservices.models.ResourceId
    :ivar remote_login_port_public_access: State of the public SSH port. Possible values are:
     Disabled - Indicates that the public ssh port is closed on all nodes of the cluster. Enabled -
     Indicates that the public ssh port is open on all nodes of the cluster. NotSpecified -
     Indicates that the public ssh port is closed on all nodes of the cluster if VNet is defined,
     else is open all public nodes. It can be default only during cluster creation time, after
     creation it will be either enabled or disabled. Known values are: "Enabled", "Disabled", and
     "NotSpecified".
    :vartype remote_login_port_public_access: str or
     ~azure.mgmt.machinelearningservices.models.RemoteLoginPortPublicAccess
    :ivar allocation_state: Allocation state of the compute. Possible values are: steady -
     Indicates that the compute is not resizing. There are no changes to the number of compute nodes
     in the compute in progress. A compute enters this state when it is created and when no
     operations are being performed on the compute to change the number of compute nodes. resizing -
     Indicates that the compute is resizing; that is, compute nodes are being added to or removed
     from the compute. Known values are: "Steady" and "Resizing".
    :vartype allocation_state: str or ~azure.mgmt.machinelearningservices.models.AllocationState
    :ivar allocation_state_transition_time: The time at which the compute entered its current
     allocation state.
    :vartype allocation_state_transition_time: ~datetime.datetime
    :ivar errors: Collection of errors encountered by various compute nodes during node setup.
    :vartype errors: list[~azure.mgmt.machinelearningservices.models.ErrorResponse]
    :ivar current_node_count: The number of compute nodes currently assigned to the compute.
    :vartype current_node_count: int
    :ivar target_node_count: The target number of compute nodes for the compute. If the
     allocationState is resizing, this property denotes the target node count for the ongoing resize
     operation. If the allocationState is steady, this property denotes the target node count for
     the previous resize operation.
    :vartype target_node_count: int
    :ivar node_state_counts: Counts of various node states on the compute.
    :vartype node_state_counts: ~azure.mgmt.machinelearningservices.models.NodeStateCounts
    :ivar enable_node_public_ip: Enable or disable node public IP address provisioning. Possible
     values are: Possible values are: true - Indicates that the compute nodes will have public IPs
     provisioned. false - Indicates that the compute nodes will have a private endpoint and no
     public IPs.
    :vartype enable_node_public_ip: bool
    :ivar property_bag: A property bag containing additional properties.
    :vartype property_bag: JSON
    """

    _validation = {
        "allocation_state": {"readonly": True},
        "allocation_state_transition_time": {"readonly": True},
        "errors": {"readonly": True},
        "current_node_count": {"readonly": True},
        "target_node_count": {"readonly": True},
        "node_state_counts": {"readonly": True},
    }

    _attribute_map = {
        "os_type": {"key": "osType", "type": "str"},
        "vm_size": {"key": "vmSize", "type": "str"},
        "vm_priority": {"key": "vmPriority", "type": "str"},
        "virtual_machine_image": {"key": "virtualMachineImage", "type": "VirtualMachineImage"},
        "isolated_network": {"key": "isolatedNetwork", "type": "bool"},
        "scale_settings": {"key": "scaleSettings", "type": "ScaleSettings"},
        "user_account_credentials": {"key": "userAccountCredentials", "type": "UserAccountCredentials"},
        "subnet": {"key": "subnet", "type": "ResourceId"},
        "remote_login_port_public_access": {"key": "remoteLoginPortPublicAccess", "type": "str"},
        "allocation_state": {"key": "allocationState", "type": "str"},
        "allocation_state_transition_time": {"key": "allocationStateTransitionTime", "type": "iso-8601"},
        "errors": {"key": "errors", "type": "[ErrorResponse]"},
        "current_node_count": {"key": "currentNodeCount", "type": "int"},
        "target_node_count": {"key": "targetNodeCount", "type": "int"},
        "node_state_counts": {"key": "nodeStateCounts", "type": "NodeStateCounts"},
        "enable_node_public_ip": {"key": "enableNodePublicIp", "type": "bool"},
        "property_bag": {"key": "propertyBag", "type": "object"},
    }

    def __init__(
        self,
        *,
        os_type: Union[str, "_models.OsType"] = "Linux",
        vm_size: Optional[str] = None,
        vm_priority: Optional[Union[str, "_models.VmPriority"]] = None,
        virtual_machine_image: Optional["_models.VirtualMachineImage"] = None,
        isolated_network: Optional[bool] = None,
        scale_settings: Optional["_models.ScaleSettings"] = None,
        user_account_credentials: Optional["_models.UserAccountCredentials"] = None,
        subnet: Optional["_models.ResourceId"] = None,
        remote_login_port_public_access: Union[str, "_models.RemoteLoginPortPublicAccess"] = "NotSpecified",
        enable_node_public_ip: bool = True,
        property_bag: Optional[JSON] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword os_type: Compute OS Type. Known values are: "Linux" and "Windows".
        :paramtype os_type: str or ~azure.mgmt.machinelearningservices.models.OsType
        :keyword vm_size: Virtual Machine Size.
        :paramtype vm_size: str
        :keyword vm_priority: Virtual Machine priority. Known values are: "Dedicated" and
         "LowPriority".
        :paramtype vm_priority: str or ~azure.mgmt.machinelearningservices.models.VmPriority
        :keyword virtual_machine_image: Virtual Machine image for AML Compute - windows only.
        :paramtype virtual_machine_image:
         ~azure.mgmt.machinelearningservices.models.VirtualMachineImage
        :keyword isolated_network: Network is isolated or not.
        :paramtype isolated_network: bool
        :keyword scale_settings: Scale settings for AML Compute.
        :paramtype scale_settings: ~azure.mgmt.machinelearningservices.models.ScaleSettings
        :keyword user_account_credentials: Credentials for an administrator user account that will be
         created on each compute node.
        :paramtype user_account_credentials:
         ~azure.mgmt.machinelearningservices.models.UserAccountCredentials
        :keyword subnet: Virtual network subnet resource ID the compute nodes belong to.
        :paramtype subnet: ~azure.mgmt.machinelearningservices.models.ResourceId
        :keyword remote_login_port_public_access: State of the public SSH port. Possible values are:
         Disabled - Indicates that the public ssh port is closed on all nodes of the cluster. Enabled -
         Indicates that the public ssh port is open on all nodes of the cluster. NotSpecified -
         Indicates that the public ssh port is closed on all nodes of the cluster if VNet is defined,
         else is open all public nodes. It can be default only during cluster creation time, after
         creation it will be either enabled or disabled. Known values are: "Enabled", "Disabled", and
         "NotSpecified".
        :paramtype remote_login_port_public_access: str or
         ~azure.mgmt.machinelearningservices.models.RemoteLoginPortPublicAccess
        :keyword enable_node_public_ip: Enable or disable node public IP address provisioning. Possible
         values are: Possible values are: true - Indicates that the compute nodes will have public IPs
         provisioned. false - Indicates that the compute nodes will have a private endpoint and no
         public IPs.
        :paramtype enable_node_public_ip: bool
        :keyword property_bag: A property bag containing additional properties.
        :paramtype property_bag: JSON
        """
        super().__init__(**kwargs)
        self.os_type = os_type
        self.vm_size = vm_size
        self.vm_priority = vm_priority
        self.virtual_machine_image = virtual_machine_image
        self.isolated_network = isolated_network
        self.scale_settings = scale_settings
        self.user_account_credentials = user_account_credentials
        self.subnet = subnet
        self.remote_login_port_public_access = remote_login_port_public_access
        self.allocation_state = None
        self.allocation_state_transition_time = None
        self.errors = None
        self.current_node_count = None
        self.target_node_count = None
        self.node_state_counts = None
        self.enable_node_public_ip = enable_node_public_ip
        self.property_bag = property_bag


class AmlOperation(_serialization.Model):
    """Azure Machine Learning workspace REST API operation.

    :ivar name: Operation name: {provider}/{resource}/{operation}.
    :vartype name: str
    :ivar display: Display name of operation.
    :vartype display: ~azure.mgmt.machinelearningservices.models.AmlOperationDisplay
    :ivar is_data_action: Indicates whether the operation applies to data-plane.
    :vartype is_data_action: bool
    """

    _attribute_map = {
        "name": {"key": "name", "type": "str"},
        "display": {"key": "display", "type": "AmlOperationDisplay"},
        "is_data_action": {"key": "isDataAction", "type": "bool"},
    }

    def __init__(
        self,
        *,
        name: Optional[str] = None,
        display: Optional["_models.AmlOperationDisplay"] = None,
        is_data_action: Optional[bool] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword name: Operation name: {provider}/{resource}/{operation}.
        :paramtype name: str
        :keyword display: Display name of operation.
        :paramtype display: ~azure.mgmt.machinelearningservices.models.AmlOperationDisplay
        :keyword is_data_action: Indicates whether the operation applies to data-plane.
        :paramtype is_data_action: bool
        """
        super().__init__(**kwargs)
        self.name = name
        self.display = display
        self.is_data_action = is_data_action


class AmlOperationDisplay(_serialization.Model):
    """Display name of operation.

    :ivar provider: The resource provider name: Microsoft.MachineLearningExperimentation.
    :vartype provider: str
    :ivar resource: The resource on which the operation is performed.
    :vartype resource: str
    :ivar operation: The operation that users can perform.
    :vartype operation: str
    :ivar description: The description for the operation.
    :vartype description: str
    """

    _attribute_map = {
        "provider": {"key": "provider", "type": "str"},
        "resource": {"key": "resource", "type": "str"},
        "operation": {"key": "operation", "type": "str"},
        "description": {"key": "description", "type": "str"},
    }

    def __init__(
        self,
        *,
        provider: Optional[str] = None,
        resource: Optional[str] = None,
        operation: Optional[str] = None,
        description: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword provider: The resource provider name: Microsoft.MachineLearningExperimentation.
        :paramtype provider: str
        :keyword resource: The resource on which the operation is performed.
        :paramtype resource: str
        :keyword operation: The operation that users can perform.
        :paramtype operation: str
        :keyword description: The description for the operation.
        :paramtype description: str
        """
        super().__init__(**kwargs)
        self.provider = provider
        self.resource = resource
        self.operation = operation
        self.description = description


class AmlOperationListResult(_serialization.Model):
    """An array of operations supported by the resource provider.

    :ivar value: List of AML workspace operations supported by the AML workspace resource provider.
    :vartype value: list[~azure.mgmt.machinelearningservices.models.AmlOperation]
    """

    _attribute_map = {
        "value": {"key": "value", "type": "[AmlOperation]"},
    }

    def __init__(self, *, value: Optional[List["_models.AmlOperation"]] = None, **kwargs: Any) -> None:
        """
        :keyword value: List of AML workspace operations supported by the AML workspace resource
         provider.
        :paramtype value: list[~azure.mgmt.machinelearningservices.models.AmlOperation]
        """
        super().__init__(**kwargs)
        self.value = value


class IdentityConfiguration(_serialization.Model):
    """Base definition for identity configuration.

    You probably want to use the sub-classes and not this class directly. Known sub-classes are:
    AmlToken, ManagedIdentity, UserIdentity

    All required parameters must be populated in order to send to Azure.

    :ivar identity_type: [Required] Specifies the type of identity framework. Required. Known
     values are: "Managed", "AMLToken", and "UserIdentity".
    :vartype identity_type: str or
     ~azure.mgmt.machinelearningservices.models.IdentityConfigurationType
    """

    _validation = {
        "identity_type": {"required": True},
    }

    _attribute_map = {
        "identity_type": {"key": "identityType", "type": "str"},
    }

    _subtype_map = {
        "identity_type": {"AMLToken": "AmlToken", "Managed": "ManagedIdentity", "UserIdentity": "UserIdentity"}
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.identity_type: Optional[str] = None


class AmlToken(IdentityConfiguration):
    """AML Token identity configuration.

    All required parameters must be populated in order to send to Azure.

    :ivar identity_type: [Required] Specifies the type of identity framework. Required. Known
     values are: "Managed", "AMLToken", and "UserIdentity".
    :vartype identity_type: str or
     ~azure.mgmt.machinelearningservices.models.IdentityConfigurationType
    """

    _validation = {
        "identity_type": {"required": True},
    }

    _attribute_map = {
        "identity_type": {"key": "identityType", "type": "str"},
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.identity_type: str = "AMLToken"


class AmlUserFeature(_serialization.Model):
    """Features enabled for a workspace.

    :ivar id: Specifies the feature ID.
    :vartype id: str
    :ivar display_name: Specifies the feature name.
    :vartype display_name: str
    :ivar description: Describes the feature for user experience.
    :vartype description: str
    """

    _attribute_map = {
        "id": {"key": "id", "type": "str"},
        "display_name": {"key": "displayName", "type": "str"},
        "description": {"key": "description", "type": "str"},
    }

    def __init__(
        self,
        *,
        id: Optional[str] = None,  # pylint: disable=redefined-builtin
        display_name: Optional[str] = None,
        description: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword id: Specifies the feature ID.
        :paramtype id: str
        :keyword display_name: Specifies the feature name.
        :paramtype display_name: str
        :keyword description: Describes the feature for user experience.
        :paramtype description: str
        """
        super().__init__(**kwargs)
        self.id = id
        self.display_name = display_name
        self.description = description


class ArmResourceId(_serialization.Model):
    """ARM ResourceId of a resource.

    :ivar resource_id: Arm ResourceId is in the format
     "/subscriptions/{SubscriptionId}/resourceGroups/{ResourceGroupName}/providers/Microsoft.Storage/storageAccounts/{StorageAccountName}"
     or
     "/subscriptions/{SubscriptionId}/resourceGroups/{ResourceGroupName}/providers/Microsoft.ContainerRegistry/registries/{AcrName}".
    :vartype resource_id: str
    """

    _attribute_map = {
        "resource_id": {"key": "resourceId", "type": "str"},
    }

    def __init__(self, *, resource_id: Optional[str] = None, **kwargs: Any) -> None:
        """
        :keyword resource_id: Arm ResourceId is in the format
         "/subscriptions/{SubscriptionId}/resourceGroups/{ResourceGroupName}/providers/Microsoft.Storage/storageAccounts/{StorageAccountName}"
         or
         "/subscriptions/{SubscriptionId}/resourceGroups/{ResourceGroupName}/providers/Microsoft.ContainerRegistry/registries/{AcrName}".
        :paramtype resource_id: str
        """
        super().__init__(**kwargs)
        self.resource_id = resource_id


class ResourceBase(_serialization.Model):
    """ResourceBase.

    :ivar description: The asset description text.
    :vartype description: str
    :ivar properties: The asset property dictionary.
    :vartype properties: dict[str, str]
    :ivar tags: Tag dictionary. Tags can be added, removed, and updated.
    :vartype tags: dict[str, str]
    """

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "properties": {"key": "properties", "type": "{str}"},
        "tags": {"key": "tags", "type": "{str}"},
    }

    def __init__(
        self,
        *,
        description: Optional[str] = None,
        properties: Optional[Dict[str, str]] = None,
        tags: Optional[Dict[str, str]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword description: The asset description text.
        :paramtype description: str
        :keyword properties: The asset property dictionary.
        :paramtype properties: dict[str, str]
        :keyword tags: Tag dictionary. Tags can be added, removed, and updated.
        :paramtype tags: dict[str, str]
        """
        super().__init__(**kwargs)
        self.description = description
        self.properties = properties
        self.tags = tags


class AssetBase(ResourceBase):
    """AssetBase.

    :ivar description: The asset description text.
    :vartype description: str
    :ivar properties: The asset property dictionary.
    :vartype properties: dict[str, str]
    :ivar tags: Tag dictionary. Tags can be added, removed, and updated.
    :vartype tags: dict[str, str]
    :ivar is_anonymous: If the name version are system generated (anonymous registration).
    :vartype is_anonymous: bool
    :ivar is_archived: Is the asset archived?.
    :vartype is_archived: bool
    """

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "properties": {"key": "properties", "type": "{str}"},
        "tags": {"key": "tags", "type": "{str}"},
        "is_anonymous": {"key": "isAnonymous", "type": "bool"},
        "is_archived": {"key": "isArchived", "type": "bool"},
    }

    def __init__(
        self,
        *,
        description: Optional[str] = None,
        properties: Optional[Dict[str, str]] = None,
        tags: Optional[Dict[str, str]] = None,
        is_anonymous: bool = False,
        is_archived: bool = False,
        **kwargs: Any
    ) -> None:
        """
        :keyword description: The asset description text.
        :paramtype description: str
        :keyword properties: The asset property dictionary.
        :paramtype properties: dict[str, str]
        :keyword tags: Tag dictionary. Tags can be added, removed, and updated.
        :paramtype tags: dict[str, str]
        :keyword is_anonymous: If the name version are system generated (anonymous registration).
        :paramtype is_anonymous: bool
        :keyword is_archived: Is the asset archived?.
        :paramtype is_archived: bool
        """
        super().__init__(description=description, properties=properties, tags=tags, **kwargs)
        self.is_anonymous = is_anonymous
        self.is_archived = is_archived


class AssetContainer(ResourceBase):
    """AssetContainer.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar description: The asset description text.
    :vartype description: str
    :ivar properties: The asset property dictionary.
    :vartype properties: dict[str, str]
    :ivar tags: Tag dictionary. Tags can be added, removed, and updated.
    :vartype tags: dict[str, str]
    :ivar is_archived: Is the asset archived?.
    :vartype is_archived: bool
    :ivar latest_version: The latest version inside this container.
    :vartype latest_version: str
    :ivar next_version: The next auto incremental version.
    :vartype next_version: str
    """

    _validation = {
        "latest_version": {"readonly": True},
        "next_version": {"readonly": True},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "properties": {"key": "properties", "type": "{str}"},
        "tags": {"key": "tags", "type": "{str}"},
        "is_archived": {"key": "isArchived", "type": "bool"},
        "latest_version": {"key": "latestVersion", "type": "str"},
        "next_version": {"key": "nextVersion", "type": "str"},
    }

    def __init__(
        self,
        *,
        description: Optional[str] = None,
        properties: Optional[Dict[str, str]] = None,
        tags: Optional[Dict[str, str]] = None,
        is_archived: bool = False,
        **kwargs: Any
    ) -> None:
        """
        :keyword description: The asset description text.
        :paramtype description: str
        :keyword properties: The asset property dictionary.
        :paramtype properties: dict[str, str]
        :keyword tags: Tag dictionary. Tags can be added, removed, and updated.
        :paramtype tags: dict[str, str]
        :keyword is_archived: Is the asset archived?.
        :paramtype is_archived: bool
        """
        super().__init__(description=description, properties=properties, tags=tags, **kwargs)
        self.is_archived = is_archived
        self.latest_version = None
        self.next_version = None


class AssetJobInput(_serialization.Model):
    """Asset input type.

    All required parameters must be populated in order to send to Azure.

    :ivar mode: Input Asset Delivery Mode. Known values are: "ReadOnlyMount", "ReadWriteMount",
     "Download", "Direct", "EvalMount", and "EvalDownload".
    :vartype mode: str or ~azure.mgmt.machinelearningservices.models.InputDeliveryMode
    :ivar uri: [Required] Input Asset URI. Required.
    :vartype uri: str
    """

    _validation = {
        "uri": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"},
    }

    _attribute_map = {
        "mode": {"key": "mode", "type": "str"},
        "uri": {"key": "uri", "type": "str"},
    }

    def __init__(
        self, *, uri: str, mode: Optional[Union[str, "_models.InputDeliveryMode"]] = None, **kwargs: Any
    ) -> None:
        """
        :keyword mode: Input Asset Delivery Mode. Known values are: "ReadOnlyMount", "ReadWriteMount",
         "Download", "Direct", "EvalMount", and "EvalDownload".
        :paramtype mode: str or ~azure.mgmt.machinelearningservices.models.InputDeliveryMode
        :keyword uri: [Required] Input Asset URI. Required.
        :paramtype uri: str
        """
        super().__init__(**kwargs)
        self.mode = mode
        self.uri = uri


class AssetJobOutput(_serialization.Model):
    """Asset output type.

    :ivar mode: Output Asset Delivery Mode. Known values are: "ReadWriteMount" and "Upload".
    :vartype mode: str or ~azure.mgmt.machinelearningservices.models.OutputDeliveryMode
    :ivar uri: Output Asset URI.
    :vartype uri: str
    """

    _attribute_map = {
        "mode": {"key": "mode", "type": "str"},
        "uri": {"key": "uri", "type": "str"},
    }

    def __init__(
        self,
        *,
        mode: Optional[Union[str, "_models.OutputDeliveryMode"]] = None,
        uri: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword mode: Output Asset Delivery Mode. Known values are: "ReadWriteMount" and "Upload".
        :paramtype mode: str or ~azure.mgmt.machinelearningservices.models.OutputDeliveryMode
        :keyword uri: Output Asset URI.
        :paramtype uri: str
        """
        super().__init__(**kwargs)
        self.mode = mode
        self.uri = uri


class AssetReferenceBase(_serialization.Model):
    """Base definition for asset references.

    You probably want to use the sub-classes and not this class directly. Known sub-classes are:
    DataPathAssetReference, IdAssetReference, OutputPathAssetReference

    All required parameters must be populated in order to send to Azure.

    :ivar reference_type: [Required] Specifies the type of asset reference. Required. Known values
     are: "Id", "DataPath", and "OutputPath".
    :vartype reference_type: str or ~azure.mgmt.machinelearningservices.models.ReferenceType
    """

    _validation = {
        "reference_type": {"required": True},
    }

    _attribute_map = {
        "reference_type": {"key": "referenceType", "type": "str"},
    }

    _subtype_map = {
        "reference_type": {
            "DataPath": "DataPathAssetReference",
            "Id": "IdAssetReference",
            "OutputPath": "OutputPathAssetReference",
        }
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.reference_type: Optional[str] = None


class AssignedUser(_serialization.Model):
    """A user that can be assigned to a compute instance.

    All required parameters must be populated in order to send to Azure.

    :ivar object_id: User’s AAD Object Id. Required.
    :vartype object_id: str
    :ivar tenant_id: User’s AAD Tenant Id. Required.
    :vartype tenant_id: str
    """

    _validation = {
        "object_id": {"required": True},
        "tenant_id": {"required": True},
    }

    _attribute_map = {
        "object_id": {"key": "objectId", "type": "str"},
        "tenant_id": {"key": "tenantId", "type": "str"},
    }

    def __init__(self, *, object_id: str, tenant_id: str, **kwargs: Any) -> None:
        """
        :keyword object_id: User’s AAD Object Id. Required.
        :paramtype object_id: str
        :keyword tenant_id: User’s AAD Tenant Id. Required.
        :paramtype tenant_id: str
        """
        super().__init__(**kwargs)
        self.object_id = object_id
        self.tenant_id = tenant_id


class ForecastHorizon(_serialization.Model):
    """The desired maximum forecast horizon in units of time-series frequency.

    You probably want to use the sub-classes and not this class directly. Known sub-classes are:
    AutoForecastHorizon, CustomForecastHorizon

    All required parameters must be populated in order to send to Azure.

    :ivar mode: [Required] Set forecast horizon value selection mode. Required. Known values are:
     "Auto" and "Custom".
    :vartype mode: str or ~azure.mgmt.machinelearningservices.models.ForecastHorizonMode
    """

    _validation = {
        "mode": {"required": True},
    }

    _attribute_map = {
        "mode": {"key": "mode", "type": "str"},
    }

    _subtype_map = {"mode": {"Auto": "AutoForecastHorizon", "Custom": "CustomForecastHorizon"}}

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.mode: Optional[str] = None


class AutoForecastHorizon(ForecastHorizon):
    """Forecast horizon determined automatically by system.

    All required parameters must be populated in order to send to Azure.

    :ivar mode: [Required] Set forecast horizon value selection mode. Required. Known values are:
     "Auto" and "Custom".
    :vartype mode: str or ~azure.mgmt.machinelearningservices.models.ForecastHorizonMode
    """

    _validation = {
        "mode": {"required": True},
    }

    _attribute_map = {
        "mode": {"key": "mode", "type": "str"},
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.mode: str = "Auto"


class JobBaseProperties(ResourceBase):  # pylint: disable=too-many-instance-attributes
    """Base definition for a job.

    You probably want to use the sub-classes and not this class directly. Known sub-classes are:
    AutoMLJob, CommandJob, PipelineJob, SweepJob

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar description: The asset description text.
    :vartype description: str
    :ivar properties: The asset property dictionary.
    :vartype properties: dict[str, str]
    :ivar tags: Tag dictionary. Tags can be added, removed, and updated.
    :vartype tags: dict[str, str]
    :ivar component_id: ARM resource ID of the component resource.
    :vartype component_id: str
    :ivar compute_id: ARM resource ID of the compute resource.
    :vartype compute_id: str
    :ivar display_name: Display name of job.
    :vartype display_name: str
    :ivar experiment_name: The name of the experiment the job belongs to. If not set, the job is
     placed in the "Default" experiment.
    :vartype experiment_name: str
    :ivar identity: Identity configuration. If set, this should be one of AmlToken,
     ManagedIdentity, UserIdentity or null.
     Defaults to AmlToken if null.
    :vartype identity: ~azure.mgmt.machinelearningservices.models.IdentityConfiguration
    :ivar is_archived: Is the asset archived?.
    :vartype is_archived: bool
    :ivar job_type: [Required] Specifies the type of job. Required. Known values are: "AutoML",
     "Command", "Sweep", and "Pipeline".
    :vartype job_type: str or ~azure.mgmt.machinelearningservices.models.JobType
    :ivar services: List of JobEndpoints.
     For local jobs, a job endpoint will have an endpoint value of FileStreamObject.
    :vartype services: dict[str, ~azure.mgmt.machinelearningservices.models.JobService]
    :ivar status: Status of the job. Known values are: "NotStarted", "Starting", "Provisioning",
     "Preparing", "Queued", "Running", "Finalizing", "CancelRequested", "Completed", "Failed",
     "Canceled", "NotResponding", "Paused", and "Unknown".
    :vartype status: str or ~azure.mgmt.machinelearningservices.models.JobStatus
    """

    _validation = {
        "job_type": {"required": True},
        "status": {"readonly": True},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "properties": {"key": "properties", "type": "{str}"},
        "tags": {"key": "tags", "type": "{str}"},
        "component_id": {"key": "componentId", "type": "str"},
        "compute_id": {"key": "computeId", "type": "str"},
        "display_name": {"key": "displayName", "type": "str"},
        "experiment_name": {"key": "experimentName", "type": "str"},
        "identity": {"key": "identity", "type": "IdentityConfiguration"},
        "is_archived": {"key": "isArchived", "type": "bool"},
        "job_type": {"key": "jobType", "type": "str"},
        "services": {"key": "services", "type": "{JobService}"},
        "status": {"key": "status", "type": "str"},
    }

    _subtype_map = {
        "job_type": {"AutoML": "AutoMLJob", "Command": "CommandJob", "Pipeline": "PipelineJob", "Sweep": "SweepJob"}
    }

    def __init__(
        self,
        *,
        description: Optional[str] = None,
        properties: Optional[Dict[str, str]] = None,
        tags: Optional[Dict[str, str]] = None,
        component_id: Optional[str] = None,
        compute_id: Optional[str] = None,
        display_name: Optional[str] = None,
        experiment_name: str = "Default",
        identity: Optional["_models.IdentityConfiguration"] = None,
        is_archived: bool = False,
        services: Optional[Dict[str, "_models.JobService"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword description: The asset description text.
        :paramtype description: str
        :keyword properties: The asset property dictionary.
        :paramtype properties: dict[str, str]
        :keyword tags: Tag dictionary. Tags can be added, removed, and updated.
        :paramtype tags: dict[str, str]
        :keyword component_id: ARM resource ID of the component resource.
        :paramtype component_id: str
        :keyword compute_id: ARM resource ID of the compute resource.
        :paramtype compute_id: str
        :keyword display_name: Display name of job.
        :paramtype display_name: str
        :keyword experiment_name: The name of the experiment the job belongs to. If not set, the job is
         placed in the "Default" experiment.
        :paramtype experiment_name: str
        :keyword identity: Identity configuration. If set, this should be one of AmlToken,
         ManagedIdentity, UserIdentity or null.
         Defaults to AmlToken if null.
        :paramtype identity: ~azure.mgmt.machinelearningservices.models.IdentityConfiguration
        :keyword is_archived: Is the asset archived?.
        :paramtype is_archived: bool
        :keyword services: List of JobEndpoints.
         For local jobs, a job endpoint will have an endpoint value of FileStreamObject.
        :paramtype services: dict[str, ~azure.mgmt.machinelearningservices.models.JobService]
        """
        super().__init__(description=description, properties=properties, tags=tags, **kwargs)
        self.component_id = component_id
        self.compute_id = compute_id
        self.display_name = display_name
        self.experiment_name = experiment_name
        self.identity = identity
        self.is_archived = is_archived
        self.job_type: Optional[str] = None
        self.services = services
        self.status = None


class AutoMLJob(JobBaseProperties):  # pylint: disable=too-many-instance-attributes
    """AutoMLJob class.
    Use this class for executing AutoML tasks like Classification/Regression etc.
    See TaskType enum for all the tasks supported.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar description: The asset description text.
    :vartype description: str
    :ivar properties: The asset property dictionary.
    :vartype properties: dict[str, str]
    :ivar tags: Tag dictionary. Tags can be added, removed, and updated.
    :vartype tags: dict[str, str]
    :ivar component_id: ARM resource ID of the component resource.
    :vartype component_id: str
    :ivar compute_id: ARM resource ID of the compute resource.
    :vartype compute_id: str
    :ivar display_name: Display name of job.
    :vartype display_name: str
    :ivar experiment_name: The name of the experiment the job belongs to. If not set, the job is
     placed in the "Default" experiment.
    :vartype experiment_name: str
    :ivar identity: Identity configuration. If set, this should be one of AmlToken,
     ManagedIdentity, UserIdentity or null.
     Defaults to AmlToken if null.
    :vartype identity: ~azure.mgmt.machinelearningservices.models.IdentityConfiguration
    :ivar is_archived: Is the asset archived?.
    :vartype is_archived: bool
    :ivar job_type: [Required] Specifies the type of job. Required. Known values are: "AutoML",
     "Command", "Sweep", and "Pipeline".
    :vartype job_type: str or ~azure.mgmt.machinelearningservices.models.JobType
    :ivar services: List of JobEndpoints.
     For local jobs, a job endpoint will have an endpoint value of FileStreamObject.
    :vartype services: dict[str, ~azure.mgmt.machinelearningservices.models.JobService]
    :ivar status: Status of the job. Known values are: "NotStarted", "Starting", "Provisioning",
     "Preparing", "Queued", "Running", "Finalizing", "CancelRequested", "Completed", "Failed",
     "Canceled", "NotResponding", "Paused", and "Unknown".
    :vartype status: str or ~azure.mgmt.machinelearningservices.models.JobStatus
    :ivar environment_id: The ARM resource ID of the Environment specification for the job.
     This is optional value to provide, if not provided, AutoML will default this to Production
     AutoML curated environment version when running the job.
    :vartype environment_id: str
    :ivar environment_variables: Environment variables included in the job.
    :vartype environment_variables: dict[str, str]
    :ivar outputs: Mapping of output data bindings used in the job.
    :vartype outputs: dict[str, ~azure.mgmt.machinelearningservices.models.JobOutput]
    :ivar resources: Compute Resource configuration for the job.
    :vartype resources: ~azure.mgmt.machinelearningservices.models.JobResourceConfiguration
    :ivar task_details: [Required] This represents scenario which can be one of Tables/NLP/Image.
     Required.
    :vartype task_details: ~azure.mgmt.machinelearningservices.models.AutoMLVertical
    """

    _validation = {
        "job_type": {"required": True},
        "status": {"readonly": True},
        "task_details": {"required": True},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "properties": {"key": "properties", "type": "{str}"},
        "tags": {"key": "tags", "type": "{str}"},
        "component_id": {"key": "componentId", "type": "str"},
        "compute_id": {"key": "computeId", "type": "str"},
        "display_name": {"key": "displayName", "type": "str"},
        "experiment_name": {"key": "experimentName", "type": "str"},
        "identity": {"key": "identity", "type": "IdentityConfiguration"},
        "is_archived": {"key": "isArchived", "type": "bool"},
        "job_type": {"key": "jobType", "type": "str"},
        "services": {"key": "services", "type": "{JobService}"},
        "status": {"key": "status", "type": "str"},
        "environment_id": {"key": "environmentId", "type": "str"},
        "environment_variables": {"key": "environmentVariables", "type": "{str}"},
        "outputs": {"key": "outputs", "type": "{JobOutput}"},
        "resources": {"key": "resources", "type": "JobResourceConfiguration"},
        "task_details": {"key": "taskDetails", "type": "AutoMLVertical"},
    }

    def __init__(
        self,
        *,
        task_details: "_models.AutoMLVertical",
        description: Optional[str] = None,
        properties: Optional[Dict[str, str]] = None,
        tags: Optional[Dict[str, str]] = None,
        component_id: Optional[str] = None,
        compute_id: Optional[str] = None,
        display_name: Optional[str] = None,
        experiment_name: str = "Default",
        identity: Optional["_models.IdentityConfiguration"] = None,
        is_archived: bool = False,
        services: Optional[Dict[str, "_models.JobService"]] = None,
        environment_id: Optional[str] = None,
        environment_variables: Optional[Dict[str, str]] = None,
        outputs: Optional[Dict[str, "_models.JobOutput"]] = None,
        resources: Optional["_models.JobResourceConfiguration"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword description: The asset description text.
        :paramtype description: str
        :keyword properties: The asset property dictionary.
        :paramtype properties: dict[str, str]
        :keyword tags: Tag dictionary. Tags can be added, removed, and updated.
        :paramtype tags: dict[str, str]
        :keyword component_id: ARM resource ID of the component resource.
        :paramtype component_id: str
        :keyword compute_id: ARM resource ID of the compute resource.
        :paramtype compute_id: str
        :keyword display_name: Display name of job.
        :paramtype display_name: str
        :keyword experiment_name: The name of the experiment the job belongs to. If not set, the job is
         placed in the "Default" experiment.
        :paramtype experiment_name: str
        :keyword identity: Identity configuration. If set, this should be one of AmlToken,
         ManagedIdentity, UserIdentity or null.
         Defaults to AmlToken if null.
        :paramtype identity: ~azure.mgmt.machinelearningservices.models.IdentityConfiguration
        :keyword is_archived: Is the asset archived?.
        :paramtype is_archived: bool
        :keyword services: List of JobEndpoints.
         For local jobs, a job endpoint will have an endpoint value of FileStreamObject.
        :paramtype services: dict[str, ~azure.mgmt.machinelearningservices.models.JobService]
        :keyword environment_id: The ARM resource ID of the Environment specification for the job.
         This is optional value to provide, if not provided, AutoML will default this to Production
         AutoML curated environment version when running the job.
        :paramtype environment_id: str
        :keyword environment_variables: Environment variables included in the job.
        :paramtype environment_variables: dict[str, str]
        :keyword outputs: Mapping of output data bindings used in the job.
        :paramtype outputs: dict[str, ~azure.mgmt.machinelearningservices.models.JobOutput]
        :keyword resources: Compute Resource configuration for the job.
        :paramtype resources: ~azure.mgmt.machinelearningservices.models.JobResourceConfiguration
        :keyword task_details: [Required] This represents scenario which can be one of
         Tables/NLP/Image. Required.
        :paramtype task_details: ~azure.mgmt.machinelearningservices.models.AutoMLVertical
        """
        super().__init__(
            description=description,
            properties=properties,
            tags=tags,
            component_id=component_id,
            compute_id=compute_id,
            display_name=display_name,
            experiment_name=experiment_name,
            identity=identity,
            is_archived=is_archived,
            services=services,
            **kwargs
        )
        self.job_type: str = "AutoML"
        self.environment_id = environment_id
        self.environment_variables = environment_variables
        self.outputs = outputs
        self.resources = resources
        self.task_details = task_details


class AutoMLVertical(_serialization.Model):
    """AutoML vertical class.
    Base class for AutoML verticals - TableVertical/ImageVertical/NLPVertical.

    You probably want to use the sub-classes and not this class directly. Known sub-classes are:
    Classification, Forecasting, ImageClassification, ImageClassificationMultilabel,
    ImageInstanceSegmentation, ImageObjectDetection, Regression, TextClassification,
    TextClassificationMultilabel, TextNer

    All required parameters must be populated in order to send to Azure.

    :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info",
     "Warning", "Error", and "Critical".
    :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity
    :ivar target_column_name: Target column name: This is prediction values column.
     Also known as label column name in context of classification tasks.
    :vartype target_column_name: str
    :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are:
     "Classification", "Regression", "Forecasting", "ImageClassification",
     "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation",
     "TextClassification", "TextClassificationMultilabel", and "TextNER".
    :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType
    :ivar training_data: [Required] Training data input. Required.
    :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
    """

    _validation = {
        "task_type": {"required": True},
        "training_data": {"required": True},
    }

    _attribute_map = {
        "log_verbosity": {"key": "logVerbosity", "type": "str"},
        "target_column_name": {"key": "targetColumnName", "type": "str"},
        "task_type": {"key": "taskType", "type": "str"},
        "training_data": {"key": "trainingData", "type": "MLTableJobInput"},
    }

    _subtype_map = {
        "task_type": {
            "Classification": "Classification",
            "Forecasting": "Forecasting",
            "ImageClassification": "ImageClassification",
            "ImageClassificationMultilabel": "ImageClassificationMultilabel",
            "ImageInstanceSegmentation": "ImageInstanceSegmentation",
            "ImageObjectDetection": "ImageObjectDetection",
            "Regression": "Regression",
            "TextClassification": "TextClassification",
            "TextClassificationMultilabel": "TextClassificationMultilabel",
            "TextNER": "TextNer",
        }
    }

    def __init__(
        self,
        *,
        training_data: "_models.MLTableJobInput",
        log_verbosity: Optional[Union[str, "_models.LogVerbosity"]] = None,
        target_column_name: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info",
         "Warning", "Error", and "Critical".
        :paramtype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity
        :keyword target_column_name: Target column name: This is prediction values column.
         Also known as label column name in context of classification tasks.
        :paramtype target_column_name: str
        :keyword training_data: [Required] Training data input. Required.
        :paramtype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
        """
        super().__init__(**kwargs)
        self.log_verbosity = log_verbosity
        self.target_column_name = target_column_name
        self.task_type: Optional[str] = None
        self.training_data = training_data


class NCrossValidations(_serialization.Model):
    """N-Cross validations value.

    You probably want to use the sub-classes and not this class directly. Known sub-classes are:
    AutoNCrossValidations, CustomNCrossValidations

    All required parameters must be populated in order to send to Azure.

    :ivar mode: [Required] Mode for determining N-Cross validations. Required. Known values are:
     "Auto" and "Custom".
    :vartype mode: str or ~azure.mgmt.machinelearningservices.models.NCrossValidationsMode
    """

    _validation = {
        "mode": {"required": True},
    }

    _attribute_map = {
        "mode": {"key": "mode", "type": "str"},
    }

    _subtype_map = {"mode": {"Auto": "AutoNCrossValidations", "Custom": "CustomNCrossValidations"}}

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.mode: Optional[str] = None


class AutoNCrossValidations(NCrossValidations):
    """N-Cross validations determined automatically.

    All required parameters must be populated in order to send to Azure.

    :ivar mode: [Required] Mode for determining N-Cross validations. Required. Known values are:
     "Auto" and "Custom".
    :vartype mode: str or ~azure.mgmt.machinelearningservices.models.NCrossValidationsMode
    """

    _validation = {
        "mode": {"required": True},
    }

    _attribute_map = {
        "mode": {"key": "mode", "type": "str"},
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.mode: str = "Auto"


class AutoPauseProperties(_serialization.Model):
    """Auto pause properties.

    :ivar delay_in_minutes:
    :vartype delay_in_minutes: int
    :ivar enabled:
    :vartype enabled: bool
    """

    _attribute_map = {
        "delay_in_minutes": {"key": "delayInMinutes", "type": "int"},
        "enabled": {"key": "enabled", "type": "bool"},
    }

    def __init__(
        self, *, delay_in_minutes: Optional[int] = None, enabled: Optional[bool] = None, **kwargs: Any
    ) -> None:
        """
        :keyword delay_in_minutes:
        :paramtype delay_in_minutes: int
        :keyword enabled:
        :paramtype enabled: bool
        """
        super().__init__(**kwargs)
        self.delay_in_minutes = delay_in_minutes
        self.enabled = enabled


class AutoScaleProperties(_serialization.Model):
    """Auto scale properties.

    :ivar min_node_count:
    :vartype min_node_count: int
    :ivar enabled:
    :vartype enabled: bool
    :ivar max_node_count:
    :vartype max_node_count: int
    """

    _attribute_map = {
        "min_node_count": {"key": "minNodeCount", "type": "int"},
        "enabled": {"key": "enabled", "type": "bool"},
        "max_node_count": {"key": "maxNodeCount", "type": "int"},
    }

    def __init__(
        self,
        *,
        min_node_count: Optional[int] = None,
        enabled: Optional[bool] = None,
        max_node_count: Optional[int] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword min_node_count:
        :paramtype min_node_count: int
        :keyword enabled:
        :paramtype enabled: bool
        :keyword max_node_count:
        :paramtype max_node_count: int
        """
        super().__init__(**kwargs)
        self.min_node_count = min_node_count
        self.enabled = enabled
        self.max_node_count = max_node_count


class Seasonality(_serialization.Model):
    """Forecasting seasonality.

    You probably want to use the sub-classes and not this class directly. Known sub-classes are:
    AutoSeasonality, CustomSeasonality

    All required parameters must be populated in order to send to Azure.

    :ivar mode: [Required] Seasonality mode. Required. Known values are: "Auto" and "Custom".
    :vartype mode: str or ~azure.mgmt.machinelearningservices.models.SeasonalityMode
    """

    _validation = {
        "mode": {"required": True},
    }

    _attribute_map = {
        "mode": {"key": "mode", "type": "str"},
    }

    _subtype_map = {"mode": {"Auto": "AutoSeasonality", "Custom": "CustomSeasonality"}}

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.mode: Optional[str] = None


class AutoSeasonality(Seasonality):
    """AutoSeasonality.

    All required parameters must be populated in order to send to Azure.

    :ivar mode: [Required] Seasonality mode. Required. Known values are: "Auto" and "Custom".
    :vartype mode: str or ~azure.mgmt.machinelearningservices.models.SeasonalityMode
    """

    _validation = {
        "mode": {"required": True},
    }

    _attribute_map = {
        "mode": {"key": "mode", "type": "str"},
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.mode: str = "Auto"


class TargetLags(_serialization.Model):
    """The number of past periods to lag from the target column.

    You probably want to use the sub-classes and not this class directly. Known sub-classes are:
    AutoTargetLags, CustomTargetLags

    All required parameters must be populated in order to send to Azure.

    :ivar mode: [Required] Set target lags mode - Auto/Custom. Required. Known values are: "Auto"
     and "Custom".
    :vartype mode: str or ~azure.mgmt.machinelearningservices.models.TargetLagsMode
    """

    _validation = {
        "mode": {"required": True},
    }

    _attribute_map = {
        "mode": {"key": "mode", "type": "str"},
    }

    _subtype_map = {"mode": {"Auto": "AutoTargetLags", "Custom": "CustomTargetLags"}}

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.mode: Optional[str] = None


class AutoTargetLags(TargetLags):
    """AutoTargetLags.

    All required parameters must be populated in order to send to Azure.

    :ivar mode: [Required] Set target lags mode - Auto/Custom. Required. Known values are: "Auto"
     and "Custom".
    :vartype mode: str or ~azure.mgmt.machinelearningservices.models.TargetLagsMode
    """

    _validation = {
        "mode": {"required": True},
    }

    _attribute_map = {
        "mode": {"key": "mode", "type": "str"},
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.mode: str = "Auto"


class TargetRollingWindowSize(_serialization.Model):
    """Forecasting target rolling window size.

    You probably want to use the sub-classes and not this class directly. Known sub-classes are:
    AutoTargetRollingWindowSize, CustomTargetRollingWindowSize

    All required parameters must be populated in order to send to Azure.

    :ivar mode: [Required] TargetRollingWindowSiz detection mode. Required. Known values are:
     "Auto" and "Custom".
    :vartype mode: str or ~azure.mgmt.machinelearningservices.models.TargetRollingWindowSizeMode
    """

    _validation = {
        "mode": {"required": True},
    }

    _attribute_map = {
        "mode": {"key": "mode", "type": "str"},
    }

    _subtype_map = {"mode": {"Auto": "AutoTargetRollingWindowSize", "Custom": "CustomTargetRollingWindowSize"}}

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.mode: Optional[str] = None


class AutoTargetRollingWindowSize(TargetRollingWindowSize):
    """Target lags rolling window determined automatically.

    All required parameters must be populated in order to send to Azure.

    :ivar mode: [Required] TargetRollingWindowSiz detection mode. Required. Known values are:
     "Auto" and "Custom".
    :vartype mode: str or ~azure.mgmt.machinelearningservices.models.TargetRollingWindowSizeMode
    """

    _validation = {
        "mode": {"required": True},
    }

    _attribute_map = {
        "mode": {"key": "mode", "type": "str"},
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.mode: str = "Auto"


class DatastoreProperties(ResourceBase):
    """Base definition for datastore contents configuration.

    You probably want to use the sub-classes and not this class directly. Known sub-classes are:
    AzureBlobDatastore, AzureDataLakeGen1Datastore, AzureDataLakeGen2Datastore, AzureFileDatastore

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar description: The asset description text.
    :vartype description: str
    :ivar properties: The asset property dictionary.
    :vartype properties: dict[str, str]
    :ivar tags: Tag dictionary. Tags can be added, removed, and updated.
    :vartype tags: dict[str, str]
    :ivar credentials: [Required] Account credentials. Required.
    :vartype credentials: ~azure.mgmt.machinelearningservices.models.DatastoreCredentials
    :ivar datastore_type: [Required] Storage type backing the datastore. Required. Known values
     are: "AzureBlob", "AzureDataLakeGen1", "AzureDataLakeGen2", and "AzureFile".
    :vartype datastore_type: str or ~azure.mgmt.machinelearningservices.models.DatastoreType
    :ivar is_default: Readonly property to indicate if datastore is the workspace default
     datastore.
    :vartype is_default: bool
    """

    _validation = {
        "credentials": {"required": True},
        "datastore_type": {"required": True},
        "is_default": {"readonly": True},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "properties": {"key": "properties", "type": "{str}"},
        "tags": {"key": "tags", "type": "{str}"},
        "credentials": {"key": "credentials", "type": "DatastoreCredentials"},
        "datastore_type": {"key": "datastoreType", "type": "str"},
        "is_default": {"key": "isDefault", "type": "bool"},
    }

    _subtype_map = {
        "datastore_type": {
            "AzureBlob": "AzureBlobDatastore",
            "AzureDataLakeGen1": "AzureDataLakeGen1Datastore",
            "AzureDataLakeGen2": "AzureDataLakeGen2Datastore",
            "AzureFile": "AzureFileDatastore",
        }
    }

    def __init__(
        self,
        *,
        credentials: "_models.DatastoreCredentials",
        description: Optional[str] = None,
        properties: Optional[Dict[str, str]] = None,
        tags: Optional[Dict[str, str]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword description: The asset description text.
        :paramtype description: str
        :keyword properties: The asset property dictionary.
        :paramtype properties: dict[str, str]
        :keyword tags: Tag dictionary. Tags can be added, removed, and updated.
        :paramtype tags: dict[str, str]
        :keyword credentials: [Required] Account credentials. Required.
        :paramtype credentials: ~azure.mgmt.machinelearningservices.models.DatastoreCredentials
        """
        super().__init__(description=description, properties=properties, tags=tags, **kwargs)
        self.credentials = credentials
        self.datastore_type: Optional[str] = None
        self.is_default = None


class AzureBlobDatastore(DatastoreProperties):  # pylint: disable=too-many-instance-attributes
    """Azure Blob datastore configuration.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar description: The asset description text.
    :vartype description: str
    :ivar properties: The asset property dictionary.
    :vartype properties: dict[str, str]
    :ivar tags: Tag dictionary. Tags can be added, removed, and updated.
    :vartype tags: dict[str, str]
    :ivar credentials: [Required] Account credentials. Required.
    :vartype credentials: ~azure.mgmt.machinelearningservices.models.DatastoreCredentials
    :ivar datastore_type: [Required] Storage type backing the datastore. Required. Known values
     are: "AzureBlob", "AzureDataLakeGen1", "AzureDataLakeGen2", and "AzureFile".
    :vartype datastore_type: str or ~azure.mgmt.machinelearningservices.models.DatastoreType
    :ivar is_default: Readonly property to indicate if datastore is the workspace default
     datastore.
    :vartype is_default: bool
    :ivar account_name: Storage account name.
    :vartype account_name: str
    :ivar container_name: Storage account container name.
    :vartype container_name: str
    :ivar endpoint: Azure cloud endpoint for the storage account.
    :vartype endpoint: str
    :ivar protocol: Protocol used to communicate with the storage account.
    :vartype protocol: str
    :ivar service_data_access_auth_identity: Indicates which identity to use to authenticate
     service data access to customer's storage. Known values are: "None",
     "WorkspaceSystemAssignedIdentity", and "WorkspaceUserAssignedIdentity".
    :vartype service_data_access_auth_identity: str or
     ~azure.mgmt.machinelearningservices.models.ServiceDataAccessAuthIdentity
    """

    _validation = {
        "credentials": {"required": True},
        "datastore_type": {"required": True},
        "is_default": {"readonly": True},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "properties": {"key": "properties", "type": "{str}"},
        "tags": {"key": "tags", "type": "{str}"},
        "credentials": {"key": "credentials", "type": "DatastoreCredentials"},
        "datastore_type": {"key": "datastoreType", "type": "str"},
        "is_default": {"key": "isDefault", "type": "bool"},
        "account_name": {"key": "accountName", "type": "str"},
        "container_name": {"key": "containerName", "type": "str"},
        "endpoint": {"key": "endpoint", "type": "str"},
        "protocol": {"key": "protocol", "type": "str"},
        "service_data_access_auth_identity": {"key": "serviceDataAccessAuthIdentity", "type": "str"},
    }

    def __init__(
        self,
        *,
        credentials: "_models.DatastoreCredentials",
        description: Optional[str] = None,
        properties: Optional[Dict[str, str]] = None,
        tags: Optional[Dict[str, str]] = None,
        account_name: Optional[str] = None,
        container_name: Optional[str] = None,
        endpoint: Optional[str] = None,
        protocol: Optional[str] = None,
        service_data_access_auth_identity: Optional[Union[str, "_models.ServiceDataAccessAuthIdentity"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword description: The asset description text.
        :paramtype description: str
        :keyword properties: The asset property dictionary.
        :paramtype properties: dict[str, str]
        :keyword tags: Tag dictionary. Tags can be added, removed, and updated.
        :paramtype tags: dict[str, str]
        :keyword credentials: [Required] Account credentials. Required.
        :paramtype credentials: ~azure.mgmt.machinelearningservices.models.DatastoreCredentials
        :keyword account_name: Storage account name.
        :paramtype account_name: str
        :keyword container_name: Storage account container name.
        :paramtype container_name: str
        :keyword endpoint: Azure cloud endpoint for the storage account.
        :paramtype endpoint: str
        :keyword protocol: Protocol used to communicate with the storage account.
        :paramtype protocol: str
        :keyword service_data_access_auth_identity: Indicates which identity to use to authenticate
         service data access to customer's storage. Known values are: "None",
         "WorkspaceSystemAssignedIdentity", and "WorkspaceUserAssignedIdentity".
        :paramtype service_data_access_auth_identity: str or
         ~azure.mgmt.machinelearningservices.models.ServiceDataAccessAuthIdentity
        """
        super().__init__(description=description, properties=properties, tags=tags, credentials=credentials, **kwargs)
        self.datastore_type: str = "AzureBlob"
        self.account_name = account_name
        self.container_name = container_name
        self.endpoint = endpoint
        self.protocol = protocol
        self.service_data_access_auth_identity = service_data_access_auth_identity


class AzureDataLakeGen1Datastore(DatastoreProperties):
    """Azure Data Lake Gen1 datastore configuration.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar description: The asset description text.
    :vartype description: str
    :ivar properties: The asset property dictionary.
    :vartype properties: dict[str, str]
    :ivar tags: Tag dictionary. Tags can be added, removed, and updated.
    :vartype tags: dict[str, str]
    :ivar credentials: [Required] Account credentials. Required.
    :vartype credentials: ~azure.mgmt.machinelearningservices.models.DatastoreCredentials
    :ivar datastore_type: [Required] Storage type backing the datastore. Required. Known values
     are: "AzureBlob", "AzureDataLakeGen1", "AzureDataLakeGen2", and "AzureFile".
    :vartype datastore_type: str or ~azure.mgmt.machinelearningservices.models.DatastoreType
    :ivar is_default: Readonly property to indicate if datastore is the workspace default
     datastore.
    :vartype is_default: bool
    :ivar service_data_access_auth_identity: Indicates which identity to use to authenticate
     service data access to customer's storage. Known values are: "None",
     "WorkspaceSystemAssignedIdentity", and "WorkspaceUserAssignedIdentity".
    :vartype service_data_access_auth_identity: str or
     ~azure.mgmt.machinelearningservices.models.ServiceDataAccessAuthIdentity
    :ivar store_name: [Required] Azure Data Lake store name. Required.
    :vartype store_name: str
    """

    _validation = {
        "credentials": {"required": True},
        "datastore_type": {"required": True},
        "is_default": {"readonly": True},
        "store_name": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "properties": {"key": "properties", "type": "{str}"},
        "tags": {"key": "tags", "type": "{str}"},
        "credentials": {"key": "credentials", "type": "DatastoreCredentials"},
        "datastore_type": {"key": "datastoreType", "type": "str"},
        "is_default": {"key": "isDefault", "type": "bool"},
        "service_data_access_auth_identity": {"key": "serviceDataAccessAuthIdentity", "type": "str"},
        "store_name": {"key": "storeName", "type": "str"},
    }

    def __init__(
        self,
        *,
        credentials: "_models.DatastoreCredentials",
        store_name: str,
        description: Optional[str] = None,
        properties: Optional[Dict[str, str]] = None,
        tags: Optional[Dict[str, str]] = None,
        service_data_access_auth_identity: Optional[Union[str, "_models.ServiceDataAccessAuthIdentity"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword description: The asset description text.
        :paramtype description: str
        :keyword properties: The asset property dictionary.
        :paramtype properties: dict[str, str]
        :keyword tags: Tag dictionary. Tags can be added, removed, and updated.
        :paramtype tags: dict[str, str]
        :keyword credentials: [Required] Account credentials. Required.
        :paramtype credentials: ~azure.mgmt.machinelearningservices.models.DatastoreCredentials
        :keyword service_data_access_auth_identity: Indicates which identity to use to authenticate
         service data access to customer's storage. Known values are: "None",
         "WorkspaceSystemAssignedIdentity", and "WorkspaceUserAssignedIdentity".
        :paramtype service_data_access_auth_identity: str or
         ~azure.mgmt.machinelearningservices.models.ServiceDataAccessAuthIdentity
        :keyword store_name: [Required] Azure Data Lake store name. Required.
        :paramtype store_name: str
        """
        super().__init__(description=description, properties=properties, tags=tags, credentials=credentials, **kwargs)
        self.datastore_type: str = "AzureDataLakeGen1"
        self.service_data_access_auth_identity = service_data_access_auth_identity
        self.store_name = store_name


class AzureDataLakeGen2Datastore(DatastoreProperties):  # pylint: disable=too-many-instance-attributes
    """Azure Data Lake Gen2 datastore configuration.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar description: The asset description text.
    :vartype description: str
    :ivar properties: The asset property dictionary.
    :vartype properties: dict[str, str]
    :ivar tags: Tag dictionary. Tags can be added, removed, and updated.
    :vartype tags: dict[str, str]
    :ivar credentials: [Required] Account credentials. Required.
    :vartype credentials: ~azure.mgmt.machinelearningservices.models.DatastoreCredentials
    :ivar datastore_type: [Required] Storage type backing the datastore. Required. Known values
     are: "AzureBlob", "AzureDataLakeGen1", "AzureDataLakeGen2", and "AzureFile".
    :vartype datastore_type: str or ~azure.mgmt.machinelearningservices.models.DatastoreType
    :ivar is_default: Readonly property to indicate if datastore is the workspace default
     datastore.
    :vartype is_default: bool
    :ivar account_name: [Required] Storage account name. Required.
    :vartype account_name: str
    :ivar endpoint: Azure cloud endpoint for the storage account.
    :vartype endpoint: str
    :ivar filesystem: [Required] The name of the Data Lake Gen2 filesystem. Required.
    :vartype filesystem: str
    :ivar protocol: Protocol used to communicate with the storage account.
    :vartype protocol: str
    :ivar service_data_access_auth_identity: Indicates which identity to use to authenticate
     service data access to customer's storage. Known values are: "None",
     "WorkspaceSystemAssignedIdentity", and "WorkspaceUserAssignedIdentity".
    :vartype service_data_access_auth_identity: str or
     ~azure.mgmt.machinelearningservices.models.ServiceDataAccessAuthIdentity
    """

    _validation = {
        "credentials": {"required": True},
        "datastore_type": {"required": True},
        "is_default": {"readonly": True},
        "account_name": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"},
        "filesystem": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "properties": {"key": "properties", "type": "{str}"},
        "tags": {"key": "tags", "type": "{str}"},
        "credentials": {"key": "credentials", "type": "DatastoreCredentials"},
        "datastore_type": {"key": "datastoreType", "type": "str"},
        "is_default": {"key": "isDefault", "type": "bool"},
        "account_name": {"key": "accountName", "type": "str"},
        "endpoint": {"key": "endpoint", "type": "str"},
        "filesystem": {"key": "filesystem", "type": "str"},
        "protocol": {"key": "protocol", "type": "str"},
        "service_data_access_auth_identity": {"key": "serviceDataAccessAuthIdentity", "type": "str"},
    }

    def __init__(
        self,
        *,
        credentials: "_models.DatastoreCredentials",
        account_name: str,
        filesystem: str,
        description: Optional[str] = None,
        properties: Optional[Dict[str, str]] = None,
        tags: Optional[Dict[str, str]] = None,
        endpoint: Optional[str] = None,
        protocol: Optional[str] = None,
        service_data_access_auth_identity: Optional[Union[str, "_models.ServiceDataAccessAuthIdentity"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword description: The asset description text.
        :paramtype description: str
        :keyword properties: The asset property dictionary.
        :paramtype properties: dict[str, str]
        :keyword tags: Tag dictionary. Tags can be added, removed, and updated.
        :paramtype tags: dict[str, str]
        :keyword credentials: [Required] Account credentials. Required.
        :paramtype credentials: ~azure.mgmt.machinelearningservices.models.DatastoreCredentials
        :keyword account_name: [Required] Storage account name. Required.
        :paramtype account_name: str
        :keyword endpoint: Azure cloud endpoint for the storage account.
        :paramtype endpoint: str
        :keyword filesystem: [Required] The name of the Data Lake Gen2 filesystem. Required.
        :paramtype filesystem: str
        :keyword protocol: Protocol used to communicate with the storage account.
        :paramtype protocol: str
        :keyword service_data_access_auth_identity: Indicates which identity to use to authenticate
         service data access to customer's storage. Known values are: "None",
         "WorkspaceSystemAssignedIdentity", and "WorkspaceUserAssignedIdentity".
        :paramtype service_data_access_auth_identity: str or
         ~azure.mgmt.machinelearningservices.models.ServiceDataAccessAuthIdentity
        """
        super().__init__(description=description, properties=properties, tags=tags, credentials=credentials, **kwargs)
        self.datastore_type: str = "AzureDataLakeGen2"
        self.account_name = account_name
        self.endpoint = endpoint
        self.filesystem = filesystem
        self.protocol = protocol
        self.service_data_access_auth_identity = service_data_access_auth_identity


class AzureFileDatastore(DatastoreProperties):  # pylint: disable=too-many-instance-attributes
    """Azure File datastore configuration.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar description: The asset description text.
    :vartype description: str
    :ivar properties: The asset property dictionary.
    :vartype properties: dict[str, str]
    :ivar tags: Tag dictionary. Tags can be added, removed, and updated.
    :vartype tags: dict[str, str]
    :ivar credentials: [Required] Account credentials. Required.
    :vartype credentials: ~azure.mgmt.machinelearningservices.models.DatastoreCredentials
    :ivar datastore_type: [Required] Storage type backing the datastore. Required. Known values
     are: "AzureBlob", "AzureDataLakeGen1", "AzureDataLakeGen2", and "AzureFile".
    :vartype datastore_type: str or ~azure.mgmt.machinelearningservices.models.DatastoreType
    :ivar is_default: Readonly property to indicate if datastore is the workspace default
     datastore.
    :vartype is_default: bool
    :ivar account_name: [Required] Storage account name. Required.
    :vartype account_name: str
    :ivar endpoint: Azure cloud endpoint for the storage account.
    :vartype endpoint: str
    :ivar file_share_name: [Required] The name of the Azure file share that the datastore points
     to. Required.
    :vartype file_share_name: str
    :ivar protocol: Protocol used to communicate with the storage account.
    :vartype protocol: str
    :ivar service_data_access_auth_identity: Indicates which identity to use to authenticate
     service data access to customer's storage. Known values are: "None",
     "WorkspaceSystemAssignedIdentity", and "WorkspaceUserAssignedIdentity".
    :vartype service_data_access_auth_identity: str or
     ~azure.mgmt.machinelearningservices.models.ServiceDataAccessAuthIdentity
    """

    _validation = {
        "credentials": {"required": True},
        "datastore_type": {"required": True},
        "is_default": {"readonly": True},
        "account_name": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"},
        "file_share_name": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "properties": {"key": "properties", "type": "{str}"},
        "tags": {"key": "tags", "type": "{str}"},
        "credentials": {"key": "credentials", "type": "DatastoreCredentials"},
        "datastore_type": {"key": "datastoreType", "type": "str"},
        "is_default": {"key": "isDefault", "type": "bool"},
        "account_name": {"key": "accountName", "type": "str"},
        "endpoint": {"key": "endpoint", "type": "str"},
        "file_share_name": {"key": "fileShareName", "type": "str"},
        "protocol": {"key": "protocol", "type": "str"},
        "service_data_access_auth_identity": {"key": "serviceDataAccessAuthIdentity", "type": "str"},
    }

    def __init__(
        self,
        *,
        credentials: "_models.DatastoreCredentials",
        account_name: str,
        file_share_name: str,
        description: Optional[str] = None,
        properties: Optional[Dict[str, str]] = None,
        tags: Optional[Dict[str, str]] = None,
        endpoint: Optional[str] = None,
        protocol: Optional[str] = None,
        service_data_access_auth_identity: Optional[Union[str, "_models.ServiceDataAccessAuthIdentity"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword description: The asset description text.
        :paramtype description: str
        :keyword properties: The asset property dictionary.
        :paramtype properties: dict[str, str]
        :keyword tags: Tag dictionary. Tags can be added, removed, and updated.
        :paramtype tags: dict[str, str]
        :keyword credentials: [Required] Account credentials. Required.
        :paramtype credentials: ~azure.mgmt.machinelearningservices.models.DatastoreCredentials
        :keyword account_name: [Required] Storage account name. Required.
        :paramtype account_name: str
        :keyword endpoint: Azure cloud endpoint for the storage account.
        :paramtype endpoint: str
        :keyword file_share_name: [Required] The name of the Azure file share that the datastore points
         to. Required.
        :paramtype file_share_name: str
        :keyword protocol: Protocol used to communicate with the storage account.
        :paramtype protocol: str
        :keyword service_data_access_auth_identity: Indicates which identity to use to authenticate
         service data access to customer's storage. Known values are: "None",
         "WorkspaceSystemAssignedIdentity", and "WorkspaceUserAssignedIdentity".
        :paramtype service_data_access_auth_identity: str or
         ~azure.mgmt.machinelearningservices.models.ServiceDataAccessAuthIdentity
        """
        super().__init__(description=description, properties=properties, tags=tags, credentials=credentials, **kwargs)
        self.datastore_type: str = "AzureFile"
        self.account_name = account_name
        self.endpoint = endpoint
        self.file_share_name = file_share_name
        self.protocol = protocol
        self.service_data_access_auth_identity = service_data_access_auth_identity


class EarlyTerminationPolicy(_serialization.Model):
    """Early termination policies enable canceling poor-performing runs before they complete.

    You probably want to use the sub-classes and not this class directly. Known sub-classes are:
    BanditPolicy, MedianStoppingPolicy, TruncationSelectionPolicy

    All required parameters must be populated in order to send to Azure.

    :ivar delay_evaluation: Number of intervals by which to delay the first evaluation.
    :vartype delay_evaluation: int
    :ivar evaluation_interval: Interval (number of runs) between policy evaluations.
    :vartype evaluation_interval: int
    :ivar policy_type: [Required] Name of policy configuration. Required. Known values are:
     "Bandit", "MedianStopping", and "TruncationSelection".
    :vartype policy_type: str or
     ~azure.mgmt.machinelearningservices.models.EarlyTerminationPolicyType
    """

    _validation = {
        "policy_type": {"required": True},
    }

    _attribute_map = {
        "delay_evaluation": {"key": "delayEvaluation", "type": "int"},
        "evaluation_interval": {"key": "evaluationInterval", "type": "int"},
        "policy_type": {"key": "policyType", "type": "str"},
    }

    _subtype_map = {
        "policy_type": {
            "Bandit": "BanditPolicy",
            "MedianStopping": "MedianStoppingPolicy",
            "TruncationSelection": "TruncationSelectionPolicy",
        }
    }

    def __init__(self, *, delay_evaluation: int = 0, evaluation_interval: int = 0, **kwargs: Any) -> None:
        """
        :keyword delay_evaluation: Number of intervals by which to delay the first evaluation.
        :paramtype delay_evaluation: int
        :keyword evaluation_interval: Interval (number of runs) between policy evaluations.
        :paramtype evaluation_interval: int
        """
        super().__init__(**kwargs)
        self.delay_evaluation = delay_evaluation
        self.evaluation_interval = evaluation_interval
        self.policy_type: Optional[str] = None


class BanditPolicy(EarlyTerminationPolicy):
    """Defines an early termination policy based on slack criteria, and a frequency and delay interval
    for evaluation.

    All required parameters must be populated in order to send to Azure.

    :ivar delay_evaluation: Number of intervals by which to delay the first evaluation.
    :vartype delay_evaluation: int
    :ivar evaluation_interval: Interval (number of runs) between policy evaluations.
    :vartype evaluation_interval: int
    :ivar policy_type: [Required] Name of policy configuration. Required. Known values are:
     "Bandit", "MedianStopping", and "TruncationSelection".
    :vartype policy_type: str or
     ~azure.mgmt.machinelearningservices.models.EarlyTerminationPolicyType
    :ivar slack_amount: Absolute distance allowed from the best performing run.
    :vartype slack_amount: float
    :ivar slack_factor: Ratio of the allowed distance from the best performing run.
    :vartype slack_factor: float
    """

    _validation = {
        "policy_type": {"required": True},
    }

    _attribute_map = {
        "delay_evaluation": {"key": "delayEvaluation", "type": "int"},
        "evaluation_interval": {"key": "evaluationInterval", "type": "int"},
        "policy_type": {"key": "policyType", "type": "str"},
        "slack_amount": {"key": "slackAmount", "type": "float"},
        "slack_factor": {"key": "slackFactor", "type": "float"},
    }

    def __init__(
        self,
        *,
        delay_evaluation: int = 0,
        evaluation_interval: int = 0,
        slack_amount: float = 0,
        slack_factor: float = 0,
        **kwargs: Any
    ) -> None:
        """
        :keyword delay_evaluation: Number of intervals by which to delay the first evaluation.
        :paramtype delay_evaluation: int
        :keyword evaluation_interval: Interval (number of runs) between policy evaluations.
        :paramtype evaluation_interval: int
        :keyword slack_amount: Absolute distance allowed from the best performing run.
        :paramtype slack_amount: float
        :keyword slack_factor: Ratio of the allowed distance from the best performing run.
        :paramtype slack_factor: float
        """
        super().__init__(delay_evaluation=delay_evaluation, evaluation_interval=evaluation_interval, **kwargs)
        self.policy_type: str = "Bandit"
        self.slack_amount = slack_amount
        self.slack_factor = slack_factor


class Resource(_serialization.Model):
    """Common fields that are returned in the response for all Azure Resource Manager resources.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar id: Fully qualified resource ID for the resource. Ex -
     /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}.
    :vartype id: str
    :ivar name: The name of the resource.
    :vartype name: str
    :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or
     "Microsoft.Storage/storageAccounts".
    :vartype type: str
    :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy
     information.
    :vartype system_data: ~azure.mgmt.machinelearningservices.models.SystemData
    """

    _validation = {
        "id": {"readonly": True},
        "name": {"readonly": True},
        "type": {"readonly": True},
        "system_data": {"readonly": True},
    }

    _attribute_map = {
        "id": {"key": "id", "type": "str"},
        "name": {"key": "name", "type": "str"},
        "type": {"key": "type", "type": "str"},
        "system_data": {"key": "systemData", "type": "SystemData"},
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.id = None
        self.name = None
        self.type = None
        self.system_data = None


class TrackedResource(Resource):
    """The resource model definition for an Azure Resource Manager tracked top level resource which
    has 'tags' and a 'location'.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar id: Fully qualified resource ID for the resource. Ex -
     /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}.
    :vartype id: str
    :ivar name: The name of the resource.
    :vartype name: str
    :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or
     "Microsoft.Storage/storageAccounts".
    :vartype type: str
    :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy
     information.
    :vartype system_data: ~azure.mgmt.machinelearningservices.models.SystemData
    :ivar tags: Resource tags.
    :vartype tags: dict[str, str]
    :ivar location: The geo-location where the resource lives. Required.
    :vartype location: str
    """

    _validation = {
        "id": {"readonly": True},
        "name": {"readonly": True},
        "type": {"readonly": True},
        "system_data": {"readonly": True},
        "location": {"required": True},
    }

    _attribute_map = {
        "id": {"key": "id", "type": "str"},
        "name": {"key": "name", "type": "str"},
        "type": {"key": "type", "type": "str"},
        "system_data": {"key": "systemData", "type": "SystemData"},
        "tags": {"key": "tags", "type": "{str}"},
        "location": {"key": "location", "type": "str"},
    }

    def __init__(self, *, location: str, tags: Optional[Dict[str, str]] = None, **kwargs: Any) -> None:
        """
        :keyword tags: Resource tags.
        :paramtype tags: dict[str, str]
        :keyword location: The geo-location where the resource lives. Required.
        :paramtype location: str
        """
        super().__init__(**kwargs)
        self.tags = tags
        self.location = location


class BatchDeployment(TrackedResource):
    """BatchDeployment.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar id: Fully qualified resource ID for the resource. Ex -
     /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}.
    :vartype id: str
    :ivar name: The name of the resource.
    :vartype name: str
    :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or
     "Microsoft.Storage/storageAccounts".
    :vartype type: str
    :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy
     information.
    :vartype system_data: ~azure.mgmt.machinelearningservices.models.SystemData
    :ivar tags: Resource tags.
    :vartype tags: dict[str, str]
    :ivar location: The geo-location where the resource lives. Required.
    :vartype location: str
    :ivar identity: Managed service identity (system assigned and/or user assigned identities).
    :vartype identity: ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentity
    :ivar kind: Metadata used by portal/tooling/etc to render different UX experiences for
     resources of the same type.
    :vartype kind: str
    :ivar properties: [Required] Additional attributes of the entity. Required.
    :vartype properties: ~azure.mgmt.machinelearningservices.models.BatchDeploymentProperties
    :ivar sku: Sku details required for ARM contract for Autoscaling.
    :vartype sku: ~azure.mgmt.machinelearningservices.models.Sku
    """

    _validation = {
        "id": {"readonly": True},
        "name": {"readonly": True},
        "type": {"readonly": True},
        "system_data": {"readonly": True},
        "location": {"required": True},
        "properties": {"required": True},
    }

    _attribute_map = {
        "id": {"key": "id", "type": "str"},
        "name": {"key": "name", "type": "str"},
        "type": {"key": "type", "type": "str"},
        "system_data": {"key": "systemData", "type": "SystemData"},
        "tags": {"key": "tags", "type": "{str}"},
        "location": {"key": "location", "type": "str"},
        "identity": {"key": "identity", "type": "ManagedServiceIdentity"},
        "kind": {"key": "kind", "type": "str"},
        "properties": {"key": "properties", "type": "BatchDeploymentProperties"},
        "sku": {"key": "sku", "type": "Sku"},
    }

    def __init__(
        self,
        *,
        location: str,
        properties: "_models.BatchDeploymentProperties",
        tags: Optional[Dict[str, str]] = None,
        identity: Optional["_models.ManagedServiceIdentity"] = None,
        kind: Optional[str] = None,
        sku: Optional["_models.Sku"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword tags: Resource tags.
        :paramtype tags: dict[str, str]
        :keyword location: The geo-location where the resource lives. Required.
        :paramtype location: str
        :keyword identity: Managed service identity (system assigned and/or user assigned identities).
        :paramtype identity: ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentity
        :keyword kind: Metadata used by portal/tooling/etc to render different UX experiences for
         resources of the same type.
        :paramtype kind: str
        :keyword properties: [Required] Additional attributes of the entity. Required.
        :paramtype properties: ~azure.mgmt.machinelearningservices.models.BatchDeploymentProperties
        :keyword sku: Sku details required for ARM contract for Autoscaling.
        :paramtype sku: ~azure.mgmt.machinelearningservices.models.Sku
        """
        super().__init__(tags=tags, location=location, **kwargs)
        self.identity = identity
        self.kind = kind
        self.properties = properties
        self.sku = sku


class EndpointDeploymentPropertiesBase(_serialization.Model):
    """Base definition for endpoint deployment.

    :ivar code_configuration: Code configuration for the endpoint deployment.
    :vartype code_configuration: ~azure.mgmt.machinelearningservices.models.CodeConfiguration
    :ivar description: Description of the endpoint deployment.
    :vartype description: str
    :ivar environment_id: ARM resource ID or AssetId of the environment specification for the
     endpoint deployment.
    :vartype environment_id: str
    :ivar environment_variables: Environment variables configuration for the deployment.
    :vartype environment_variables: dict[str, str]
    :ivar properties: Property dictionary. Properties can be added, but not removed or altered.
    :vartype properties: dict[str, str]
    """

    _attribute_map = {
        "code_configuration": {"key": "codeConfiguration", "type": "CodeConfiguration"},
        "description": {"key": "description", "type": "str"},
        "environment_id": {"key": "environmentId", "type": "str"},
        "environment_variables": {"key": "environmentVariables", "type": "{str}"},
        "properties": {"key": "properties", "type": "{str}"},
    }

    def __init__(
        self,
        *,
        code_configuration: Optional["_models.CodeConfiguration"] = None,
        description: Optional[str] = None,
        environment_id: Optional[str] = None,
        environment_variables: Optional[Dict[str, str]] = None,
        properties: Optional[Dict[str, str]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword code_configuration: Code configuration for the endpoint deployment.
        :paramtype code_configuration: ~azure.mgmt.machinelearningservices.models.CodeConfiguration
        :keyword description: Description of the endpoint deployment.
        :paramtype description: str
        :keyword environment_id: ARM resource ID or AssetId of the environment specification for the
         endpoint deployment.
        :paramtype environment_id: str
        :keyword environment_variables: Environment variables configuration for the deployment.
        :paramtype environment_variables: dict[str, str]
        :keyword properties: Property dictionary. Properties can be added, but not removed or altered.
        :paramtype properties: dict[str, str]
        """
        super().__init__(**kwargs)
        self.code_configuration = code_configuration
        self.description = description
        self.environment_id = environment_id
        self.environment_variables = environment_variables
        self.properties = properties


class BatchDeploymentProperties(EndpointDeploymentPropertiesBase):  # pylint: disable=too-many-instance-attributes
    """Batch inference settings per deployment.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar code_configuration: Code configuration for the endpoint deployment.
    :vartype code_configuration: ~azure.mgmt.machinelearningservices.models.CodeConfiguration
    :ivar description: Description of the endpoint deployment.
    :vartype description: str
    :ivar environment_id: ARM resource ID or AssetId of the environment specification for the
     endpoint deployment.
    :vartype environment_id: str
    :ivar environment_variables: Environment variables configuration for the deployment.
    :vartype environment_variables: dict[str, str]
    :ivar properties: Property dictionary. Properties can be added, but not removed or altered.
    :vartype properties: dict[str, str]
    :ivar compute: Compute target for batch inference operation.
    :vartype compute: str
    :ivar error_threshold: Error threshold, if the error count for the entire input goes above this
     value,
     the batch inference will be aborted. Range is [-1, int.MaxValue].
     For FileDataset, this value is the count of file failures.
     For TabularDataset, this value is the count of record failures.
     If set to -1 (the lower bound), all failures during batch inference will be ignored.
    :vartype error_threshold: int
    :ivar logging_level: Logging level for batch inference operation. Known values are: "Info",
     "Warning", and "Debug".
    :vartype logging_level: str or ~azure.mgmt.machinelearningservices.models.BatchLoggingLevel
    :ivar max_concurrency_per_instance: Indicates maximum number of parallelism per instance.
    :vartype max_concurrency_per_instance: int
    :ivar mini_batch_size: Size of the mini-batch passed to each batch invocation.
     For FileDataset, this is the number of files per mini-batch.
     For TabularDataset, this is the size of the records in bytes, per mini-batch.
    :vartype mini_batch_size: int
    :ivar model: Reference to the model asset for the endpoint deployment.
    :vartype model: ~azure.mgmt.machinelearningservices.models.AssetReferenceBase
    :ivar output_action: Indicates how the output will be organized. Known values are:
     "SummaryOnly" and "AppendRow".
    :vartype output_action: str or ~azure.mgmt.machinelearningservices.models.BatchOutputAction
    :ivar output_file_name: Customized output file name for append_row output action.
    :vartype output_file_name: str
    :ivar provisioning_state: Provisioning state for the endpoint deployment. Known values are:
     "Creating", "Deleting", "Scaling", "Updating", "Succeeded", "Failed", and "Canceled".
    :vartype provisioning_state: str or
     ~azure.mgmt.machinelearningservices.models.DeploymentProvisioningState
    :ivar resources: Indicates compute configuration for the job.
     If not provided, will default to the defaults defined in ResourceConfiguration.
    :vartype resources: ~azure.mgmt.machinelearningservices.models.DeploymentResourceConfiguration
    :ivar retry_settings: Retry Settings for the batch inference operation.
     If not provided, will default to the defaults defined in BatchRetrySettings.
    :vartype retry_settings: ~azure.mgmt.machinelearningservices.models.BatchRetrySettings
    """

    _validation = {
        "provisioning_state": {"readonly": True},
    }

    _attribute_map = {
        "code_configuration": {"key": "codeConfiguration", "type": "CodeConfiguration"},
        "description": {"key": "description", "type": "str"},
        "environment_id": {"key": "environmentId", "type": "str"},
        "environment_variables": {"key": "environmentVariables", "type": "{str}"},
        "properties": {"key": "properties", "type": "{str}"},
        "compute": {"key": "compute", "type": "str"},
        "error_threshold": {"key": "errorThreshold", "type": "int"},
        "logging_level": {"key": "loggingLevel", "type": "str"},
        "max_concurrency_per_instance": {"key": "maxConcurrencyPerInstance", "type": "int"},
        "mini_batch_size": {"key": "miniBatchSize", "type": "int"},
        "model": {"key": "model", "type": "AssetReferenceBase"},
        "output_action": {"key": "outputAction", "type": "str"},
        "output_file_name": {"key": "outputFileName", "type": "str"},
        "provisioning_state": {"key": "provisioningState", "type": "str"},
        "resources": {"key": "resources", "type": "DeploymentResourceConfiguration"},
        "retry_settings": {"key": "retrySettings", "type": "BatchRetrySettings"},
    }

    def __init__(
        self,
        *,
        code_configuration: Optional["_models.CodeConfiguration"] = None,
        description: Optional[str] = None,
        environment_id: Optional[str] = None,
        environment_variables: Optional[Dict[str, str]] = None,
        properties: Optional[Dict[str, str]] = None,
        compute: Optional[str] = None,
        error_threshold: int = -1,
        logging_level: Optional[Union[str, "_models.BatchLoggingLevel"]] = None,
        max_concurrency_per_instance: int = 1,
        mini_batch_size: int = 10,
        model: Optional["_models.AssetReferenceBase"] = None,
        output_action: Optional[Union[str, "_models.BatchOutputAction"]] = None,
        output_file_name: str = "predictions.csv",
        resources: Optional["_models.DeploymentResourceConfiguration"] = None,
        retry_settings: Optional["_models.BatchRetrySettings"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword code_configuration: Code configuration for the endpoint deployment.
        :paramtype code_configuration: ~azure.mgmt.machinelearningservices.models.CodeConfiguration
        :keyword description: Description of the endpoint deployment.
        :paramtype description: str
        :keyword environment_id: ARM resource ID or AssetId of the environment specification for the
         endpoint deployment.
        :paramtype environment_id: str
        :keyword environment_variables: Environment variables configuration for the deployment.
        :paramtype environment_variables: dict[str, str]
        :keyword properties: Property dictionary. Properties can be added, but not removed or altered.
        :paramtype properties: dict[str, str]
        :keyword compute: Compute target for batch inference operation.
        :paramtype compute: str
        :keyword error_threshold: Error threshold, if the error count for the entire input goes above
         this value,
         the batch inference will be aborted. Range is [-1, int.MaxValue].
         For FileDataset, this value is the count of file failures.
         For TabularDataset, this value is the count of record failures.
         If set to -1 (the lower bound), all failures during batch inference will be ignored.
        :paramtype error_threshold: int
        :keyword logging_level: Logging level for batch inference operation. Known values are: "Info",
         "Warning", and "Debug".
        :paramtype logging_level: str or ~azure.mgmt.machinelearningservices.models.BatchLoggingLevel
        :keyword max_concurrency_per_instance: Indicates maximum number of parallelism per instance.
        :paramtype max_concurrency_per_instance: int
        :keyword mini_batch_size: Size of the mini-batch passed to each batch invocation.
         For FileDataset, this is the number of files per mini-batch.
         For TabularDataset, this is the size of the records in bytes, per mini-batch.
        :paramtype mini_batch_size: int
        :keyword model: Reference to the model asset for the endpoint deployment.
        :paramtype model: ~azure.mgmt.machinelearningservices.models.AssetReferenceBase
        :keyword output_action: Indicates how the output will be organized. Known values are:
         "SummaryOnly" and "AppendRow".
        :paramtype output_action: str or ~azure.mgmt.machinelearningservices.models.BatchOutputAction
        :keyword output_file_name: Customized output file name for append_row output action.
        :paramtype output_file_name: str
        :keyword resources: Indicates compute configuration for the job.
         If not provided, will default to the defaults defined in ResourceConfiguration.
        :paramtype resources:
         ~azure.mgmt.machinelearningservices.models.DeploymentResourceConfiguration
        :keyword retry_settings: Retry Settings for the batch inference operation.
         If not provided, will default to the defaults defined in BatchRetrySettings.
        :paramtype retry_settings: ~azure.mgmt.machinelearningservices.models.BatchRetrySettings
        """
        super().__init__(
            code_configuration=code_configuration,
            description=description,
            environment_id=environment_id,
            environment_variables=environment_variables,
            properties=properties,
            **kwargs
        )
        self.compute = compute
        self.error_threshold = error_threshold
        self.logging_level = logging_level
        self.max_concurrency_per_instance = max_concurrency_per_instance
        self.mini_batch_size = mini_batch_size
        self.model = model
        self.output_action = output_action
        self.output_file_name = output_file_name
        self.provisioning_state = None
        self.resources = resources
        self.retry_settings = retry_settings


class BatchDeploymentTrackedResourceArmPaginatedResult(_serialization.Model):
    """A paginated list of BatchDeployment entities.

    :ivar next_link: The link to the next page of BatchDeployment objects. If null, there are no
     additional pages.
    :vartype next_link: str
    :ivar value: An array of objects of type BatchDeployment.
    :vartype value: list[~azure.mgmt.machinelearningservices.models.BatchDeployment]
    """

    _attribute_map = {
        "next_link": {"key": "nextLink", "type": "str"},
        "value": {"key": "value", "type": "[BatchDeployment]"},
    }

    def __init__(
        self, *, next_link: Optional[str] = None, value: Optional[List["_models.BatchDeployment"]] = None, **kwargs: Any
    ) -> None:
        """
        :keyword next_link: The link to the next page of BatchDeployment objects. If null, there are no
         additional pages.
        :paramtype next_link: str
        :keyword value: An array of objects of type BatchDeployment.
        :paramtype value: list[~azure.mgmt.machinelearningservices.models.BatchDeployment]
        """
        super().__init__(**kwargs)
        self.next_link = next_link
        self.value = value


class BatchEndpoint(TrackedResource):
    """BatchEndpoint.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar id: Fully qualified resource ID for the resource. Ex -
     /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}.
    :vartype id: str
    :ivar name: The name of the resource.
    :vartype name: str
    :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or
     "Microsoft.Storage/storageAccounts".
    :vartype type: str
    :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy
     information.
    :vartype system_data: ~azure.mgmt.machinelearningservices.models.SystemData
    :ivar tags: Resource tags.
    :vartype tags: dict[str, str]
    :ivar location: The geo-location where the resource lives. Required.
    :vartype location: str
    :ivar identity: Managed service identity (system assigned and/or user assigned identities).
    :vartype identity: ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentity
    :ivar kind: Metadata used by portal/tooling/etc to render different UX experiences for
     resources of the same type.
    :vartype kind: str
    :ivar properties: [Required] Additional attributes of the entity. Required.
    :vartype properties: ~azure.mgmt.machinelearningservices.models.BatchEndpointProperties
    :ivar sku: Sku details required for ARM contract for Autoscaling.
    :vartype sku: ~azure.mgmt.machinelearningservices.models.Sku
    """

    _validation = {
        "id": {"readonly": True},
        "name": {"readonly": True},
        "type": {"readonly": True},
        "system_data": {"readonly": True},
        "location": {"required": True},
        "properties": {"required": True},
    }

    _attribute_map = {
        "id": {"key": "id", "type": "str"},
        "name": {"key": "name", "type": "str"},
        "type": {"key": "type", "type": "str"},
        "system_data": {"key": "systemData", "type": "SystemData"},
        "tags": {"key": "tags", "type": "{str}"},
        "location": {"key": "location", "type": "str"},
        "identity": {"key": "identity", "type": "ManagedServiceIdentity"},
        "kind": {"key": "kind", "type": "str"},
        "properties": {"key": "properties", "type": "BatchEndpointProperties"},
        "sku": {"key": "sku", "type": "Sku"},
    }

    def __init__(
        self,
        *,
        location: str,
        properties: "_models.BatchEndpointProperties",
        tags: Optional[Dict[str, str]] = None,
        identity: Optional["_models.ManagedServiceIdentity"] = None,
        kind: Optional[str] = None,
        sku: Optional["_models.Sku"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword tags: Resource tags.
        :paramtype tags: dict[str, str]
        :keyword location: The geo-location where the resource lives. Required.
        :paramtype location: str
        :keyword identity: Managed service identity (system assigned and/or user assigned identities).
        :paramtype identity: ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentity
        :keyword kind: Metadata used by portal/tooling/etc to render different UX experiences for
         resources of the same type.
        :paramtype kind: str
        :keyword properties: [Required] Additional attributes of the entity. Required.
        :paramtype properties: ~azure.mgmt.machinelearningservices.models.BatchEndpointProperties
        :keyword sku: Sku details required for ARM contract for Autoscaling.
        :paramtype sku: ~azure.mgmt.machinelearningservices.models.Sku
        """
        super().__init__(tags=tags, location=location, **kwargs)
        self.identity = identity
        self.kind = kind
        self.properties = properties
        self.sku = sku


class BatchEndpointDefaults(_serialization.Model):
    """Batch endpoint default values.

    :ivar deployment_name: Name of the deployment that will be default for the endpoint.
     This deployment will end up getting 100% traffic when the endpoint scoring URL is invoked.
    :vartype deployment_name: str
    """

    _attribute_map = {
        "deployment_name": {"key": "deploymentName", "type": "str"},
    }

    def __init__(self, *, deployment_name: Optional[str] = None, **kwargs: Any) -> None:
        """
        :keyword deployment_name: Name of the deployment that will be default for the endpoint.
         This deployment will end up getting 100% traffic when the endpoint scoring URL is invoked.
        :paramtype deployment_name: str
        """
        super().__init__(**kwargs)
        self.deployment_name = deployment_name


class EndpointPropertiesBase(_serialization.Model):
    """Inference Endpoint base definition.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar auth_mode: [Required] Use 'Key' for key based authentication and 'AMLToken' for Azure
     Machine Learning token-based authentication. 'Key' doesn't expire but 'AMLToken' does.
     Required. Known values are: "AMLToken", "Key", and "AADToken".
    :vartype auth_mode: str or ~azure.mgmt.machinelearningservices.models.EndpointAuthMode
    :ivar description: Description of the inference endpoint.
    :vartype description: str
    :ivar keys: EndpointAuthKeys to set initially on an Endpoint.
     This property will always be returned as null. AuthKey values must be retrieved using the
     ListKeys API.
    :vartype keys: ~azure.mgmt.machinelearningservices.models.EndpointAuthKeys
    :ivar properties: Property dictionary. Properties can be added, but not removed or altered.
    :vartype properties: dict[str, str]
    :ivar scoring_uri: Endpoint URI.
    :vartype scoring_uri: str
    :ivar swagger_uri: Endpoint Swagger URI.
    :vartype swagger_uri: str
    """

    _validation = {
        "auth_mode": {"required": True},
        "scoring_uri": {"readonly": True},
        "swagger_uri": {"readonly": True},
    }

    _attribute_map = {
        "auth_mode": {"key": "authMode", "type": "str"},
        "description": {"key": "description", "type": "str"},
        "keys": {"key": "keys", "type": "EndpointAuthKeys"},
        "properties": {"key": "properties", "type": "{str}"},
        "scoring_uri": {"key": "scoringUri", "type": "str"},
        "swagger_uri": {"key": "swaggerUri", "type": "str"},
    }

    def __init__(
        self,
        *,
        auth_mode: Union[str, "_models.EndpointAuthMode"],
        description: Optional[str] = None,
        keys: Optional["_models.EndpointAuthKeys"] = None,
        properties: Optional[Dict[str, str]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword auth_mode: [Required] Use 'Key' for key based authentication and 'AMLToken' for Azure
         Machine Learning token-based authentication. 'Key' doesn't expire but 'AMLToken' does.
         Required. Known values are: "AMLToken", "Key", and "AADToken".
        :paramtype auth_mode: str or ~azure.mgmt.machinelearningservices.models.EndpointAuthMode
        :keyword description: Description of the inference endpoint.
        :paramtype description: str
        :keyword keys: EndpointAuthKeys to set initially on an Endpoint.
         This property will always be returned as null. AuthKey values must be retrieved using the
         ListKeys API.
        :paramtype keys: ~azure.mgmt.machinelearningservices.models.EndpointAuthKeys
        :keyword properties: Property dictionary. Properties can be added, but not removed or altered.
        :paramtype properties: dict[str, str]
        """
        super().__init__(**kwargs)
        self.auth_mode = auth_mode
        self.description = description
        self.keys = keys
        self.properties = properties
        self.scoring_uri = None
        self.swagger_uri = None


class BatchEndpointProperties(EndpointPropertiesBase):
    """Batch endpoint configuration.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar auth_mode: [Required] Use 'Key' for key based authentication and 'AMLToken' for Azure
     Machine Learning token-based authentication. 'Key' doesn't expire but 'AMLToken' does.
     Required. Known values are: "AMLToken", "Key", and "AADToken".
    :vartype auth_mode: str or ~azure.mgmt.machinelearningservices.models.EndpointAuthMode
    :ivar description: Description of the inference endpoint.
    :vartype description: str
    :ivar keys: EndpointAuthKeys to set initially on an Endpoint.
     This property will always be returned as null. AuthKey values must be retrieved using the
     ListKeys API.
    :vartype keys: ~azure.mgmt.machinelearningservices.models.EndpointAuthKeys
    :ivar properties: Property dictionary. Properties can be added, but not removed or altered.
    :vartype properties: dict[str, str]
    :ivar scoring_uri: Endpoint URI.
    :vartype scoring_uri: str
    :ivar swagger_uri: Endpoint Swagger URI.
    :vartype swagger_uri: str
    :ivar defaults: Default values for Batch Endpoint.
    :vartype defaults: ~azure.mgmt.machinelearningservices.models.BatchEndpointDefaults
    :ivar provisioning_state: Provisioning state for the endpoint. Known values are: "Creating",
     "Deleting", "Succeeded", "Failed", "Updating", and "Canceled".
    :vartype provisioning_state: str or
     ~azure.mgmt.machinelearningservices.models.EndpointProvisioningState
    """

    _validation = {
        "auth_mode": {"required": True},
        "scoring_uri": {"readonly": True},
        "swagger_uri": {"readonly": True},
        "provisioning_state": {"readonly": True},
    }

    _attribute_map = {
        "auth_mode": {"key": "authMode", "type": "str"},
        "description": {"key": "description", "type": "str"},
        "keys": {"key": "keys", "type": "EndpointAuthKeys"},
        "properties": {"key": "properties", "type": "{str}"},
        "scoring_uri": {"key": "scoringUri", "type": "str"},
        "swagger_uri": {"key": "swaggerUri", "type": "str"},
        "defaults": {"key": "defaults", "type": "BatchEndpointDefaults"},
        "provisioning_state": {"key": "provisioningState", "type": "str"},
    }

    def __init__(
        self,
        *,
        auth_mode: Union[str, "_models.EndpointAuthMode"],
        description: Optional[str] = None,
        keys: Optional["_models.EndpointAuthKeys"] = None,
        properties: Optional[Dict[str, str]] = None,
        defaults: Optional["_models.BatchEndpointDefaults"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword auth_mode: [Required] Use 'Key' for key based authentication and 'AMLToken' for Azure
         Machine Learning token-based authentication. 'Key' doesn't expire but 'AMLToken' does.
         Required. Known values are: "AMLToken", "Key", and "AADToken".
        :paramtype auth_mode: str or ~azure.mgmt.machinelearningservices.models.EndpointAuthMode
        :keyword description: Description of the inference endpoint.
        :paramtype description: str
        :keyword keys: EndpointAuthKeys to set initially on an Endpoint.
         This property will always be returned as null. AuthKey values must be retrieved using the
         ListKeys API.
        :paramtype keys: ~azure.mgmt.machinelearningservices.models.EndpointAuthKeys
        :keyword properties: Property dictionary. Properties can be added, but not removed or altered.
        :paramtype properties: dict[str, str]
        :keyword defaults: Default values for Batch Endpoint.
        :paramtype defaults: ~azure.mgmt.machinelearningservices.models.BatchEndpointDefaults
        """
        super().__init__(auth_mode=auth_mode, description=description, keys=keys, properties=properties, **kwargs)
        self.defaults = defaults
        self.provisioning_state = None


class BatchEndpointTrackedResourceArmPaginatedResult(_serialization.Model):
    """A paginated list of BatchEndpoint entities.

    :ivar next_link: The link to the next page of BatchEndpoint objects. If null, there are no
     additional pages.
    :vartype next_link: str
    :ivar value: An array of objects of type BatchEndpoint.
    :vartype value: list[~azure.mgmt.machinelearningservices.models.BatchEndpoint]
    """

    _attribute_map = {
        "next_link": {"key": "nextLink", "type": "str"},
        "value": {"key": "value", "type": "[BatchEndpoint]"},
    }

    def __init__(
        self, *, next_link: Optional[str] = None, value: Optional[List["_models.BatchEndpoint"]] = None, **kwargs: Any
    ) -> None:
        """
        :keyword next_link: The link to the next page of BatchEndpoint objects. If null, there are no
         additional pages.
        :paramtype next_link: str
        :keyword value: An array of objects of type BatchEndpoint.
        :paramtype value: list[~azure.mgmt.machinelearningservices.models.BatchEndpoint]
        """
        super().__init__(**kwargs)
        self.next_link = next_link
        self.value = value


class BatchRetrySettings(_serialization.Model):
    """Retry settings for a batch inference operation.

    :ivar max_retries: Maximum retry count for a mini-batch.
    :vartype max_retries: int
    :ivar timeout: Invocation timeout for a mini-batch, in ISO 8601 format.
    :vartype timeout: ~datetime.timedelta
    """

    _attribute_map = {
        "max_retries": {"key": "maxRetries", "type": "int"},
        "timeout": {"key": "timeout", "type": "duration"},
    }

    def __init__(self, *, max_retries: int = 3, timeout: datetime.timedelta = "PT30S", **kwargs: Any) -> None:
        """
        :keyword max_retries: Maximum retry count for a mini-batch.
        :paramtype max_retries: int
        :keyword timeout: Invocation timeout for a mini-batch, in ISO 8601 format.
        :paramtype timeout: ~datetime.timedelta
        """
        super().__init__(**kwargs)
        self.max_retries = max_retries
        self.timeout = timeout


class SamplingAlgorithm(_serialization.Model):
    """The Sampling Algorithm used to generate hyperparameter values, along with properties to
    configure the algorithm.

    You probably want to use the sub-classes and not this class directly. Known sub-classes are:
    BayesianSamplingAlgorithm, GridSamplingAlgorithm, RandomSamplingAlgorithm

    All required parameters must be populated in order to send to Azure.

    :ivar sampling_algorithm_type: [Required] The algorithm used for generating hyperparameter
     values, along with configuration properties. Required. Known values are: "Grid", "Random", and
     "Bayesian".
    :vartype sampling_algorithm_type: str or
     ~azure.mgmt.machinelearningservices.models.SamplingAlgorithmType
    """

    _validation = {
        "sampling_algorithm_type": {"required": True},
    }

    _attribute_map = {
        "sampling_algorithm_type": {"key": "samplingAlgorithmType", "type": "str"},
    }

    _subtype_map = {
        "sampling_algorithm_type": {
            "Bayesian": "BayesianSamplingAlgorithm",
            "Grid": "GridSamplingAlgorithm",
            "Random": "RandomSamplingAlgorithm",
        }
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.sampling_algorithm_type: Optional[str] = None


class BayesianSamplingAlgorithm(SamplingAlgorithm):
    """Defines a Sampling Algorithm that generates values based on previous values.

    All required parameters must be populated in order to send to Azure.

    :ivar sampling_algorithm_type: [Required] The algorithm used for generating hyperparameter
     values, along with configuration properties. Required. Known values are: "Grid", "Random", and
     "Bayesian".
    :vartype sampling_algorithm_type: str or
     ~azure.mgmt.machinelearningservices.models.SamplingAlgorithmType
    """

    _validation = {
        "sampling_algorithm_type": {"required": True},
    }

    _attribute_map = {
        "sampling_algorithm_type": {"key": "samplingAlgorithmType", "type": "str"},
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.sampling_algorithm_type: str = "Bayesian"


class BindOptions(_serialization.Model):
    """Describes the bind options for the container.

    :ivar propagation: Type of Bind Option.
    :vartype propagation: str
    :ivar create_host_path: Indicate whether to create host path.
    :vartype create_host_path: bool
    :ivar selinux: Mention the selinux options.
    :vartype selinux: str
    """

    _attribute_map = {
        "propagation": {"key": "propagation", "type": "str"},
        "create_host_path": {"key": "createHostPath", "type": "bool"},
        "selinux": {"key": "selinux", "type": "str"},
    }

    def __init__(
        self,
        *,
        propagation: Optional[str] = None,
        create_host_path: Optional[bool] = None,
        selinux: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword propagation: Type of Bind Option.
        :paramtype propagation: str
        :keyword create_host_path: Indicate whether to create host path.
        :paramtype create_host_path: bool
        :keyword selinux: Mention the selinux options.
        :paramtype selinux: str
        """
        super().__init__(**kwargs)
        self.propagation = propagation
        self.create_host_path = create_host_path
        self.selinux = selinux


class BlobReferenceForConsumptionDto(_serialization.Model):
    """BlobReferenceForConsumptionDto.

    :ivar blob_uri: Blob URI path for client to upload data.
     Example: https://blob.windows.core.net/Container/Path.
    :vartype blob_uri: str
    :ivar credential: Credential info to access storage account.
    :vartype credential: ~azure.mgmt.machinelearningservices.models.PendingUploadCredentialDto
    :ivar storage_account_arm_id: Arm ID of the storage account to use.
    :vartype storage_account_arm_id: str
    """

    _attribute_map = {
        "blob_uri": {"key": "blobUri", "type": "str"},
        "credential": {"key": "credential", "type": "PendingUploadCredentialDto"},
        "storage_account_arm_id": {"key": "storageAccountArmId", "type": "str"},
    }

    def __init__(
        self,
        *,
        blob_uri: Optional[str] = None,
        credential: Optional["_models.PendingUploadCredentialDto"] = None,
        storage_account_arm_id: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword blob_uri: Blob URI path for client to upload data.
         Example: https://blob.windows.core.net/Container/Path.
        :paramtype blob_uri: str
        :keyword credential: Credential info to access storage account.
        :paramtype credential: ~azure.mgmt.machinelearningservices.models.PendingUploadCredentialDto
        :keyword storage_account_arm_id: Arm ID of the storage account to use.
        :paramtype storage_account_arm_id: str
        """
        super().__init__(**kwargs)
        self.blob_uri = blob_uri
        self.credential = credential
        self.storage_account_arm_id = storage_account_arm_id


class BuildContext(_serialization.Model):
    """Configuration settings for Docker build context.

    All required parameters must be populated in order to send to Azure.

    :ivar context_uri: [Required] URI of the Docker build context used to build the image. Supports
     blob URIs on environment creation and may return blob or Git URIs.


     .. raw:: html

        <seealso
     href="https://docs.docker.com/engine/reference/commandline/build/#extended-description" />.
     Required.
    :vartype context_uri: str
    :ivar dockerfile_path: Path to the Dockerfile in the build context.


     .. raw:: html

        <seealso href="https://docs.docker.com/engine/reference/builder/" />.
    :vartype dockerfile_path: str
    """

    _validation = {
        "context_uri": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"},
    }

    _attribute_map = {
        "context_uri": {"key": "contextUri", "type": "str"},
        "dockerfile_path": {"key": "dockerfilePath", "type": "str"},
    }

    def __init__(self, *, context_uri: str, dockerfile_path: str = "Dockerfile", **kwargs: Any) -> None:
        """
        :keyword context_uri: [Required] URI of the Docker build context used to build the image.
         Supports blob URIs on environment creation and may return blob or Git URIs.


         .. raw:: html

            <seealso
         href="https://docs.docker.com/engine/reference/commandline/build/#extended-description" />.
         Required.
        :paramtype context_uri: str
        :keyword dockerfile_path: Path to the Dockerfile in the build context.


         .. raw:: html

            <seealso href="https://docs.docker.com/engine/reference/builder/" />.
        :paramtype dockerfile_path: str
        """
        super().__init__(**kwargs)
        self.context_uri = context_uri
        self.dockerfile_path = dockerfile_path


class CertificateDatastoreCredentials(DatastoreCredentials):
    """Certificate datastore credentials configuration.

    All required parameters must be populated in order to send to Azure.

    :ivar credentials_type: [Required] Credential type used to authentication with storage.
     Required. Known values are: "AccountKey", "Certificate", "None", "Sas", and "ServicePrincipal".
    :vartype credentials_type: str or ~azure.mgmt.machinelearningservices.models.CredentialsType
    :ivar authority_url: Authority URL used for authentication.
    :vartype authority_url: str
    :ivar client_id: [Required] Service principal client ID. Required.
    :vartype client_id: str
    :ivar resource_url: Resource the service principal has access to.
    :vartype resource_url: str
    :ivar secrets: [Required] Service principal secrets. Required.
    :vartype secrets: ~azure.mgmt.machinelearningservices.models.CertificateDatastoreSecrets
    :ivar tenant_id: [Required] ID of the tenant to which the service principal belongs. Required.
    :vartype tenant_id: str
    :ivar thumbprint: [Required] Thumbprint of the certificate used for authentication. Required.
    :vartype thumbprint: str
    """

    _validation = {
        "credentials_type": {"required": True},
        "client_id": {"required": True},
        "secrets": {"required": True},
        "tenant_id": {"required": True},
        "thumbprint": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"},
    }

    _attribute_map = {
        "credentials_type": {"key": "credentialsType", "type": "str"},
        "authority_url": {"key": "authorityUrl", "type": "str"},
        "client_id": {"key": "clientId", "type": "str"},
        "resource_url": {"key": "resourceUrl", "type": "str"},
        "secrets": {"key": "secrets", "type": "CertificateDatastoreSecrets"},
        "tenant_id": {"key": "tenantId", "type": "str"},
        "thumbprint": {"key": "thumbprint", "type": "str"},
    }

    def __init__(
        self,
        *,
        client_id: str,
        secrets: "_models.CertificateDatastoreSecrets",
        tenant_id: str,
        thumbprint: str,
        authority_url: Optional[str] = None,
        resource_url: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword authority_url: Authority URL used for authentication.
        :paramtype authority_url: str
        :keyword client_id: [Required] Service principal client ID. Required.
        :paramtype client_id: str
        :keyword resource_url: Resource the service principal has access to.
        :paramtype resource_url: str
        :keyword secrets: [Required] Service principal secrets. Required.
        :paramtype secrets: ~azure.mgmt.machinelearningservices.models.CertificateDatastoreSecrets
        :keyword tenant_id: [Required] ID of the tenant to which the service principal belongs.
         Required.
        :paramtype tenant_id: str
        :keyword thumbprint: [Required] Thumbprint of the certificate used for authentication.
         Required.
        :paramtype thumbprint: str
        """
        super().__init__(**kwargs)
        self.credentials_type: str = "Certificate"
        self.authority_url = authority_url
        self.client_id = client_id
        self.resource_url = resource_url
        self.secrets = secrets
        self.tenant_id = tenant_id
        self.thumbprint = thumbprint


class CertificateDatastoreSecrets(DatastoreSecrets):
    """Datastore certificate secrets.

    All required parameters must be populated in order to send to Azure.

    :ivar secrets_type: [Required] Credential type used to authentication with storage. Required.
     Known values are: "AccountKey", "Certificate", "Sas", and "ServicePrincipal".
    :vartype secrets_type: str or ~azure.mgmt.machinelearningservices.models.SecretsType
    :ivar certificate: Service principal certificate.
    :vartype certificate: str
    """

    _validation = {
        "secrets_type": {"required": True},
    }

    _attribute_map = {
        "secrets_type": {"key": "secretsType", "type": "str"},
        "certificate": {"key": "certificate", "type": "str"},
    }

    def __init__(self, *, certificate: Optional[str] = None, **kwargs: Any) -> None:
        """
        :keyword certificate: Service principal certificate.
        :paramtype certificate: str
        """
        super().__init__(**kwargs)
        self.secrets_type: str = "Certificate"
        self.certificate = certificate


class TableVertical(_serialization.Model):
    """Abstract class for AutoML tasks that use table dataset as input - such as
    Classification/Regression/Forecasting.

    :ivar cv_split_column_names: Columns to use for CVSplit data.
    :vartype cv_split_column_names: list[str]
    :ivar featurization_settings: Featurization inputs needed for AutoML job.
    :vartype featurization_settings:
     ~azure.mgmt.machinelearningservices.models.TableVerticalFeaturizationSettings
    :ivar limit_settings: Execution constraints for AutoMLJob.
    :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.TableVerticalLimitSettings
    :ivar n_cross_validations: Number of cross validation folds to be applied on training dataset
     when validation dataset is not provided.
    :vartype n_cross_validations: ~azure.mgmt.machinelearningservices.models.NCrossValidations
    :ivar test_data: Test data input.
    :vartype test_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
    :ivar test_data_size: The fraction of test dataset that needs to be set aside for validation
     purpose.
     Values between (0.0 , 1.0)
     Applied when validation dataset is not provided.
    :vartype test_data_size: float
    :ivar validation_data: Validation data inputs.
    :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
    :ivar validation_data_size: The fraction of training dataset that needs to be set aside for
     validation purpose.
     Values between (0.0 , 1.0)
     Applied when validation dataset is not provided.
    :vartype validation_data_size: float
    :ivar weight_column_name: The name of the sample weight column. Automated ML supports a
     weighted column as an input, causing rows in the data to be weighted up or down.
    :vartype weight_column_name: str
    """

    _attribute_map = {
        "cv_split_column_names": {"key": "cvSplitColumnNames", "type": "[str]"},
        "featurization_settings": {"key": "featurizationSettings", "type": "TableVerticalFeaturizationSettings"},
        "limit_settings": {"key": "limitSettings", "type": "TableVerticalLimitSettings"},
        "n_cross_validations": {"key": "nCrossValidations", "type": "NCrossValidations"},
        "test_data": {"key": "testData", "type": "MLTableJobInput"},
        "test_data_size": {"key": "testDataSize", "type": "float"},
        "validation_data": {"key": "validationData", "type": "MLTableJobInput"},
        "validation_data_size": {"key": "validationDataSize", "type": "float"},
        "weight_column_name": {"key": "weightColumnName", "type": "str"},
    }

    def __init__(
        self,
        *,
        cv_split_column_names: Optional[List[str]] = None,
        featurization_settings: Optional["_models.TableVerticalFeaturizationSettings"] = None,
        limit_settings: Optional["_models.TableVerticalLimitSettings"] = None,
        n_cross_validations: Optional["_models.NCrossValidations"] = None,
        test_data: Optional["_models.MLTableJobInput"] = None,
        test_data_size: Optional[float] = None,
        validation_data: Optional["_models.MLTableJobInput"] = None,
        validation_data_size: Optional[float] = None,
        weight_column_name: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword cv_split_column_names: Columns to use for CVSplit data.
        :paramtype cv_split_column_names: list[str]
        :keyword featurization_settings: Featurization inputs needed for AutoML job.
        :paramtype featurization_settings:
         ~azure.mgmt.machinelearningservices.models.TableVerticalFeaturizationSettings
        :keyword limit_settings: Execution constraints for AutoMLJob.
        :paramtype limit_settings:
         ~azure.mgmt.machinelearningservices.models.TableVerticalLimitSettings
        :keyword n_cross_validations: Number of cross validation folds to be applied on training
         dataset
         when validation dataset is not provided.
        :paramtype n_cross_validations: ~azure.mgmt.machinelearningservices.models.NCrossValidations
        :keyword test_data: Test data input.
        :paramtype test_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
        :keyword test_data_size: The fraction of test dataset that needs to be set aside for validation
         purpose.
         Values between (0.0 , 1.0)
         Applied when validation dataset is not provided.
        :paramtype test_data_size: float
        :keyword validation_data: Validation data inputs.
        :paramtype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
        :keyword validation_data_size: The fraction of training dataset that needs to be set aside for
         validation purpose.
         Values between (0.0 , 1.0)
         Applied when validation dataset is not provided.
        :paramtype validation_data_size: float
        :keyword weight_column_name: The name of the sample weight column. Automated ML supports a
         weighted column as an input, causing rows in the data to be weighted up or down.
        :paramtype weight_column_name: str
        """
        super().__init__(**kwargs)
        self.cv_split_column_names = cv_split_column_names
        self.featurization_settings = featurization_settings
        self.limit_settings = limit_settings
        self.n_cross_validations = n_cross_validations
        self.test_data = test_data
        self.test_data_size = test_data_size
        self.validation_data = validation_data
        self.validation_data_size = validation_data_size
        self.weight_column_name = weight_column_name


class Classification(TableVertical, AutoMLVertical):  # pylint: disable=too-many-instance-attributes
    """Classification task in AutoML Table vertical.

    All required parameters must be populated in order to send to Azure.

    :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info",
     "Warning", "Error", and "Critical".
    :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity
    :ivar target_column_name: Target column name: This is prediction values column.
     Also known as label column name in context of classification tasks.
    :vartype target_column_name: str
    :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are:
     "Classification", "Regression", "Forecasting", "ImageClassification",
     "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation",
     "TextClassification", "TextClassificationMultilabel", and "TextNER".
    :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType
    :ivar training_data: [Required] Training data input. Required.
    :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
    :ivar cv_split_column_names: Columns to use for CVSplit data.
    :vartype cv_split_column_names: list[str]
    :ivar featurization_settings: Featurization inputs needed for AutoML job.
    :vartype featurization_settings:
     ~azure.mgmt.machinelearningservices.models.TableVerticalFeaturizationSettings
    :ivar limit_settings: Execution constraints for AutoMLJob.
    :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.TableVerticalLimitSettings
    :ivar n_cross_validations: Number of cross validation folds to be applied on training dataset
     when validation dataset is not provided.
    :vartype n_cross_validations: ~azure.mgmt.machinelearningservices.models.NCrossValidations
    :ivar test_data: Test data input.
    :vartype test_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
    :ivar test_data_size: The fraction of test dataset that needs to be set aside for validation
     purpose.
     Values between (0.0 , 1.0)
     Applied when validation dataset is not provided.
    :vartype test_data_size: float
    :ivar validation_data: Validation data inputs.
    :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
    :ivar validation_data_size: The fraction of training dataset that needs to be set aside for
     validation purpose.
     Values between (0.0 , 1.0)
     Applied when validation dataset is not provided.
    :vartype validation_data_size: float
    :ivar weight_column_name: The name of the sample weight column. Automated ML supports a
     weighted column as an input, causing rows in the data to be weighted up or down.
    :vartype weight_column_name: str
    :ivar positive_label: Positive label for binary metrics calculation.
    :vartype positive_label: str
    :ivar primary_metric: Primary metric for the task. Known values are: "AUCWeighted", "Accuracy",
     "NormMacroRecall", "AveragePrecisionScoreWeighted", and "PrecisionScoreWeighted".
    :vartype primary_metric: str or
     ~azure.mgmt.machinelearningservices.models.ClassificationPrimaryMetrics
    :ivar training_settings: Inputs for training phase for an AutoML Job.
    :vartype training_settings:
     ~azure.mgmt.machinelearningservices.models.ClassificationTrainingSettings
    """

    _validation = {
        "task_type": {"required": True},
        "training_data": {"required": True},
    }

    _attribute_map = {
        "log_verbosity": {"key": "logVerbosity", "type": "str"},
        "target_column_name": {"key": "targetColumnName", "type": "str"},
        "task_type": {"key": "taskType", "type": "str"},
        "training_data": {"key": "trainingData", "type": "MLTableJobInput"},
        "cv_split_column_names": {"key": "cvSplitColumnNames", "type": "[str]"},
        "featurization_settings": {"key": "featurizationSettings", "type": "TableVerticalFeaturizationSettings"},
        "limit_settings": {"key": "limitSettings", "type": "TableVerticalLimitSettings"},
        "n_cross_validations": {"key": "nCrossValidations", "type": "NCrossValidations"},
        "test_data": {"key": "testData", "type": "MLTableJobInput"},
        "test_data_size": {"key": "testDataSize", "type": "float"},
        "validation_data": {"key": "validationData", "type": "MLTableJobInput"},
        "validation_data_size": {"key": "validationDataSize", "type": "float"},
        "weight_column_name": {"key": "weightColumnName", "type": "str"},
        "positive_label": {"key": "positiveLabel", "type": "str"},
        "primary_metric": {"key": "primaryMetric", "type": "str"},
        "training_settings": {"key": "trainingSettings", "type": "ClassificationTrainingSettings"},
    }

    def __init__(
        self,
        *,
        training_data: "_models.MLTableJobInput",
        log_verbosity: Optional[Union[str, "_models.LogVerbosity"]] = None,
        target_column_name: Optional[str] = None,
        cv_split_column_names: Optional[List[str]] = None,
        featurization_settings: Optional["_models.TableVerticalFeaturizationSettings"] = None,
        limit_settings: Optional["_models.TableVerticalLimitSettings"] = None,
        n_cross_validations: Optional["_models.NCrossValidations"] = None,
        test_data: Optional["_models.MLTableJobInput"] = None,
        test_data_size: Optional[float] = None,
        validation_data: Optional["_models.MLTableJobInput"] = None,
        validation_data_size: Optional[float] = None,
        weight_column_name: Optional[str] = None,
        positive_label: Optional[str] = None,
        primary_metric: Optional[Union[str, "_models.ClassificationPrimaryMetrics"]] = None,
        training_settings: Optional["_models.ClassificationTrainingSettings"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info",
         "Warning", "Error", and "Critical".
        :paramtype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity
        :keyword target_column_name: Target column name: This is prediction values column.
         Also known as label column name in context of classification tasks.
        :paramtype target_column_name: str
        :keyword training_data: [Required] Training data input. Required.
        :paramtype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
        :keyword cv_split_column_names: Columns to use for CVSplit data.
        :paramtype cv_split_column_names: list[str]
        :keyword featurization_settings: Featurization inputs needed for AutoML job.
        :paramtype featurization_settings:
         ~azure.mgmt.machinelearningservices.models.TableVerticalFeaturizationSettings
        :keyword limit_settings: Execution constraints for AutoMLJob.
        :paramtype limit_settings:
         ~azure.mgmt.machinelearningservices.models.TableVerticalLimitSettings
        :keyword n_cross_validations: Number of cross validation folds to be applied on training
         dataset
         when validation dataset is not provided.
        :paramtype n_cross_validations: ~azure.mgmt.machinelearningservices.models.NCrossValidations
        :keyword test_data: Test data input.
        :paramtype test_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
        :keyword test_data_size: The fraction of test dataset that needs to be set aside for validation
         purpose.
         Values between (0.0 , 1.0)
         Applied when validation dataset is not provided.
        :paramtype test_data_size: float
        :keyword validation_data: Validation data inputs.
        :paramtype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
        :keyword validation_data_size: The fraction of training dataset that needs to be set aside for
         validation purpose.
         Values between (0.0 , 1.0)
         Applied when validation dataset is not provided.
        :paramtype validation_data_size: float
        :keyword weight_column_name: The name of the sample weight column. Automated ML supports a
         weighted column as an input, causing rows in the data to be weighted up or down.
        :paramtype weight_column_name: str
        :keyword positive_label: Positive label for binary metrics calculation.
        :paramtype positive_label: str
        :keyword primary_metric: Primary metric for the task. Known values are: "AUCWeighted",
         "Accuracy", "NormMacroRecall", "AveragePrecisionScoreWeighted", and "PrecisionScoreWeighted".
        :paramtype primary_metric: str or
         ~azure.mgmt.machinelearningservices.models.ClassificationPrimaryMetrics
        :keyword training_settings: Inputs for training phase for an AutoML Job.
        :paramtype training_settings:
         ~azure.mgmt.machinelearningservices.models.ClassificationTrainingSettings
        """
        super().__init__(
            cv_split_column_names=cv_split_column_names,
            featurization_settings=featurization_settings,
            limit_settings=limit_settings,
            n_cross_validations=n_cross_validations,
            test_data=test_data,
            test_data_size=test_data_size,
            validation_data=validation_data,
            validation_data_size=validation_data_size,
            weight_column_name=weight_column_name,
            log_verbosity=log_verbosity,
            target_column_name=target_column_name,
            training_data=training_data,
            **kwargs
        )
        self.log_verbosity = log_verbosity
        self.target_column_name = target_column_name
        self.task_type: str = "Classification"
        self.training_data = training_data
        self.positive_label = positive_label
        self.primary_metric = primary_metric
        self.training_settings = training_settings
        self.cv_split_column_names = cv_split_column_names
        self.featurization_settings = featurization_settings
        self.limit_settings = limit_settings
        self.n_cross_validations = n_cross_validations
        self.test_data = test_data
        self.test_data_size = test_data_size
        self.validation_data = validation_data
        self.validation_data_size = validation_data_size
        self.weight_column_name = weight_column_name


class TrainingSettings(_serialization.Model):
    """Training related configuration.

    :ivar enable_dnn_training: Enable recommendation of DNN models.
    :vartype enable_dnn_training: bool
    :ivar enable_model_explainability: Flag to turn on explainability on best model.
    :vartype enable_model_explainability: bool
    :ivar enable_onnx_compatible_models: Flag for enabling onnx compatible models.
    :vartype enable_onnx_compatible_models: bool
    :ivar enable_stack_ensemble: Enable stack ensemble run.
    :vartype enable_stack_ensemble: bool
    :ivar enable_vote_ensemble: Enable voting ensemble run.
    :vartype enable_vote_ensemble: bool
    :ivar ensemble_model_download_timeout: During VotingEnsemble and StackEnsemble model
     generation, multiple fitted models from the previous child runs are downloaded.
     Configure this parameter with a higher value than 300 secs, if more time is needed.
    :vartype ensemble_model_download_timeout: ~datetime.timedelta
    :ivar stack_ensemble_settings: Stack ensemble settings for stack ensemble run.
    :vartype stack_ensemble_settings:
     ~azure.mgmt.machinelearningservices.models.StackEnsembleSettings
    """

    _attribute_map = {
        "enable_dnn_training": {"key": "enableDnnTraining", "type": "bool"},
        "enable_model_explainability": {"key": "enableModelExplainability", "type": "bool"},
        "enable_onnx_compatible_models": {"key": "enableOnnxCompatibleModels", "type": "bool"},
        "enable_stack_ensemble": {"key": "enableStackEnsemble", "type": "bool"},
        "enable_vote_ensemble": {"key": "enableVoteEnsemble", "type": "bool"},
        "ensemble_model_download_timeout": {"key": "ensembleModelDownloadTimeout", "type": "duration"},
        "stack_ensemble_settings": {"key": "stackEnsembleSettings", "type": "StackEnsembleSettings"},
    }

    def __init__(
        self,
        *,
        enable_dnn_training: bool = False,
        enable_model_explainability: bool = True,
        enable_onnx_compatible_models: bool = False,
        enable_stack_ensemble: bool = True,
        enable_vote_ensemble: bool = True,
        ensemble_model_download_timeout: datetime.timedelta = "PT5M",
        stack_ensemble_settings: Optional["_models.StackEnsembleSettings"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword enable_dnn_training: Enable recommendation of DNN models.
        :paramtype enable_dnn_training: bool
        :keyword enable_model_explainability: Flag to turn on explainability on best model.
        :paramtype enable_model_explainability: bool
        :keyword enable_onnx_compatible_models: Flag for enabling onnx compatible models.
        :paramtype enable_onnx_compatible_models: bool
        :keyword enable_stack_ensemble: Enable stack ensemble run.
        :paramtype enable_stack_ensemble: bool
        :keyword enable_vote_ensemble: Enable voting ensemble run.
        :paramtype enable_vote_ensemble: bool
        :keyword ensemble_model_download_timeout: During VotingEnsemble and StackEnsemble model
         generation, multiple fitted models from the previous child runs are downloaded.
         Configure this parameter with a higher value than 300 secs, if more time is needed.
        :paramtype ensemble_model_download_timeout: ~datetime.timedelta
        :keyword stack_ensemble_settings: Stack ensemble settings for stack ensemble run.
        :paramtype stack_ensemble_settings:
         ~azure.mgmt.machinelearningservices.models.StackEnsembleSettings
        """
        super().__init__(**kwargs)
        self.enable_dnn_training = enable_dnn_training
        self.enable_model_explainability = enable_model_explainability
        self.enable_onnx_compatible_models = enable_onnx_compatible_models
        self.enable_stack_ensemble = enable_stack_ensemble
        self.enable_vote_ensemble = enable_vote_ensemble
        self.ensemble_model_download_timeout = ensemble_model_download_timeout
        self.stack_ensemble_settings = stack_ensemble_settings


class ClassificationTrainingSettings(TrainingSettings):
    """Classification Training related configuration.

    :ivar enable_dnn_training: Enable recommendation of DNN models.
    :vartype enable_dnn_training: bool
    :ivar enable_model_explainability: Flag to turn on explainability on best model.
    :vartype enable_model_explainability: bool
    :ivar enable_onnx_compatible_models: Flag for enabling onnx compatible models.
    :vartype enable_onnx_compatible_models: bool
    :ivar enable_stack_ensemble: Enable stack ensemble run.
    :vartype enable_stack_ensemble: bool
    :ivar enable_vote_ensemble: Enable voting ensemble run.
    :vartype enable_vote_ensemble: bool
    :ivar ensemble_model_download_timeout: During VotingEnsemble and StackEnsemble model
     generation, multiple fitted models from the previous child runs are downloaded.
     Configure this parameter with a higher value than 300 secs, if more time is needed.
    :vartype ensemble_model_download_timeout: ~datetime.timedelta
    :ivar stack_ensemble_settings: Stack ensemble settings for stack ensemble run.
    :vartype stack_ensemble_settings:
     ~azure.mgmt.machinelearningservices.models.StackEnsembleSettings
    :ivar allowed_training_algorithms: Allowed models for classification task.
    :vartype allowed_training_algorithms: list[str or
     ~azure.mgmt.machinelearningservices.models.ClassificationModels]
    :ivar blocked_training_algorithms: Blocked models for classification task.
    :vartype blocked_training_algorithms: list[str or
     ~azure.mgmt.machinelearningservices.models.ClassificationModels]
    """

    _attribute_map = {
        "enable_dnn_training": {"key": "enableDnnTraining", "type": "bool"},
        "enable_model_explainability": {"key": "enableModelExplainability", "type": "bool"},
        "enable_onnx_compatible_models": {"key": "enableOnnxCompatibleModels", "type": "bool"},
        "enable_stack_ensemble": {"key": "enableStackEnsemble", "type": "bool"},
        "enable_vote_ensemble": {"key": "enableVoteEnsemble", "type": "bool"},
        "ensemble_model_download_timeout": {"key": "ensembleModelDownloadTimeout", "type": "duration"},
        "stack_ensemble_settings": {"key": "stackEnsembleSettings", "type": "StackEnsembleSettings"},
        "allowed_training_algorithms": {"key": "allowedTrainingAlgorithms", "type": "[str]"},
        "blocked_training_algorithms": {"key": "blockedTrainingAlgorithms", "type": "[str]"},
    }

    def __init__(
        self,
        *,
        enable_dnn_training: bool = False,
        enable_model_explainability: bool = True,
        enable_onnx_compatible_models: bool = False,
        enable_stack_ensemble: bool = True,
        enable_vote_ensemble: bool = True,
        ensemble_model_download_timeout: datetime.timedelta = "PT5M",
        stack_ensemble_settings: Optional["_models.StackEnsembleSettings"] = None,
        allowed_training_algorithms: Optional[List[Union[str, "_models.ClassificationModels"]]] = None,
        blocked_training_algorithms: Optional[List[Union[str, "_models.ClassificationModels"]]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword enable_dnn_training: Enable recommendation of DNN models.
        :paramtype enable_dnn_training: bool
        :keyword enable_model_explainability: Flag to turn on explainability on best model.
        :paramtype enable_model_explainability: bool
        :keyword enable_onnx_compatible_models: Flag for enabling onnx compatible models.
        :paramtype enable_onnx_compatible_models: bool
        :keyword enable_stack_ensemble: Enable stack ensemble run.
        :paramtype enable_stack_ensemble: bool
        :keyword enable_vote_ensemble: Enable voting ensemble run.
        :paramtype enable_vote_ensemble: bool
        :keyword ensemble_model_download_timeout: During VotingEnsemble and StackEnsemble model
         generation, multiple fitted models from the previous child runs are downloaded.
         Configure this parameter with a higher value than 300 secs, if more time is needed.
        :paramtype ensemble_model_download_timeout: ~datetime.timedelta
        :keyword stack_ensemble_settings: Stack ensemble settings for stack ensemble run.
        :paramtype stack_ensemble_settings:
         ~azure.mgmt.machinelearningservices.models.StackEnsembleSettings
        :keyword allowed_training_algorithms: Allowed models for classification task.
        :paramtype allowed_training_algorithms: list[str or
         ~azure.mgmt.machinelearningservices.models.ClassificationModels]
        :keyword blocked_training_algorithms: Blocked models for classification task.
        :paramtype blocked_training_algorithms: list[str or
         ~azure.mgmt.machinelearningservices.models.ClassificationModels]
        """
        super().__init__(
            enable_dnn_training=enable_dnn_training,
            enable_model_explainability=enable_model_explainability,
            enable_onnx_compatible_models=enable_onnx_compatible_models,
            enable_stack_ensemble=enable_stack_ensemble,
            enable_vote_ensemble=enable_vote_ensemble,
            ensemble_model_download_timeout=ensemble_model_download_timeout,
            stack_ensemble_settings=stack_ensemble_settings,
            **kwargs
        )
        self.allowed_training_algorithms = allowed_training_algorithms
        self.blocked_training_algorithms = blocked_training_algorithms


class ClusterUpdateParameters(_serialization.Model):
    """AmlCompute update parameters.

    :ivar properties: Properties of ClusterUpdate.
    :vartype properties: ~azure.mgmt.machinelearningservices.models.ScaleSettingsInformation
    """

    _attribute_map = {
        "properties": {"key": "properties.properties", "type": "ScaleSettingsInformation"},
    }

    def __init__(self, *, properties: Optional["_models.ScaleSettingsInformation"] = None, **kwargs: Any) -> None:
        """
        :keyword properties: Properties of ClusterUpdate.
        :paramtype properties: ~azure.mgmt.machinelearningservices.models.ScaleSettingsInformation
        """
        super().__init__(**kwargs)
        self.properties = properties


class CodeConfiguration(_serialization.Model):
    """Configuration for a scoring code asset.

    All required parameters must be populated in order to send to Azure.

    :ivar code_id: ARM resource ID of the code asset.
    :vartype code_id: str
    :ivar scoring_script: [Required] The script to execute on startup. eg. "score.py". Required.
    :vartype scoring_script: str
    """

    _validation = {
        "scoring_script": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"},
    }

    _attribute_map = {
        "code_id": {"key": "codeId", "type": "str"},
        "scoring_script": {"key": "scoringScript", "type": "str"},
    }

    def __init__(self, *, scoring_script: str, code_id: Optional[str] = None, **kwargs: Any) -> None:
        """
        :keyword code_id: ARM resource ID of the code asset.
        :paramtype code_id: str
        :keyword scoring_script: [Required] The script to execute on startup. eg. "score.py". Required.
        :paramtype scoring_script: str
        """
        super().__init__(**kwargs)
        self.code_id = code_id
        self.scoring_script = scoring_script


class CodeContainer(Resource):
    """Azure Resource Manager resource envelope.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar id: Fully qualified resource ID for the resource. Ex -
     /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}.
    :vartype id: str
    :ivar name: The name of the resource.
    :vartype name: str
    :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or
     "Microsoft.Storage/storageAccounts".
    :vartype type: str
    :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy
     information.
    :vartype system_data: ~azure.mgmt.machinelearningservices.models.SystemData
    :ivar properties: [Required] Additional attributes of the entity. Required.
    :vartype properties: ~azure.mgmt.machinelearningservices.models.CodeContainerProperties
    """

    _validation = {
        "id": {"readonly": True},
        "name": {"readonly": True},
        "type": {"readonly": True},
        "system_data": {"readonly": True},
        "properties": {"required": True},
    }

    _attribute_map = {
        "id": {"key": "id", "type": "str"},
        "name": {"key": "name", "type": "str"},
        "type": {"key": "type", "type": "str"},
        "system_data": {"key": "systemData", "type": "SystemData"},
        "properties": {"key": "properties", "type": "CodeContainerProperties"},
    }

    def __init__(self, *, properties: "_models.CodeContainerProperties", **kwargs: Any) -> None:
        """
        :keyword properties: [Required] Additional attributes of the entity. Required.
        :paramtype properties: ~azure.mgmt.machinelearningservices.models.CodeContainerProperties
        """
        super().__init__(**kwargs)
        self.properties = properties


class CodeContainerProperties(AssetContainer):
    """Container for code asset versions.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar description: The asset description text.
    :vartype description: str
    :ivar properties: The asset property dictionary.
    :vartype properties: dict[str, str]
    :ivar tags: Tag dictionary. Tags can be added, removed, and updated.
    :vartype tags: dict[str, str]
    :ivar is_archived: Is the asset archived?.
    :vartype is_archived: bool
    :ivar latest_version: The latest version inside this container.
    :vartype latest_version: str
    :ivar next_version: The next auto incremental version.
    :vartype next_version: str
    :ivar provisioning_state: Provisioning state for the code container. Known values are:
     "Succeeded", "Failed", "Canceled", "Creating", "Updating", and "Deleting".
    :vartype provisioning_state: str or
     ~azure.mgmt.machinelearningservices.models.AssetProvisioningState
    """

    _validation = {
        "latest_version": {"readonly": True},
        "next_version": {"readonly": True},
        "provisioning_state": {"readonly": True},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "properties": {"key": "properties", "type": "{str}"},
        "tags": {"key": "tags", "type": "{str}"},
        "is_archived": {"key": "isArchived", "type": "bool"},
        "latest_version": {"key": "latestVersion", "type": "str"},
        "next_version": {"key": "nextVersion", "type": "str"},
        "provisioning_state": {"key": "provisioningState", "type": "str"},
    }

    def __init__(
        self,
        *,
        description: Optional[str] = None,
        properties: Optional[Dict[str, str]] = None,
        tags: Optional[Dict[str, str]] = None,
        is_archived: bool = False,
        **kwargs: Any
    ) -> None:
        """
        :keyword description: The asset description text.
        :paramtype description: str
        :keyword properties: The asset property dictionary.
        :paramtype properties: dict[str, str]
        :keyword tags: Tag dictionary. Tags can be added, removed, and updated.
        :paramtype tags: dict[str, str]
        :keyword is_archived: Is the asset archived?.
        :paramtype is_archived: bool
        """
        super().__init__(description=description, properties=properties, tags=tags, is_archived=is_archived, **kwargs)
        self.provisioning_state = None


class CodeContainerResourceArmPaginatedResult(_serialization.Model):
    """A paginated list of CodeContainer entities.

    :ivar next_link: The link to the next page of CodeContainer objects. If null, there are no
     additional pages.
    :vartype next_link: str
    :ivar value: An array of objects of type CodeContainer.
    :vartype value: list[~azure.mgmt.machinelearningservices.models.CodeContainer]
    """

    _attribute_map = {
        "next_link": {"key": "nextLink", "type": "str"},
        "value": {"key": "value", "type": "[CodeContainer]"},
    }

    def __init__(
        self, *, next_link: Optional[str] = None, value: Optional[List["_models.CodeContainer"]] = None, **kwargs: Any
    ) -> None:
        """
        :keyword next_link: The link to the next page of CodeContainer objects. If null, there are no
         additional pages.
        :paramtype next_link: str
        :keyword value: An array of objects of type CodeContainer.
        :paramtype value: list[~azure.mgmt.machinelearningservices.models.CodeContainer]
        """
        super().__init__(**kwargs)
        self.next_link = next_link
        self.value = value


class CodeVersion(Resource):
    """Azure Resource Manager resource envelope.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar id: Fully qualified resource ID for the resource. Ex -
     /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}.
    :vartype id: str
    :ivar name: The name of the resource.
    :vartype name: str
    :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or
     "Microsoft.Storage/storageAccounts".
    :vartype type: str
    :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy
     information.
    :vartype system_data: ~azure.mgmt.machinelearningservices.models.SystemData
    :ivar properties: [Required] Additional attributes of the entity. Required.
    :vartype properties: ~azure.mgmt.machinelearningservices.models.CodeVersionProperties
    """

    _validation = {
        "id": {"readonly": True},
        "name": {"readonly": True},
        "type": {"readonly": True},
        "system_data": {"readonly": True},
        "properties": {"required": True},
    }

    _attribute_map = {
        "id": {"key": "id", "type": "str"},
        "name": {"key": "name", "type": "str"},
        "type": {"key": "type", "type": "str"},
        "system_data": {"key": "systemData", "type": "SystemData"},
        "properties": {"key": "properties", "type": "CodeVersionProperties"},
    }

    def __init__(self, *, properties: "_models.CodeVersionProperties", **kwargs: Any) -> None:
        """
        :keyword properties: [Required] Additional attributes of the entity. Required.
        :paramtype properties: ~azure.mgmt.machinelearningservices.models.CodeVersionProperties
        """
        super().__init__(**kwargs)
        self.properties = properties


class CodeVersionProperties(AssetBase):
    """Code asset version details.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar description: The asset description text.
    :vartype description: str
    :ivar properties: The asset property dictionary.
    :vartype properties: dict[str, str]
    :ivar tags: Tag dictionary. Tags can be added, removed, and updated.
    :vartype tags: dict[str, str]
    :ivar is_anonymous: If the name version are system generated (anonymous registration).
    :vartype is_anonymous: bool
    :ivar is_archived: Is the asset archived?.
    :vartype is_archived: bool
    :ivar code_uri: Uri where code is located.
    :vartype code_uri: str
    :ivar provisioning_state: Provisioning state for the code version. Known values are:
     "Succeeded", "Failed", "Canceled", "Creating", "Updating", and "Deleting".
    :vartype provisioning_state: str or
     ~azure.mgmt.machinelearningservices.models.AssetProvisioningState
    """

    _validation = {
        "provisioning_state": {"readonly": True},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "properties": {"key": "properties", "type": "{str}"},
        "tags": {"key": "tags", "type": "{str}"},
        "is_anonymous": {"key": "isAnonymous", "type": "bool"},
        "is_archived": {"key": "isArchived", "type": "bool"},
        "code_uri": {"key": "codeUri", "type": "str"},
        "provisioning_state": {"key": "provisioningState", "type": "str"},
    }

    def __init__(
        self,
        *,
        description: Optional[str] = None,
        properties: Optional[Dict[str, str]] = None,
        tags: Optional[Dict[str, str]] = None,
        is_anonymous: bool = False,
        is_archived: bool = False,
        code_uri: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword description: The asset description text.
        :paramtype description: str
        :keyword properties: The asset property dictionary.
        :paramtype properties: dict[str, str]
        :keyword tags: Tag dictionary. Tags can be added, removed, and updated.
        :paramtype tags: dict[str, str]
        :keyword is_anonymous: If the name version are system generated (anonymous registration).
        :paramtype is_anonymous: bool
        :keyword is_archived: Is the asset archived?.
        :paramtype is_archived: bool
        :keyword code_uri: Uri where code is located.
        :paramtype code_uri: str
        """
        super().__init__(
            description=description,
            properties=properties,
            tags=tags,
            is_anonymous=is_anonymous,
            is_archived=is_archived,
            **kwargs
        )
        self.code_uri = code_uri
        self.provisioning_state = None


class CodeVersionResourceArmPaginatedResult(_serialization.Model):
    """A paginated list of CodeVersion entities.

    :ivar next_link: The link to the next page of CodeVersion objects. If null, there are no
     additional pages.
    :vartype next_link: str
    :ivar value: An array of objects of type CodeVersion.
    :vartype value: list[~azure.mgmt.machinelearningservices.models.CodeVersion]
    """

    _attribute_map = {
        "next_link": {"key": "nextLink", "type": "str"},
        "value": {"key": "value", "type": "[CodeVersion]"},
    }

    def __init__(
        self, *, next_link: Optional[str] = None, value: Optional[List["_models.CodeVersion"]] = None, **kwargs: Any
    ) -> None:
        """
        :keyword next_link: The link to the next page of CodeVersion objects. If null, there are no
         additional pages.
        :paramtype next_link: str
        :keyword value: An array of objects of type CodeVersion.
        :paramtype value: list[~azure.mgmt.machinelearningservices.models.CodeVersion]
        """
        super().__init__(**kwargs)
        self.next_link = next_link
        self.value = value


class ColumnTransformer(_serialization.Model):
    """Column transformer parameters.

    :ivar fields: Fields to apply transformer logic on.
    :vartype fields: list[str]
    :ivar parameters: Different properties to be passed to transformer.
     Input expected is dictionary of key,value pairs in JSON format.
    :vartype parameters: JSON
    """

    _attribute_map = {
        "fields": {"key": "fields", "type": "[str]"},
        "parameters": {"key": "parameters", "type": "object"},
    }

    def __init__(self, *, fields: Optional[List[str]] = None, parameters: Optional[JSON] = None, **kwargs: Any) -> None:
        """
        :keyword fields: Fields to apply transformer logic on.
        :paramtype fields: list[str]
        :keyword parameters: Different properties to be passed to transformer.
         Input expected is dictionary of key,value pairs in JSON format.
        :paramtype parameters: JSON
        """
        super().__init__(**kwargs)
        self.fields = fields
        self.parameters = parameters


class CommandJob(JobBaseProperties):  # pylint: disable=too-many-instance-attributes
    """Command job definition.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar description: The asset description text.
    :vartype description: str
    :ivar properties: The asset property dictionary.
    :vartype properties: dict[str, str]
    :ivar tags: Tag dictionary. Tags can be added, removed, and updated.
    :vartype tags: dict[str, str]
    :ivar component_id: ARM resource ID of the component resource.
    :vartype component_id: str
    :ivar compute_id: ARM resource ID of the compute resource.
    :vartype compute_id: str
    :ivar display_name: Display name of job.
    :vartype display_name: str
    :ivar experiment_name: The name of the experiment the job belongs to. If not set, the job is
     placed in the "Default" experiment.
    :vartype experiment_name: str
    :ivar identity: Identity configuration. If set, this should be one of AmlToken,
     ManagedIdentity, UserIdentity or null.
     Defaults to AmlToken if null.
    :vartype identity: ~azure.mgmt.machinelearningservices.models.IdentityConfiguration
    :ivar is_archived: Is the asset archived?.
    :vartype is_archived: bool
    :ivar job_type: [Required] Specifies the type of job. Required. Known values are: "AutoML",
     "Command", "Sweep", and "Pipeline".
    :vartype job_type: str or ~azure.mgmt.machinelearningservices.models.JobType
    :ivar services: List of JobEndpoints.
     For local jobs, a job endpoint will have an endpoint value of FileStreamObject.
    :vartype services: dict[str, ~azure.mgmt.machinelearningservices.models.JobService]
    :ivar status: Status of the job. Known values are: "NotStarted", "Starting", "Provisioning",
     "Preparing", "Queued", "Running", "Finalizing", "CancelRequested", "Completed", "Failed",
     "Canceled", "NotResponding", "Paused", and "Unknown".
    :vartype status: str or ~azure.mgmt.machinelearningservices.models.JobStatus
    :ivar code_id: ARM resource ID of the code asset.
    :vartype code_id: str
    :ivar command: [Required] The command to execute on startup of the job. eg. "python train.py".
     Required.
    :vartype command: str
    :ivar distribution: Distribution configuration of the job. If set, this should be one of Mpi,
     Tensorflow, PyTorch, or null.
    :vartype distribution: ~azure.mgmt.machinelearningservices.models.DistributionConfiguration
    :ivar environment_id: [Required] The ARM resource ID of the Environment specification for the
     job. Required.
    :vartype environment_id: str
    :ivar environment_variables: Environment variables included in the job.
    :vartype environment_variables: dict[str, str]
    :ivar inputs: Mapping of input data bindings used in the job.
    :vartype inputs: dict[str, ~azure.mgmt.machinelearningservices.models.JobInput]
    :ivar limits: Command Job limit.
    :vartype limits: ~azure.mgmt.machinelearningservices.models.CommandJobLimits
    :ivar outputs: Mapping of output data bindings used in the job.
    :vartype outputs: dict[str, ~azure.mgmt.machinelearningservices.models.JobOutput]
    :ivar parameters: Input parameters.
    :vartype parameters: JSON
    :ivar resources: Compute Resource configuration for the job.
    :vartype resources: ~azure.mgmt.machinelearningservices.models.JobResourceConfiguration
    """

    _validation = {
        "job_type": {"required": True},
        "status": {"readonly": True},
        "command": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"},
        "environment_id": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"},
        "parameters": {"readonly": True},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "properties": {"key": "properties", "type": "{str}"},
        "tags": {"key": "tags", "type": "{str}"},
        "component_id": {"key": "componentId", "type": "str"},
        "compute_id": {"key": "computeId", "type": "str"},
        "display_name": {"key": "displayName", "type": "str"},
        "experiment_name": {"key": "experimentName", "type": "str"},
        "identity": {"key": "identity", "type": "IdentityConfiguration"},
        "is_archived": {"key": "isArchived", "type": "bool"},
        "job_type": {"key": "jobType", "type": "str"},
        "services": {"key": "services", "type": "{JobService}"},
        "status": {"key": "status", "type": "str"},
        "code_id": {"key": "codeId", "type": "str"},
        "command": {"key": "command", "type": "str"},
        "distribution": {"key": "distribution", "type": "DistributionConfiguration"},
        "environment_id": {"key": "environmentId", "type": "str"},
        "environment_variables": {"key": "environmentVariables", "type": "{str}"},
        "inputs": {"key": "inputs", "type": "{JobInput}"},
        "limits": {"key": "limits", "type": "CommandJobLimits"},
        "outputs": {"key": "outputs", "type": "{JobOutput}"},
        "parameters": {"key": "parameters", "type": "object"},
        "resources": {"key": "resources", "type": "JobResourceConfiguration"},
    }

    def __init__(
        self,
        *,
        command: str,
        environment_id: str,
        description: Optional[str] = None,
        properties: Optional[Dict[str, str]] = None,
        tags: Optional[Dict[str, str]] = None,
        component_id: Optional[str] = None,
        compute_id: Optional[str] = None,
        display_name: Optional[str] = None,
        experiment_name: str = "Default",
        identity: Optional["_models.IdentityConfiguration"] = None,
        is_archived: bool = False,
        services: Optional[Dict[str, "_models.JobService"]] = None,
        code_id: Optional[str] = None,
        distribution: Optional["_models.DistributionConfiguration"] = None,
        environment_variables: Optional[Dict[str, str]] = None,
        inputs: Optional[Dict[str, "_models.JobInput"]] = None,
        limits: Optional["_models.CommandJobLimits"] = None,
        outputs: Optional[Dict[str, "_models.JobOutput"]] = None,
        resources: Optional["_models.JobResourceConfiguration"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword description: The asset description text.
        :paramtype description: str
        :keyword properties: The asset property dictionary.
        :paramtype properties: dict[str, str]
        :keyword tags: Tag dictionary. Tags can be added, removed, and updated.
        :paramtype tags: dict[str, str]
        :keyword component_id: ARM resource ID of the component resource.
        :paramtype component_id: str
        :keyword compute_id: ARM resource ID of the compute resource.
        :paramtype compute_id: str
        :keyword display_name: Display name of job.
        :paramtype display_name: str
        :keyword experiment_name: The name of the experiment the job belongs to. If not set, the job is
         placed in the "Default" experiment.
        :paramtype experiment_name: str
        :keyword identity: Identity configuration. If set, this should be one of AmlToken,
         ManagedIdentity, UserIdentity or null.
         Defaults to AmlToken if null.
        :paramtype identity: ~azure.mgmt.machinelearningservices.models.IdentityConfiguration
        :keyword is_archived: Is the asset archived?.
        :paramtype is_archived: bool
        :keyword services: List of JobEndpoints.
         For local jobs, a job endpoint will have an endpoint value of FileStreamObject.
        :paramtype services: dict[str, ~azure.mgmt.machinelearningservices.models.JobService]
        :keyword code_id: ARM resource ID of the code asset.
        :paramtype code_id: str
        :keyword command: [Required] The command to execute on startup of the job. eg. "python
         train.py". Required.
        :paramtype command: str
        :keyword distribution: Distribution configuration of the job. If set, this should be one of
         Mpi, Tensorflow, PyTorch, or null.
        :paramtype distribution: ~azure.mgmt.machinelearningservices.models.DistributionConfiguration
        :keyword environment_id: [Required] The ARM resource ID of the Environment specification for
         the job. Required.
        :paramtype environment_id: str
        :keyword environment_variables: Environment variables included in the job.
        :paramtype environment_variables: dict[str, str]
        :keyword inputs: Mapping of input data bindings used in the job.
        :paramtype inputs: dict[str, ~azure.mgmt.machinelearningservices.models.JobInput]
        :keyword limits: Command Job limit.
        :paramtype limits: ~azure.mgmt.machinelearningservices.models.CommandJobLimits
        :keyword outputs: Mapping of output data bindings used in the job.
        :paramtype outputs: dict[str, ~azure.mgmt.machinelearningservices.models.JobOutput]
        :keyword resources: Compute Resource configuration for the job.
        :paramtype resources: ~azure.mgmt.machinelearningservices.models.JobResourceConfiguration
        """
        super().__init__(
            description=description,
            properties=properties,
            tags=tags,
            component_id=component_id,
            compute_id=compute_id,
            display_name=display_name,
            experiment_name=experiment_name,
            identity=identity,
            is_archived=is_archived,
            services=services,
            **kwargs
        )
        self.job_type: str = "Command"
        self.code_id = code_id
        self.command = command
        self.distribution = distribution
        self.environment_id = environment_id
        self.environment_variables = environment_variables
        self.inputs = inputs
        self.limits = limits
        self.outputs = outputs
        self.parameters = None
        self.resources = resources


class JobLimits(_serialization.Model):
    """JobLimits.

    You probably want to use the sub-classes and not this class directly. Known sub-classes are:
    CommandJobLimits, SweepJobLimits

    All required parameters must be populated in order to send to Azure.

    :ivar job_limits_type: [Required] JobLimit type. Required. Known values are: "Command" and
     "Sweep".
    :vartype job_limits_type: str or ~azure.mgmt.machinelearningservices.models.JobLimitsType
    :ivar timeout: The max run duration in ISO 8601 format, after which the job will be cancelled.
     Only supports duration with precision as low as Seconds.
    :vartype timeout: ~datetime.timedelta
    """

    _validation = {
        "job_limits_type": {"required": True},
    }

    _attribute_map = {
        "job_limits_type": {"key": "jobLimitsType", "type": "str"},
        "timeout": {"key": "timeout", "type": "duration"},
    }

    _subtype_map = {"job_limits_type": {"Command": "CommandJobLimits", "Sweep": "SweepJobLimits"}}

    def __init__(self, *, timeout: Optional[datetime.timedelta] = None, **kwargs: Any) -> None:
        """
        :keyword timeout: The max run duration in ISO 8601 format, after which the job will be
         cancelled. Only supports duration with precision as low as Seconds.
        :paramtype timeout: ~datetime.timedelta
        """
        super().__init__(**kwargs)
        self.job_limits_type: Optional[str] = None
        self.timeout = timeout


class CommandJobLimits(JobLimits):
    """Command Job limit class.

    All required parameters must be populated in order to send to Azure.

    :ivar job_limits_type: [Required] JobLimit type. Required. Known values are: "Command" and
     "Sweep".
    :vartype job_limits_type: str or ~azure.mgmt.machinelearningservices.models.JobLimitsType
    :ivar timeout: The max run duration in ISO 8601 format, after which the job will be cancelled.
     Only supports duration with precision as low as Seconds.
    :vartype timeout: ~datetime.timedelta
    """

    _validation = {
        "job_limits_type": {"required": True},
    }

    _attribute_map = {
        "job_limits_type": {"key": "jobLimitsType", "type": "str"},
        "timeout": {"key": "timeout", "type": "duration"},
    }

    def __init__(self, *, timeout: Optional[datetime.timedelta] = None, **kwargs: Any) -> None:
        """
        :keyword timeout: The max run duration in ISO 8601 format, after which the job will be
         cancelled. Only supports duration with precision as low as Seconds.
        :paramtype timeout: ~datetime.timedelta
        """
        super().__init__(timeout=timeout, **kwargs)
        self.job_limits_type: str = "Command"


class ComponentContainer(Resource):
    """Azure Resource Manager resource envelope.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar id: Fully qualified resource ID for the resource. Ex -
     /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}.
    :vartype id: str
    :ivar name: The name of the resource.
    :vartype name: str
    :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or
     "Microsoft.Storage/storageAccounts".
    :vartype type: str
    :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy
     information.
    :vartype system_data: ~azure.mgmt.machinelearningservices.models.SystemData
    :ivar properties: [Required] Additional attributes of the entity. Required.
    :vartype properties: ~azure.mgmt.machinelearningservices.models.ComponentContainerProperties
    """

    _validation = {
        "id": {"readonly": True},
        "name": {"readonly": True},
        "type": {"readonly": True},
        "system_data": {"readonly": True},
        "properties": {"required": True},
    }

    _attribute_map = {
        "id": {"key": "id", "type": "str"},
        "name": {"key": "name", "type": "str"},
        "type": {"key": "type", "type": "str"},
        "system_data": {"key": "systemData", "type": "SystemData"},
        "properties": {"key": "properties", "type": "ComponentContainerProperties"},
    }

    def __init__(self, *, properties: "_models.ComponentContainerProperties", **kwargs: Any) -> None:
        """
        :keyword properties: [Required] Additional attributes of the entity. Required.
        :paramtype properties: ~azure.mgmt.machinelearningservices.models.ComponentContainerProperties
        """
        super().__init__(**kwargs)
        self.properties = properties


class ComponentContainerProperties(AssetContainer):
    """Component container definition.


    .. raw:: html

       <see
    href="https://docs.microsoft.com/en-us/azure/machine-learning/reference-yaml-component-command"
    />.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar description: The asset description text.
    :vartype description: str
    :ivar properties: The asset property dictionary.
    :vartype properties: dict[str, str]
    :ivar tags: Tag dictionary. Tags can be added, removed, and updated.
    :vartype tags: dict[str, str]
    :ivar is_archived: Is the asset archived?.
    :vartype is_archived: bool
    :ivar latest_version: The latest version inside this container.
    :vartype latest_version: str
    :ivar next_version: The next auto incremental version.
    :vartype next_version: str
    :ivar provisioning_state: Provisioning state for the component container. Known values are:
     "Succeeded", "Failed", "Canceled", "Creating", "Updating", and "Deleting".
    :vartype provisioning_state: str or
     ~azure.mgmt.machinelearningservices.models.AssetProvisioningState
    """

    _validation = {
        "latest_version": {"readonly": True},
        "next_version": {"readonly": True},
        "provisioning_state": {"readonly": True},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "properties": {"key": "properties", "type": "{str}"},
        "tags": {"key": "tags", "type": "{str}"},
        "is_archived": {"key": "isArchived", "type": "bool"},
        "latest_version": {"key": "latestVersion", "type": "str"},
        "next_version": {"key": "nextVersion", "type": "str"},
        "provisioning_state": {"key": "provisioningState", "type": "str"},
    }

    def __init__(
        self,
        *,
        description: Optional[str] = None,
        properties: Optional[Dict[str, str]] = None,
        tags: Optional[Dict[str, str]] = None,
        is_archived: bool = False,
        **kwargs: Any
    ) -> None:
        """
        :keyword description: The asset description text.
        :paramtype description: str
        :keyword properties: The asset property dictionary.
        :paramtype properties: dict[str, str]
        :keyword tags: Tag dictionary. Tags can be added, removed, and updated.
        :paramtype tags: dict[str, str]
        :keyword is_archived: Is the asset archived?.
        :paramtype is_archived: bool
        """
        super().__init__(description=description, properties=properties, tags=tags, is_archived=is_archived, **kwargs)
        self.provisioning_state = None


class ComponentContainerResourceArmPaginatedResult(_serialization.Model):
    """A paginated list of ComponentContainer entities.

    :ivar next_link: The link to the next page of ComponentContainer objects. If null, there are no
     additional pages.
    :vartype next_link: str
    :ivar value: An array of objects of type ComponentContainer.
    :vartype value: list[~azure.mgmt.machinelearningservices.models.ComponentContainer]
    """

    _attribute_map = {
        "next_link": {"key": "nextLink", "type": "str"},
        "value": {"key": "value", "type": "[ComponentContainer]"},
    }

    def __init__(
        self,
        *,
        next_link: Optional[str] = None,
        value: Optional[List["_models.ComponentContainer"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword next_link: The link to the next page of ComponentContainer objects. If null, there are
         no additional pages.
        :paramtype next_link: str
        :keyword value: An array of objects of type ComponentContainer.
        :paramtype value: list[~azure.mgmt.machinelearningservices.models.ComponentContainer]
        """
        super().__init__(**kwargs)
        self.next_link = next_link
        self.value = value


class ComponentVersion(Resource):
    """Azure Resource Manager resource envelope.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar id: Fully qualified resource ID for the resource. Ex -
     /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}.
    :vartype id: str
    :ivar name: The name of the resource.
    :vartype name: str
    :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or
     "Microsoft.Storage/storageAccounts".
    :vartype type: str
    :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy
     information.
    :vartype system_data: ~azure.mgmt.machinelearningservices.models.SystemData
    :ivar properties: [Required] Additional attributes of the entity. Required.
    :vartype properties: ~azure.mgmt.machinelearningservices.models.ComponentVersionProperties
    """

    _validation = {
        "id": {"readonly": True},
        "name": {"readonly": True},
        "type": {"readonly": True},
        "system_data": {"readonly": True},
        "properties": {"required": True},
    }

    _attribute_map = {
        "id": {"key": "id", "type": "str"},
        "name": {"key": "name", "type": "str"},
        "type": {"key": "type", "type": "str"},
        "system_data": {"key": "systemData", "type": "SystemData"},
        "properties": {"key": "properties", "type": "ComponentVersionProperties"},
    }

    def __init__(self, *, properties: "_models.ComponentVersionProperties", **kwargs: Any) -> None:
        """
        :keyword properties: [Required] Additional attributes of the entity. Required.
        :paramtype properties: ~azure.mgmt.machinelearningservices.models.ComponentVersionProperties
        """
        super().__init__(**kwargs)
        self.properties = properties


class ComponentVersionProperties(AssetBase):
    """Definition of a component version: defines resources that span component types.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar description: The asset description text.
    :vartype description: str
    :ivar properties: The asset property dictionary.
    :vartype properties: dict[str, str]
    :ivar tags: Tag dictionary. Tags can be added, removed, and updated.
    :vartype tags: dict[str, str]
    :ivar is_anonymous: If the name version are system generated (anonymous registration).
    :vartype is_anonymous: bool
    :ivar is_archived: Is the asset archived?.
    :vartype is_archived: bool
    :ivar component_spec: Defines Component definition details.


     .. raw:: html

        <see
     href="https://docs.microsoft.com/en-us/azure/machine-learning/reference-yaml-component-command"
     />.
    :vartype component_spec: JSON
    :ivar provisioning_state: Provisioning state for the component version. Known values are:
     "Succeeded", "Failed", "Canceled", "Creating", "Updating", and "Deleting".
    :vartype provisioning_state: str or
     ~azure.mgmt.machinelearningservices.models.AssetProvisioningState
    """

    _validation = {
        "provisioning_state": {"readonly": True},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "properties": {"key": "properties", "type": "{str}"},
        "tags": {"key": "tags", "type": "{str}"},
        "is_anonymous": {"key": "isAnonymous", "type": "bool"},
        "is_archived": {"key": "isArchived", "type": "bool"},
        "component_spec": {"key": "componentSpec", "type": "object"},
        "provisioning_state": {"key": "provisioningState", "type": "str"},
    }

    def __init__(
        self,
        *,
        description: Optional[str] = None,
        properties: Optional[Dict[str, str]] = None,
        tags: Optional[Dict[str, str]] = None,
        is_anonymous: bool = False,
        is_archived: bool = False,
        component_spec: Optional[JSON] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword description: The asset description text.
        :paramtype description: str
        :keyword properties: The asset property dictionary.
        :paramtype properties: dict[str, str]
        :keyword tags: Tag dictionary. Tags can be added, removed, and updated.
        :paramtype tags: dict[str, str]
        :keyword is_anonymous: If the name version are system generated (anonymous registration).
        :paramtype is_anonymous: bool
        :keyword is_archived: Is the asset archived?.
        :paramtype is_archived: bool
        :keyword component_spec: Defines Component definition details.


         .. raw:: html

            <see
         href="https://docs.microsoft.com/en-us/azure/machine-learning/reference-yaml-component-command"
         />.
        :paramtype component_spec: JSON
        """
        super().__init__(
            description=description,
            properties=properties,
            tags=tags,
            is_anonymous=is_anonymous,
            is_archived=is_archived,
            **kwargs
        )
        self.component_spec = component_spec
        self.provisioning_state = None


class ComponentVersionResourceArmPaginatedResult(_serialization.Model):
    """A paginated list of ComponentVersion entities.

    :ivar next_link: The link to the next page of ComponentVersion objects. If null, there are no
     additional pages.
    :vartype next_link: str
    :ivar value: An array of objects of type ComponentVersion.
    :vartype value: list[~azure.mgmt.machinelearningservices.models.ComponentVersion]
    """

    _attribute_map = {
        "next_link": {"key": "nextLink", "type": "str"},
        "value": {"key": "value", "type": "[ComponentVersion]"},
    }

    def __init__(
        self,
        *,
        next_link: Optional[str] = None,
        value: Optional[List["_models.ComponentVersion"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword next_link: The link to the next page of ComponentVersion objects. If null, there are
         no additional pages.
        :paramtype next_link: str
        :keyword value: An array of objects of type ComponentVersion.
        :paramtype value: list[~azure.mgmt.machinelearningservices.models.ComponentVersion]
        """
        super().__init__(**kwargs)
        self.next_link = next_link
        self.value = value


class ComputeInstanceSchema(_serialization.Model):
    """Properties(top level) of ComputeInstance.

    :ivar properties: Properties of ComputeInstance.
    :vartype properties: ~azure.mgmt.machinelearningservices.models.ComputeInstanceProperties
    """

    _attribute_map = {
        "properties": {"key": "properties", "type": "ComputeInstanceProperties"},
    }

    def __init__(self, *, properties: Optional["_models.ComputeInstanceProperties"] = None, **kwargs: Any) -> None:
        """
        :keyword properties: Properties of ComputeInstance.
        :paramtype properties: ~azure.mgmt.machinelearningservices.models.ComputeInstanceProperties
        """
        super().__init__(**kwargs)
        self.properties = properties


class ComputeInstance(Compute, ComputeInstanceSchema):  # pylint: disable=too-many-instance-attributes
    """An Azure Machine Learning compute instance.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar properties: Properties of ComputeInstance.
    :vartype properties: ~azure.mgmt.machinelearningservices.models.ComputeInstanceProperties
    :ivar compute_type: The type of compute. Required. Known values are: "AKS", "Kubernetes",
     "AmlCompute", "ComputeInstance", "DataFactory", "VirtualMachine", "HDInsight", "Databricks",
     "DataLakeAnalytics", and "SynapseSpark".
    :vartype compute_type: str or ~azure.mgmt.machinelearningservices.models.ComputeType
    :ivar compute_location: Location for the underlying compute.
    :vartype compute_location: str
    :ivar provisioning_state: The provision state of the cluster. Valid values are Unknown,
     Updating, Provisioning, Succeeded, and Failed. Known values are: "Unknown", "Updating",
     "Creating", "Deleting", "Succeeded", "Failed", and "Canceled".
    :vartype provisioning_state: str or
     ~azure.mgmt.machinelearningservices.models.ProvisioningState
    :ivar description: The description of the Machine Learning compute.
    :vartype description: str
    :ivar created_on: The time at which the compute was created.
    :vartype created_on: ~datetime.datetime
    :ivar modified_on: The time at which the compute was last modified.
    :vartype modified_on: ~datetime.datetime
    :ivar resource_id: ARM resource id of the underlying compute.
    :vartype resource_id: str
    :ivar provisioning_errors: Errors during provisioning.
    :vartype provisioning_errors: list[~azure.mgmt.machinelearningservices.models.ErrorResponse]
    :ivar is_attached_compute: Indicating whether the compute was provisioned by user and brought
     from outside if true, or machine learning service provisioned it if false.
    :vartype is_attached_compute: bool
    :ivar disable_local_auth: Opt-out of local authentication and ensure customers can use only MSI
     and AAD exclusively for authentication.
    :vartype disable_local_auth: bool
    """

    _validation = {
        "compute_type": {"required": True},
        "provisioning_state": {"readonly": True},
        "created_on": {"readonly": True},
        "modified_on": {"readonly": True},
        "provisioning_errors": {"readonly": True},
        "is_attached_compute": {"readonly": True},
    }

    _attribute_map = {
        "properties": {"key": "properties", "type": "ComputeInstanceProperties"},
        "compute_type": {"key": "computeType", "type": "str"},
        "compute_location": {"key": "computeLocation", "type": "str"},
        "provisioning_state": {"key": "provisioningState", "type": "str"},
        "description": {"key": "description", "type": "str"},
        "created_on": {"key": "createdOn", "type": "iso-8601"},
        "modified_on": {"key": "modifiedOn", "type": "iso-8601"},
        "resource_id": {"key": "resourceId", "type": "str"},
        "provisioning_errors": {"key": "provisioningErrors", "type": "[ErrorResponse]"},
        "is_attached_compute": {"key": "isAttachedCompute", "type": "bool"},
        "disable_local_auth": {"key": "disableLocalAuth", "type": "bool"},
    }

    def __init__(
        self,
        *,
        properties: Optional["_models.ComputeInstanceProperties"] = None,
        compute_location: Optional[str] = None,
        description: Optional[str] = None,
        resource_id: Optional[str] = None,
        disable_local_auth: Optional[bool] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword properties: Properties of ComputeInstance.
        :paramtype properties: ~azure.mgmt.machinelearningservices.models.ComputeInstanceProperties
        :keyword compute_location: Location for the underlying compute.
        :paramtype compute_location: str
        :keyword description: The description of the Machine Learning compute.
        :paramtype description: str
        :keyword resource_id: ARM resource id of the underlying compute.
        :paramtype resource_id: str
        :keyword disable_local_auth: Opt-out of local authentication and ensure customers can use only
         MSI and AAD exclusively for authentication.
        :paramtype disable_local_auth: bool
        """
        super().__init__(
            compute_location=compute_location,
            description=description,
            resource_id=resource_id,
            disable_local_auth=disable_local_auth,
            properties=properties,
            **kwargs
        )
        self.properties = properties
        self.compute_type: str = "ComputeInstance"
        self.compute_location = compute_location
        self.provisioning_state = None
        self.description = description
        self.created_on = None
        self.modified_on = None
        self.resource_id = resource_id
        self.provisioning_errors = None
        self.is_attached_compute = None
        self.disable_local_auth = disable_local_auth


class ComputeInstanceApplication(_serialization.Model):
    """Defines an Aml Instance application and its connectivity endpoint URI.

    :ivar display_name: Name of the ComputeInstance application.
    :vartype display_name: str
    :ivar endpoint_uri: Application' endpoint URI.
    :vartype endpoint_uri: str
    """

    _attribute_map = {
        "display_name": {"key": "displayName", "type": "str"},
        "endpoint_uri": {"key": "endpointUri", "type": "str"},
    }

    def __init__(
        self, *, display_name: Optional[str] = None, endpoint_uri: Optional[str] = None, **kwargs: Any
    ) -> None:
        """
        :keyword display_name: Name of the ComputeInstance application.
        :paramtype display_name: str
        :keyword endpoint_uri: Application' endpoint URI.
        :paramtype endpoint_uri: str
        """
        super().__init__(**kwargs)
        self.display_name = display_name
        self.endpoint_uri = endpoint_uri


class ComputeInstanceConnectivityEndpoints(_serialization.Model):
    """Defines all connectivity endpoints and properties for an ComputeInstance.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar public_ip_address: Public IP Address of this ComputeInstance.
    :vartype public_ip_address: str
    :ivar private_ip_address: Private IP Address of this ComputeInstance (local to the VNET in
     which the compute instance is deployed).
    :vartype private_ip_address: str
    """

    _validation = {
        "public_ip_address": {"readonly": True},
        "private_ip_address": {"readonly": True},
    }

    _attribute_map = {
        "public_ip_address": {"key": "publicIpAddress", "type": "str"},
        "private_ip_address": {"key": "privateIpAddress", "type": "str"},
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.public_ip_address = None
        self.private_ip_address = None


class ComputeInstanceContainer(_serialization.Model):
    """Defines an Aml Instance container.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar name: Name of the ComputeInstance container.
    :vartype name: str
    :ivar autosave: Auto save settings. Known values are: "None", "Local", and "Remote".
    :vartype autosave: str or ~azure.mgmt.machinelearningservices.models.Autosave
    :ivar gpu: Information of GPU.
    :vartype gpu: str
    :ivar network: network of this container. Known values are: "Bridge" and "Host".
    :vartype network: str or ~azure.mgmt.machinelearningservices.models.Network
    :ivar environment: Environment information of this container.
    :vartype environment: ~azure.mgmt.machinelearningservices.models.ComputeInstanceEnvironmentInfo
    :ivar services: services of this containers.
    :vartype services: list[JSON]
    """

    _validation = {
        "services": {"readonly": True},
    }

    _attribute_map = {
        "name": {"key": "name", "type": "str"},
        "autosave": {"key": "autosave", "type": "str"},
        "gpu": {"key": "gpu", "type": "str"},
        "network": {"key": "network", "type": "str"},
        "environment": {"key": "environment", "type": "ComputeInstanceEnvironmentInfo"},
        "services": {"key": "services", "type": "[object]"},
    }

    def __init__(
        self,
        *,
        name: Optional[str] = None,
        autosave: Optional[Union[str, "_models.Autosave"]] = None,
        gpu: Optional[str] = None,
        network: Optional[Union[str, "_models.Network"]] = None,
        environment: Optional["_models.ComputeInstanceEnvironmentInfo"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword name: Name of the ComputeInstance container.
        :paramtype name: str
        :keyword autosave: Auto save settings. Known values are: "None", "Local", and "Remote".
        :paramtype autosave: str or ~azure.mgmt.machinelearningservices.models.Autosave
        :keyword gpu: Information of GPU.
        :paramtype gpu: str
        :keyword network: network of this container. Known values are: "Bridge" and "Host".
        :paramtype network: str or ~azure.mgmt.machinelearningservices.models.Network
        :keyword environment: Environment information of this container.
        :paramtype environment:
         ~azure.mgmt.machinelearningservices.models.ComputeInstanceEnvironmentInfo
        """
        super().__init__(**kwargs)
        self.name = name
        self.autosave = autosave
        self.gpu = gpu
        self.network = network
        self.environment = environment
        self.services = None


class ComputeInstanceCreatedBy(_serialization.Model):
    """Describes information on user who created this ComputeInstance.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar user_name: Name of the user.
    :vartype user_name: str
    :ivar user_org_id: Uniquely identifies user' Azure Active Directory organization.
    :vartype user_org_id: str
    :ivar user_id: Uniquely identifies the user within his/her organization.
    :vartype user_id: str
    """

    _validation = {
        "user_name": {"readonly": True},
        "user_org_id": {"readonly": True},
        "user_id": {"readonly": True},
    }

    _attribute_map = {
        "user_name": {"key": "userName", "type": "str"},
        "user_org_id": {"key": "userOrgId", "type": "str"},
        "user_id": {"key": "userId", "type": "str"},
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.user_name = None
        self.user_org_id = None
        self.user_id = None


class ComputeInstanceDataDisk(_serialization.Model):
    """Defines an Aml Instance DataDisk.

    :ivar caching: Caching type of Data Disk. Known values are: "None", "ReadOnly", and
     "ReadWrite".
    :vartype caching: str or ~azure.mgmt.machinelearningservices.models.Caching
    :ivar disk_size_gb: The initial disk size in gigabytes.
    :vartype disk_size_gb: int
    :ivar lun: The lun is used to uniquely identify each data disk. If attaching multiple disks,
     each should have a distinct lun.
    :vartype lun: int
    :ivar storage_account_type: type of this storage account. Known values are: "Standard_LRS" and
     "Premium_LRS".
    :vartype storage_account_type: str or
     ~azure.mgmt.machinelearningservices.models.StorageAccountType
    """

    _attribute_map = {
        "caching": {"key": "caching", "type": "str"},
        "disk_size_gb": {"key": "diskSizeGB", "type": "int"},
        "lun": {"key": "lun", "type": "int"},
        "storage_account_type": {"key": "storageAccountType", "type": "str"},
    }

    def __init__(
        self,
        *,
        caching: Optional[Union[str, "_models.Caching"]] = None,
        disk_size_gb: Optional[int] = None,
        lun: Optional[int] = None,
        storage_account_type: Union[str, "_models.StorageAccountType"] = "Standard_LRS",
        **kwargs: Any
    ) -> None:
        """
        :keyword caching: Caching type of Data Disk. Known values are: "None", "ReadOnly", and
         "ReadWrite".
        :paramtype caching: str or ~azure.mgmt.machinelearningservices.models.Caching
        :keyword disk_size_gb: The initial disk size in gigabytes.
        :paramtype disk_size_gb: int
        :keyword lun: The lun is used to uniquely identify each data disk. If attaching multiple disks,
         each should have a distinct lun.
        :paramtype lun: int
        :keyword storage_account_type: type of this storage account. Known values are: "Standard_LRS"
         and "Premium_LRS".
        :paramtype storage_account_type: str or
         ~azure.mgmt.machinelearningservices.models.StorageAccountType
        """
        super().__init__(**kwargs)
        self.caching = caching
        self.disk_size_gb = disk_size_gb
        self.lun = lun
        self.storage_account_type = storage_account_type


class ComputeInstanceDataMount(_serialization.Model):
    """Defines an Aml Instance DataMount.

    :ivar source: Source of the ComputeInstance data mount.
    :vartype source: str
    :ivar source_type: Data source type. Known values are: "Dataset", "Datastore", and "URI".
    :vartype source_type: str or ~azure.mgmt.machinelearningservices.models.SourceType
    :ivar mount_name: name of the ComputeInstance data mount.
    :vartype mount_name: str
    :ivar mount_action: Mount Action. Known values are: "Mount" and "Unmount".
    :vartype mount_action: str or ~azure.mgmt.machinelearningservices.models.MountAction
    :ivar created_by: who this data mount created by.
    :vartype created_by: str
    :ivar mount_path: Path of this data mount.
    :vartype mount_path: str
    :ivar mount_state: Mount state. Known values are: "MountRequested", "Mounted", "MountFailed",
     "UnmountRequested", "UnmountFailed", and "Unmounted".
    :vartype mount_state: str or ~azure.mgmt.machinelearningservices.models.MountState
    :ivar mounted_on: The time when the disk mounted.
    :vartype mounted_on: ~datetime.datetime
    :ivar error: Error of this data mount.
    :vartype error: str
    """

    _attribute_map = {
        "source": {"key": "source", "type": "str"},
        "source_type": {"key": "sourceType", "type": "str"},
        "mount_name": {"key": "mountName", "type": "str"},
        "mount_action": {"key": "mountAction", "type": "str"},
        "created_by": {"key": "createdBy", "type": "str"},
        "mount_path": {"key": "mountPath", "type": "str"},
        "mount_state": {"key": "mountState", "type": "str"},
        "mounted_on": {"key": "mountedOn", "type": "iso-8601"},
        "error": {"key": "error", "type": "str"},
    }

    def __init__(
        self,
        *,
        source: Optional[str] = None,
        source_type: Optional[Union[str, "_models.SourceType"]] = None,
        mount_name: Optional[str] = None,
        mount_action: Optional[Union[str, "_models.MountAction"]] = None,
        created_by: Optional[str] = None,
        mount_path: Optional[str] = None,
        mount_state: Optional[Union[str, "_models.MountState"]] = None,
        mounted_on: Optional[datetime.datetime] = None,
        error: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword source: Source of the ComputeInstance data mount.
        :paramtype source: str
        :keyword source_type: Data source type. Known values are: "Dataset", "Datastore", and "URI".
        :paramtype source_type: str or ~azure.mgmt.machinelearningservices.models.SourceType
        :keyword mount_name: name of the ComputeInstance data mount.
        :paramtype mount_name: str
        :keyword mount_action: Mount Action. Known values are: "Mount" and "Unmount".
        :paramtype mount_action: str or ~azure.mgmt.machinelearningservices.models.MountAction
        :keyword created_by: who this data mount created by.
        :paramtype created_by: str
        :keyword mount_path: Path of this data mount.
        :paramtype mount_path: str
        :keyword mount_state: Mount state. Known values are: "MountRequested", "Mounted",
         "MountFailed", "UnmountRequested", "UnmountFailed", and "Unmounted".
        :paramtype mount_state: str or ~azure.mgmt.machinelearningservices.models.MountState
        :keyword mounted_on: The time when the disk mounted.
        :paramtype mounted_on: ~datetime.datetime
        :keyword error: Error of this data mount.
        :paramtype error: str
        """
        super().__init__(**kwargs)
        self.source = source
        self.source_type = source_type
        self.mount_name = mount_name
        self.mount_action = mount_action
        self.created_by = created_by
        self.mount_path = mount_path
        self.mount_state = mount_state
        self.mounted_on = mounted_on
        self.error = error


class ComputeInstanceEnvironmentInfo(_serialization.Model):
    """Environment information.

    :ivar name: name of environment.
    :vartype name: str
    :ivar version: version of environment.
    :vartype version: str
    """

    _attribute_map = {
        "name": {"key": "name", "type": "str"},
        "version": {"key": "version", "type": "str"},
    }

    def __init__(self, *, name: Optional[str] = None, version: Optional[str] = None, **kwargs: Any) -> None:
        """
        :keyword name: name of environment.
        :paramtype name: str
        :keyword version: version of environment.
        :paramtype version: str
        """
        super().__init__(**kwargs)
        self.name = name
        self.version = version


class ComputeInstanceLastOperation(_serialization.Model):
    """The last operation on ComputeInstance.

    :ivar operation_name: Name of the last operation. Known values are: "Create", "Start", "Stop",
     "Restart", "Reimage", and "Delete".
    :vartype operation_name: str or ~azure.mgmt.machinelearningservices.models.OperationName
    :ivar operation_time: Time of the last operation.
    :vartype operation_time: ~datetime.datetime
    :ivar operation_status: Operation status. Known values are: "InProgress", "Succeeded",
     "CreateFailed", "StartFailed", "StopFailed", "RestartFailed", "ReimageFailed", and
     "DeleteFailed".
    :vartype operation_status: str or ~azure.mgmt.machinelearningservices.models.OperationStatus
    :ivar operation_trigger: Trigger of operation. Known values are: "User", "Schedule", and
     "IdleShutdown".
    :vartype operation_trigger: str or ~azure.mgmt.machinelearningservices.models.OperationTrigger
    """

    _attribute_map = {
        "operation_name": {"key": "operationName", "type": "str"},
        "operation_time": {"key": "operationTime", "type": "iso-8601"},
        "operation_status": {"key": "operationStatus", "type": "str"},
        "operation_trigger": {"key": "operationTrigger", "type": "str"},
    }

    def __init__(
        self,
        *,
        operation_name: Optional[Union[str, "_models.OperationName"]] = None,
        operation_time: Optional[datetime.datetime] = None,
        operation_status: Optional[Union[str, "_models.OperationStatus"]] = None,
        operation_trigger: Optional[Union[str, "_models.OperationTrigger"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword operation_name: Name of the last operation. Known values are: "Create", "Start",
         "Stop", "Restart", "Reimage", and "Delete".
        :paramtype operation_name: str or ~azure.mgmt.machinelearningservices.models.OperationName
        :keyword operation_time: Time of the last operation.
        :paramtype operation_time: ~datetime.datetime
        :keyword operation_status: Operation status. Known values are: "InProgress", "Succeeded",
         "CreateFailed", "StartFailed", "StopFailed", "RestartFailed", "ReimageFailed", and
         "DeleteFailed".
        :paramtype operation_status: str or ~azure.mgmt.machinelearningservices.models.OperationStatus
        :keyword operation_trigger: Trigger of operation. Known values are: "User", "Schedule", and
         "IdleShutdown".
        :paramtype operation_trigger: str or
         ~azure.mgmt.machinelearningservices.models.OperationTrigger
        """
        super().__init__(**kwargs)
        self.operation_name = operation_name
        self.operation_time = operation_time
        self.operation_status = operation_status
        self.operation_trigger = operation_trigger


class ComputeInstanceProperties(_serialization.Model):  # pylint: disable=too-many-instance-attributes
    """Compute Instance properties.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar vm_size: Virtual Machine Size.
    :vartype vm_size: str
    :ivar subnet: Virtual network subnet resource ID the compute nodes belong to.
    :vartype subnet: ~azure.mgmt.machinelearningservices.models.ResourceId
    :ivar application_sharing_policy: Policy for sharing applications on this compute instance
     among users of parent workspace. If Personal, only the creator can access applications on this
     compute instance. When Shared, any workspace user can access applications on this instance
     depending on his/her assigned role. Known values are: "Personal" and "Shared".
    :vartype application_sharing_policy: str or
     ~azure.mgmt.machinelearningservices.models.ApplicationSharingPolicy
    :ivar ssh_settings: Specifies policy and settings for SSH access.
    :vartype ssh_settings: ~azure.mgmt.machinelearningservices.models.ComputeInstanceSshSettings
    :ivar custom_services: List of Custom Services added to the compute.
    :vartype custom_services: list[~azure.mgmt.machinelearningservices.models.CustomService]
    :ivar os_image_metadata: Returns metadata about the operating system image for this compute
     instance.
    :vartype os_image_metadata: ~azure.mgmt.machinelearningservices.models.ImageMetadata
    :ivar connectivity_endpoints: Describes all connectivity endpoints available for this
     ComputeInstance.
    :vartype connectivity_endpoints:
     ~azure.mgmt.machinelearningservices.models.ComputeInstanceConnectivityEndpoints
    :ivar applications: Describes available applications and their endpoints on this
     ComputeInstance.
    :vartype applications:
     list[~azure.mgmt.machinelearningservices.models.ComputeInstanceApplication]
    :ivar created_by: Describes information on user who created this ComputeInstance.
    :vartype created_by: ~azure.mgmt.machinelearningservices.models.ComputeInstanceCreatedBy
    :ivar errors: Collection of errors encountered on this ComputeInstance.
    :vartype errors: list[~azure.mgmt.machinelearningservices.models.ErrorResponse]
    :ivar state: The current state of this ComputeInstance. Known values are: "Creating",
     "CreateFailed", "Deleting", "Running", "Restarting", "JobRunning", "SettingUp", "SetupFailed",
     "Starting", "Stopped", "Stopping", "UserSettingUp", "UserSetupFailed", "Unknown", and
     "Unusable".
    :vartype state: str or ~azure.mgmt.machinelearningservices.models.ComputeInstanceState
    :ivar compute_instance_authorization_type: The Compute Instance Authorization type. Available
     values are personal (default). "personal"
    :vartype compute_instance_authorization_type: str or
     ~azure.mgmt.machinelearningservices.models.ComputeInstanceAuthorizationType
    :ivar personal_compute_instance_settings: Settings for a personal compute instance.
    :vartype personal_compute_instance_settings:
     ~azure.mgmt.machinelearningservices.models.PersonalComputeInstanceSettings
    :ivar setup_scripts: Details of customized scripts to execute for setting up the cluster.
    :vartype setup_scripts: ~azure.mgmt.machinelearningservices.models.SetupScripts
    :ivar last_operation: The last operation on ComputeInstance.
    :vartype last_operation:
     ~azure.mgmt.machinelearningservices.models.ComputeInstanceLastOperation
    :ivar schedules: The list of schedules to be applied on the computes.
    :vartype schedules: ~azure.mgmt.machinelearningservices.models.ComputeSchedules
    :ivar enable_node_public_ip: Enable or disable node public IP address provisioning. Possible
     values are: Possible values are: true - Indicates that the compute nodes will have public IPs
     provisioned. false - Indicates that the compute nodes will have a private endpoint and no
     public IPs.
    :vartype enable_node_public_ip: bool
    :ivar containers: Describes informations of containers on this ComputeInstance.
    :vartype containers: list[~azure.mgmt.machinelearningservices.models.ComputeInstanceContainer]
    :ivar data_disks: Describes informations of dataDisks on this ComputeInstance.
    :vartype data_disks: list[~azure.mgmt.machinelearningservices.models.ComputeInstanceDataDisk]
    :ivar data_mounts: Describes informations of dataMounts on this ComputeInstance.
    :vartype data_mounts: list[~azure.mgmt.machinelearningservices.models.ComputeInstanceDataMount]
    :ivar versions: ComputeInstance version.
    :vartype versions: ~azure.mgmt.machinelearningservices.models.ComputeInstanceVersion
    """

    _validation = {
        "os_image_metadata": {"readonly": True},
        "connectivity_endpoints": {"readonly": True},
        "applications": {"readonly": True},
        "created_by": {"readonly": True},
        "errors": {"readonly": True},
        "state": {"readonly": True},
        "last_operation": {"readonly": True},
        "containers": {"readonly": True},
        "data_disks": {"readonly": True},
        "data_mounts": {"readonly": True},
        "versions": {"readonly": True},
    }

    _attribute_map = {
        "vm_size": {"key": "vmSize", "type": "str"},
        "subnet": {"key": "subnet", "type": "ResourceId"},
        "application_sharing_policy": {"key": "applicationSharingPolicy", "type": "str"},
        "ssh_settings": {"key": "sshSettings", "type": "ComputeInstanceSshSettings"},
        "custom_services": {"key": "customServices", "type": "[CustomService]"},
        "os_image_metadata": {"key": "osImageMetadata", "type": "ImageMetadata"},
        "connectivity_endpoints": {"key": "connectivityEndpoints", "type": "ComputeInstanceConnectivityEndpoints"},
        "applications": {"key": "applications", "type": "[ComputeInstanceApplication]"},
        "created_by": {"key": "createdBy", "type": "ComputeInstanceCreatedBy"},
        "errors": {"key": "errors", "type": "[ErrorResponse]"},
        "state": {"key": "state", "type": "str"},
        "compute_instance_authorization_type": {"key": "computeInstanceAuthorizationType", "type": "str"},
        "personal_compute_instance_settings": {
            "key": "personalComputeInstanceSettings",
            "type": "PersonalComputeInstanceSettings",
        },
        "setup_scripts": {"key": "setupScripts", "type": "SetupScripts"},
        "last_operation": {"key": "lastOperation", "type": "ComputeInstanceLastOperation"},
        "schedules": {"key": "schedules", "type": "ComputeSchedules"},
        "enable_node_public_ip": {"key": "enableNodePublicIp", "type": "bool"},
        "containers": {"key": "containers", "type": "[ComputeInstanceContainer]"},
        "data_disks": {"key": "dataDisks", "type": "[ComputeInstanceDataDisk]"},
        "data_mounts": {"key": "dataMounts", "type": "[ComputeInstanceDataMount]"},
        "versions": {"key": "versions", "type": "ComputeInstanceVersion"},
    }

    def __init__(
        self,
        *,
        vm_size: Optional[str] = None,
        subnet: Optional["_models.ResourceId"] = None,
        application_sharing_policy: Union[str, "_models.ApplicationSharingPolicy"] = "Shared",
        ssh_settings: Optional["_models.ComputeInstanceSshSettings"] = None,
        custom_services: Optional[List["_models.CustomService"]] = None,
        compute_instance_authorization_type: Union[str, "_models.ComputeInstanceAuthorizationType"] = "personal",
        personal_compute_instance_settings: Optional["_models.PersonalComputeInstanceSettings"] = None,
        setup_scripts: Optional["_models.SetupScripts"] = None,
        schedules: Optional["_models.ComputeSchedules"] = None,
        enable_node_public_ip: Optional[bool] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword vm_size: Virtual Machine Size.
        :paramtype vm_size: str
        :keyword subnet: Virtual network subnet resource ID the compute nodes belong to.
        :paramtype subnet: ~azure.mgmt.machinelearningservices.models.ResourceId
        :keyword application_sharing_policy: Policy for sharing applications on this compute instance
         among users of parent workspace. If Personal, only the creator can access applications on this
         compute instance. When Shared, any workspace user can access applications on this instance
         depending on his/her assigned role. Known values are: "Personal" and "Shared".
        :paramtype application_sharing_policy: str or
         ~azure.mgmt.machinelearningservices.models.ApplicationSharingPolicy
        :keyword ssh_settings: Specifies policy and settings for SSH access.
        :paramtype ssh_settings: ~azure.mgmt.machinelearningservices.models.ComputeInstanceSshSettings
        :keyword custom_services: List of Custom Services added to the compute.
        :paramtype custom_services: list[~azure.mgmt.machinelearningservices.models.CustomService]
        :keyword compute_instance_authorization_type: The Compute Instance Authorization type.
         Available values are personal (default). "personal"
        :paramtype compute_instance_authorization_type: str or
         ~azure.mgmt.machinelearningservices.models.ComputeInstanceAuthorizationType
        :keyword personal_compute_instance_settings: Settings for a personal compute instance.
        :paramtype personal_compute_instance_settings:
         ~azure.mgmt.machinelearningservices.models.PersonalComputeInstanceSettings
        :keyword setup_scripts: Details of customized scripts to execute for setting up the cluster.
        :paramtype setup_scripts: ~azure.mgmt.machinelearningservices.models.SetupScripts
        :keyword schedules: The list of schedules to be applied on the computes.
        :paramtype schedules: ~azure.mgmt.machinelearningservices.models.ComputeSchedules
        :keyword enable_node_public_ip: Enable or disable node public IP address provisioning. Possible
         values are: Possible values are: true - Indicates that the compute nodes will have public IPs
         provisioned. false - Indicates that the compute nodes will have a private endpoint and no
         public IPs.
        :paramtype enable_node_public_ip: bool
        """
        super().__init__(**kwargs)
        self.vm_size = vm_size
        self.subnet = subnet
        self.application_sharing_policy = application_sharing_policy
        self.ssh_settings = ssh_settings
        self.custom_services = custom_services
        self.os_image_metadata = None
        self.connectivity_endpoints = None
        self.applications = None
        self.created_by = None
        self.errors = None
        self.state = None
        self.compute_instance_authorization_type = compute_instance_authorization_type
        self.personal_compute_instance_settings = personal_compute_instance_settings
        self.setup_scripts = setup_scripts
        self.last_operation = None
        self.schedules = schedules
        self.enable_node_public_ip = enable_node_public_ip
        self.containers = None
        self.data_disks = None
        self.data_mounts = None
        self.versions = None


class ComputeInstanceSshSettings(_serialization.Model):
    """Specifies policy and settings for SSH access.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar ssh_public_access: State of the public SSH port. Possible values are: Disabled -
     Indicates that the public ssh port is closed on this instance. Enabled - Indicates that the
     public ssh port is open and accessible according to the VNet/subnet policy if applicable. Known
     values are: "Enabled" and "Disabled".
    :vartype ssh_public_access: str or ~azure.mgmt.machinelearningservices.models.SshPublicAccess
    :ivar admin_user_name: Describes the admin user name.
    :vartype admin_user_name: str
    :ivar ssh_port: Describes the port for connecting through SSH.
    :vartype ssh_port: int
    :ivar admin_public_key: Specifies the SSH rsa public key file as a string. Use "ssh-keygen -t
     rsa -b 2048" to generate your SSH key pairs.
    :vartype admin_public_key: str
    """

    _validation = {
        "admin_user_name": {"readonly": True},
        "ssh_port": {"readonly": True},
    }

    _attribute_map = {
        "ssh_public_access": {"key": "sshPublicAccess", "type": "str"},
        "admin_user_name": {"key": "adminUserName", "type": "str"},
        "ssh_port": {"key": "sshPort", "type": "int"},
        "admin_public_key": {"key": "adminPublicKey", "type": "str"},
    }

    def __init__(
        self,
        *,
        ssh_public_access: Union[str, "_models.SshPublicAccess"] = "Disabled",
        admin_public_key: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword ssh_public_access: State of the public SSH port. Possible values are: Disabled -
         Indicates that the public ssh port is closed on this instance. Enabled - Indicates that the
         public ssh port is open and accessible according to the VNet/subnet policy if applicable. Known
         values are: "Enabled" and "Disabled".
        :paramtype ssh_public_access: str or ~azure.mgmt.machinelearningservices.models.SshPublicAccess
        :keyword admin_public_key: Specifies the SSH rsa public key file as a string. Use "ssh-keygen
         -t rsa -b 2048" to generate your SSH key pairs.
        :paramtype admin_public_key: str
        """
        super().__init__(**kwargs)
        self.ssh_public_access = ssh_public_access
        self.admin_user_name = None
        self.ssh_port = None
        self.admin_public_key = admin_public_key


class ComputeInstanceVersion(_serialization.Model):
    """Version of computeInstance.

    :ivar runtime: Runtime of compute instance.
    :vartype runtime: str
    """

    _attribute_map = {
        "runtime": {"key": "runtime", "type": "str"},
    }

    def __init__(self, *, runtime: Optional[str] = None, **kwargs: Any) -> None:
        """
        :keyword runtime: Runtime of compute instance.
        :paramtype runtime: str
        """
        super().__init__(**kwargs)
        self.runtime = runtime


class ComputeResourceSchema(_serialization.Model):
    """ComputeResourceSchema.

    :ivar properties: Compute properties.
    :vartype properties: ~azure.mgmt.machinelearningservices.models.Compute
    """

    _attribute_map = {
        "properties": {"key": "properties", "type": "Compute"},
    }

    def __init__(self, *, properties: Optional["_models.Compute"] = None, **kwargs: Any) -> None:
        """
        :keyword properties: Compute properties.
        :paramtype properties: ~azure.mgmt.machinelearningservices.models.Compute
        """
        super().__init__(**kwargs)
        self.properties = properties


class ComputeResource(Resource, ComputeResourceSchema):
    """Machine Learning compute object wrapped into ARM resource envelope.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar properties: Compute properties.
    :vartype properties: ~azure.mgmt.machinelearningservices.models.Compute
    :ivar id: Fully qualified resource ID for the resource. Ex -
     /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}.
    :vartype id: str
    :ivar name: The name of the resource.
    :vartype name: str
    :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or
     "Microsoft.Storage/storageAccounts".
    :vartype type: str
    :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy
     information.
    :vartype system_data: ~azure.mgmt.machinelearningservices.models.SystemData
    :ivar identity: The identity of the resource.
    :vartype identity: ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentity
    :ivar location: Specifies the location of the resource.
    :vartype location: str
    :ivar tags: Contains resource tags defined as key/value pairs.
    :vartype tags: dict[str, str]
    :ivar sku: The sku of the workspace.
    :vartype sku: ~azure.mgmt.machinelearningservices.models.Sku
    """

    _validation = {
        "id": {"readonly": True},
        "name": {"readonly": True},
        "type": {"readonly": True},
        "system_data": {"readonly": True},
    }

    _attribute_map = {
        "properties": {"key": "properties", "type": "Compute"},
        "id": {"key": "id", "type": "str"},
        "name": {"key": "name", "type": "str"},
        "type": {"key": "type", "type": "str"},
        "system_data": {"key": "systemData", "type": "SystemData"},
        "identity": {"key": "identity", "type": "ManagedServiceIdentity"},
        "location": {"key": "location", "type": "str"},
        "tags": {"key": "tags", "type": "{str}"},
        "sku": {"key": "sku", "type": "Sku"},
    }

    def __init__(
        self,
        *,
        properties: Optional["_models.Compute"] = None,
        identity: Optional["_models.ManagedServiceIdentity"] = None,
        location: Optional[str] = None,
        tags: Optional[Dict[str, str]] = None,
        sku: Optional["_models.Sku"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword properties: Compute properties.
        :paramtype properties: ~azure.mgmt.machinelearningservices.models.Compute
        :keyword identity: The identity of the resource.
        :paramtype identity: ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentity
        :keyword location: Specifies the location of the resource.
        :paramtype location: str
        :keyword tags: Contains resource tags defined as key/value pairs.
        :paramtype tags: dict[str, str]
        :keyword sku: The sku of the workspace.
        :paramtype sku: ~azure.mgmt.machinelearningservices.models.Sku
        """
        super().__init__(properties=properties, **kwargs)
        self.properties = properties
        self.identity = identity
        self.location = location
        self.tags = tags
        self.sku = sku
        self.id = None
        self.name = None
        self.type = None
        self.system_data = None


class ComputeSchedules(_serialization.Model):
    """The list of schedules to be applied on the computes.

    :ivar compute_start_stop: The list of compute start stop schedules to be applied.
    :vartype compute_start_stop:
     list[~azure.mgmt.machinelearningservices.models.ComputeStartStopSchedule]
    """

    _attribute_map = {
        "compute_start_stop": {"key": "computeStartStop", "type": "[ComputeStartStopSchedule]"},
    }

    def __init__(
        self, *, compute_start_stop: Optional[List["_models.ComputeStartStopSchedule"]] = None, **kwargs: Any
    ) -> None:
        """
        :keyword compute_start_stop: The list of compute start stop schedules to be applied.
        :paramtype compute_start_stop:
         list[~azure.mgmt.machinelearningservices.models.ComputeStartStopSchedule]
        """
        super().__init__(**kwargs)
        self.compute_start_stop = compute_start_stop


class ComputeStartStopSchedule(_serialization.Model):
    """Compute start stop schedule properties.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar id: A system assigned id for the schedule.
    :vartype id: str
    :ivar provisioning_status: The current deployment state of schedule. Known values are:
     "Completed", "Provisioning", and "Failed".
    :vartype provisioning_status: str or
     ~azure.mgmt.machinelearningservices.models.ProvisioningStatus
    :ivar status: Is the schedule enabled or disabled?. Known values are: "Enabled" and "Disabled".
    :vartype status: str or ~azure.mgmt.machinelearningservices.models.ScheduleStatus
    :ivar action: [Required] The compute power action. Known values are: "Start" and "Stop".
    :vartype action: str or ~azure.mgmt.machinelearningservices.models.ComputePowerAction
    :ivar trigger_type: [Required] The schedule trigger type. Known values are: "Recurrence" and
     "Cron".
    :vartype trigger_type: str or ~azure.mgmt.machinelearningservices.models.TriggerType
    :ivar recurrence: Required if triggerType is Recurrence.
    :vartype recurrence: ~azure.mgmt.machinelearningservices.models.Recurrence
    :ivar cron: Required if triggerType is Cron.
    :vartype cron: ~azure.mgmt.machinelearningservices.models.Cron
    :ivar schedule: [Deprecated] Not used any more.
    :vartype schedule: ~azure.mgmt.machinelearningservices.models.ScheduleBase
    """

    _validation = {
        "id": {"readonly": True},
        "provisioning_status": {"readonly": True},
    }

    _attribute_map = {
        "id": {"key": "id", "type": "str"},
        "provisioning_status": {"key": "provisioningStatus", "type": "str"},
        "status": {"key": "status", "type": "str"},
        "action": {"key": "action", "type": "str"},
        "trigger_type": {"key": "triggerType", "type": "str"},
        "recurrence": {"key": "recurrence", "type": "Recurrence"},
        "cron": {"key": "cron", "type": "Cron"},
        "schedule": {"key": "schedule", "type": "ScheduleBase"},
    }

    def __init__(
        self,
        *,
        status: Optional[Union[str, "_models.ScheduleStatus"]] = None,
        action: Optional[Union[str, "_models.ComputePowerAction"]] = None,
        trigger_type: Optional[Union[str, "_models.TriggerType"]] = None,
        recurrence: Optional["_models.Recurrence"] = None,
        cron: Optional["_models.Cron"] = None,
        schedule: Optional["_models.ScheduleBase"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword status: Is the schedule enabled or disabled?. Known values are: "Enabled" and
         "Disabled".
        :paramtype status: str or ~azure.mgmt.machinelearningservices.models.ScheduleStatus
        :keyword action: [Required] The compute power action. Known values are: "Start" and "Stop".
        :paramtype action: str or ~azure.mgmt.machinelearningservices.models.ComputePowerAction
        :keyword trigger_type: [Required] The schedule trigger type. Known values are: "Recurrence" and
         "Cron".
        :paramtype trigger_type: str or ~azure.mgmt.machinelearningservices.models.TriggerType
        :keyword recurrence: Required if triggerType is Recurrence.
        :paramtype recurrence: ~azure.mgmt.machinelearningservices.models.Recurrence
        :keyword cron: Required if triggerType is Cron.
        :paramtype cron: ~azure.mgmt.machinelearningservices.models.Cron
        :keyword schedule: [Deprecated] Not used any more.
        :paramtype schedule: ~azure.mgmt.machinelearningservices.models.ScheduleBase
        """
        super().__init__(**kwargs)
        self.id = None
        self.provisioning_status = None
        self.status = status
        self.action = action
        self.trigger_type = trigger_type
        self.recurrence = recurrence
        self.cron = cron
        self.schedule = schedule


class ContainerResourceRequirements(_serialization.Model):
    """Resource requirements for each container instance within an online deployment.

    :ivar container_resource_limits: Container resource limit info:.
    :vartype container_resource_limits:
     ~azure.mgmt.machinelearningservices.models.ContainerResourceSettings
    :ivar container_resource_requests: Container resource request info:.
    :vartype container_resource_requests:
     ~azure.mgmt.machinelearningservices.models.ContainerResourceSettings
    """

    _attribute_map = {
        "container_resource_limits": {"key": "containerResourceLimits", "type": "ContainerResourceSettings"},
        "container_resource_requests": {"key": "containerResourceRequests", "type": "ContainerResourceSettings"},
    }

    def __init__(
        self,
        *,
        container_resource_limits: Optional["_models.ContainerResourceSettings"] = None,
        container_resource_requests: Optional["_models.ContainerResourceSettings"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword container_resource_limits: Container resource limit info:.
        :paramtype container_resource_limits:
         ~azure.mgmt.machinelearningservices.models.ContainerResourceSettings
        :keyword container_resource_requests: Container resource request info:.
        :paramtype container_resource_requests:
         ~azure.mgmt.machinelearningservices.models.ContainerResourceSettings
        """
        super().__init__(**kwargs)
        self.container_resource_limits = container_resource_limits
        self.container_resource_requests = container_resource_requests


class ContainerResourceSettings(_serialization.Model):
    """ContainerResourceSettings.

    :ivar cpu: Number of vCPUs request/limit for container. More info:
     https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/.
    :vartype cpu: str
    :ivar gpu: Number of Nvidia GPU cards request/limit for container. More info:
     https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/.
    :vartype gpu: str
    :ivar memory: Memory size request/limit for container. More info:
     https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/.
    :vartype memory: str
    """

    _attribute_map = {
        "cpu": {"key": "cpu", "type": "str"},
        "gpu": {"key": "gpu", "type": "str"},
        "memory": {"key": "memory", "type": "str"},
    }

    def __init__(
        self, *, cpu: Optional[str] = None, gpu: Optional[str] = None, memory: Optional[str] = None, **kwargs: Any
    ) -> None:
        """
        :keyword cpu: Number of vCPUs request/limit for container. More info:
         https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/.
        :paramtype cpu: str
        :keyword gpu: Number of Nvidia GPU cards request/limit for container. More info:
         https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/.
        :paramtype gpu: str
        :keyword memory: Memory size request/limit for container. More info:
         https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/.
        :paramtype memory: str
        """
        super().__init__(**kwargs)
        self.cpu = cpu
        self.gpu = gpu
        self.memory = memory


class CosmosDbSettings(_serialization.Model):
    """CosmosDbSettings.

    :ivar collections_throughput: The throughput of the collections in cosmosdb database.
    :vartype collections_throughput: int
    """

    _attribute_map = {
        "collections_throughput": {"key": "collectionsThroughput", "type": "int"},
    }

    def __init__(self, *, collections_throughput: Optional[int] = None, **kwargs: Any) -> None:
        """
        :keyword collections_throughput: The throughput of the collections in cosmosdb database.
        :paramtype collections_throughput: int
        """
        super().__init__(**kwargs)
        self.collections_throughput = collections_throughput


class Cron(_serialization.Model):
    """The workflow trigger cron for ComputeStartStop schedule type.

    :ivar start_time: The start time in yyyy-MM-ddTHH:mm:ss format.
    :vartype start_time: str
    :ivar time_zone: Specifies time zone in which the schedule runs.
     TimeZone should follow Windows time zone format. Refer:
     https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/default-time-zones?view=windows-11.
    :vartype time_zone: str
    :ivar expression: [Required] Specifies cron expression of schedule.
     The expression should follow NCronTab format.
    :vartype expression: str
    """

    _attribute_map = {
        "start_time": {"key": "startTime", "type": "str"},
        "time_zone": {"key": "timeZone", "type": "str"},
        "expression": {"key": "expression", "type": "str"},
    }

    def __init__(
        self,
        *,
        start_time: Optional[str] = None,
        time_zone: str = "UTC",
        expression: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword start_time: The start time in yyyy-MM-ddTHH:mm:ss format.
        :paramtype start_time: str
        :keyword time_zone: Specifies time zone in which the schedule runs.
         TimeZone should follow Windows time zone format. Refer:
         https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/default-time-zones?view=windows-11.
        :paramtype time_zone: str
        :keyword expression: [Required] Specifies cron expression of schedule.
         The expression should follow NCronTab format.
        :paramtype expression: str
        """
        super().__init__(**kwargs)
        self.start_time = start_time
        self.time_zone = time_zone
        self.expression = expression


class TriggerBase(_serialization.Model):
    """TriggerBase.

    You probably want to use the sub-classes and not this class directly. Known sub-classes are:
    CronTrigger, RecurrenceTrigger

    All required parameters must be populated in order to send to Azure.

    :ivar end_time: Specifies end time of schedule in ISO 8601, but without a UTC offset. Refer
     https://en.wikipedia.org/wiki/ISO_8601.
     Recommented format would be "2022-06-01T00:00:01"
     If not present, the schedule will run indefinitely.
    :vartype end_time: str
    :ivar start_time: Specifies start time of schedule in ISO 8601 format, but without a UTC
     offset.
    :vartype start_time: str
    :ivar time_zone: Specifies time zone in which the schedule runs.
     TimeZone should follow Windows time zone format. Refer:
     https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/default-time-zones?view=windows-11.
    :vartype time_zone: str
    :ivar trigger_type: [Required]. Required. Known values are: "Recurrence" and "Cron".
    :vartype trigger_type: str or ~azure.mgmt.machinelearningservices.models.TriggerType
    """

    _validation = {
        "trigger_type": {"required": True},
    }

    _attribute_map = {
        "end_time": {"key": "endTime", "type": "str"},
        "start_time": {"key": "startTime", "type": "str"},
        "time_zone": {"key": "timeZone", "type": "str"},
        "trigger_type": {"key": "triggerType", "type": "str"},
    }

    _subtype_map = {"trigger_type": {"Cron": "CronTrigger", "Recurrence": "RecurrenceTrigger"}}

    def __init__(
        self, *, end_time: Optional[str] = None, start_time: Optional[str] = None, time_zone: str = "UTC", **kwargs: Any
    ) -> None:
        """
        :keyword end_time: Specifies end time of schedule in ISO 8601, but without a UTC offset. Refer
         https://en.wikipedia.org/wiki/ISO_8601.
         Recommented format would be "2022-06-01T00:00:01"
         If not present, the schedule will run indefinitely.
        :paramtype end_time: str
        :keyword start_time: Specifies start time of schedule in ISO 8601 format, but without a UTC
         offset.
        :paramtype start_time: str
        :keyword time_zone: Specifies time zone in which the schedule runs.
         TimeZone should follow Windows time zone format. Refer:
         https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/default-time-zones?view=windows-11.
        :paramtype time_zone: str
        """
        super().__init__(**kwargs)
        self.end_time = end_time
        self.start_time = start_time
        self.time_zone = time_zone
        self.trigger_type: Optional[str] = None


class CronTrigger(TriggerBase):
    """CronTrigger.

    All required parameters must be populated in order to send to Azure.

    :ivar end_time: Specifies end time of schedule in ISO 8601, but without a UTC offset. Refer
     https://en.wikipedia.org/wiki/ISO_8601.
     Recommented format would be "2022-06-01T00:00:01"
     If not present, the schedule will run indefinitely.
    :vartype end_time: str
    :ivar start_time: Specifies start time of schedule in ISO 8601 format, but without a UTC
     offset.
    :vartype start_time: str
    :ivar time_zone: Specifies time zone in which the schedule runs.
     TimeZone should follow Windows time zone format. Refer:
     https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/default-time-zones?view=windows-11.
    :vartype time_zone: str
    :ivar trigger_type: [Required]. Required. Known values are: "Recurrence" and "Cron".
    :vartype trigger_type: str or ~azure.mgmt.machinelearningservices.models.TriggerType
    :ivar expression: [Required] Specifies cron expression of schedule.
     The expression should follow NCronTab format. Required.
    :vartype expression: str
    """

    _validation = {
        "trigger_type": {"required": True},
        "expression": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"},
    }

    _attribute_map = {
        "end_time": {"key": "endTime", "type": "str"},
        "start_time": {"key": "startTime", "type": "str"},
        "time_zone": {"key": "timeZone", "type": "str"},
        "trigger_type": {"key": "triggerType", "type": "str"},
        "expression": {"key": "expression", "type": "str"},
    }

    def __init__(
        self,
        *,
        expression: str,
        end_time: Optional[str] = None,
        start_time: Optional[str] = None,
        time_zone: str = "UTC",
        **kwargs: Any
    ) -> None:
        """
        :keyword end_time: Specifies end time of schedule in ISO 8601, but without a UTC offset. Refer
         https://en.wikipedia.org/wiki/ISO_8601.
         Recommented format would be "2022-06-01T00:00:01"
         If not present, the schedule will run indefinitely.
        :paramtype end_time: str
        :keyword start_time: Specifies start time of schedule in ISO 8601 format, but without a UTC
         offset.
        :paramtype start_time: str
        :keyword time_zone: Specifies time zone in which the schedule runs.
         TimeZone should follow Windows time zone format. Refer:
         https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/default-time-zones?view=windows-11.
        :paramtype time_zone: str
        :keyword expression: [Required] Specifies cron expression of schedule.
         The expression should follow NCronTab format. Required.
        :paramtype expression: str
        """
        super().__init__(end_time=end_time, start_time=start_time, time_zone=time_zone, **kwargs)
        self.trigger_type: str = "Cron"
        self.expression = expression


class CustomForecastHorizon(ForecastHorizon):
    """The desired maximum forecast horizon in units of time-series frequency.

    All required parameters must be populated in order to send to Azure.

    :ivar mode: [Required] Set forecast horizon value selection mode. Required. Known values are:
     "Auto" and "Custom".
    :vartype mode: str or ~azure.mgmt.machinelearningservices.models.ForecastHorizonMode
    :ivar value: [Required] Forecast horizon value. Required.
    :vartype value: int
    """

    _validation = {
        "mode": {"required": True},
        "value": {"required": True},
    }

    _attribute_map = {
        "mode": {"key": "mode", "type": "str"},
        "value": {"key": "value", "type": "int"},
    }

    def __init__(self, *, value: int, **kwargs: Any) -> None:
        """
        :keyword value: [Required] Forecast horizon value. Required.
        :paramtype value: int
        """
        super().__init__(**kwargs)
        self.mode: str = "Custom"
        self.value = value


class JobInput(_serialization.Model):
    """Command job definition.

    You probably want to use the sub-classes and not this class directly. Known sub-classes are:
    CustomModelJobInput, LiteralJobInput, MLFlowModelJobInput, MLTableJobInput,
    TritonModelJobInput, UriFileJobInput, UriFolderJobInput

    All required parameters must be populated in order to send to Azure.

    :ivar description: Description for the input.
    :vartype description: str
    :ivar job_input_type: [Required] Specifies the type of job. Required. Known values are:
     "literal", "uri_file", "uri_folder", "mltable", "custom_model", "mlflow_model", and
     "triton_model".
    :vartype job_input_type: str or ~azure.mgmt.machinelearningservices.models.JobInputType
    """

    _validation = {
        "job_input_type": {"required": True},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "job_input_type": {"key": "jobInputType", "type": "str"},
    }

    _subtype_map = {
        "job_input_type": {
            "custom_model": "CustomModelJobInput",
            "literal": "LiteralJobInput",
            "mlflow_model": "MLFlowModelJobInput",
            "mltable": "MLTableJobInput",
            "triton_model": "TritonModelJobInput",
            "uri_file": "UriFileJobInput",
            "uri_folder": "UriFolderJobInput",
        }
    }

    def __init__(self, *, description: Optional[str] = None, **kwargs: Any) -> None:
        """
        :keyword description: Description for the input.
        :paramtype description: str
        """
        super().__init__(**kwargs)
        self.description = description
        self.job_input_type: Optional[str] = None


class CustomModelJobInput(AssetJobInput, JobInput):
    """CustomModelJobInput.

    All required parameters must be populated in order to send to Azure.

    :ivar description: Description for the input.
    :vartype description: str
    :ivar job_input_type: [Required] Specifies the type of job. Required. Known values are:
     "literal", "uri_file", "uri_folder", "mltable", "custom_model", "mlflow_model", and
     "triton_model".
    :vartype job_input_type: str or ~azure.mgmt.machinelearningservices.models.JobInputType
    :ivar mode: Input Asset Delivery Mode. Known values are: "ReadOnlyMount", "ReadWriteMount",
     "Download", "Direct", "EvalMount", and "EvalDownload".
    :vartype mode: str or ~azure.mgmt.machinelearningservices.models.InputDeliveryMode
    :ivar uri: [Required] Input Asset URI. Required.
    :vartype uri: str
    """

    _validation = {
        "job_input_type": {"required": True},
        "uri": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "job_input_type": {"key": "jobInputType", "type": "str"},
        "mode": {"key": "mode", "type": "str"},
        "uri": {"key": "uri", "type": "str"},
    }

    def __init__(
        self,
        *,
        uri: str,
        description: Optional[str] = None,
        mode: Optional[Union[str, "_models.InputDeliveryMode"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword description: Description for the input.
        :paramtype description: str
        :keyword mode: Input Asset Delivery Mode. Known values are: "ReadOnlyMount", "ReadWriteMount",
         "Download", "Direct", "EvalMount", and "EvalDownload".
        :paramtype mode: str or ~azure.mgmt.machinelearningservices.models.InputDeliveryMode
        :keyword uri: [Required] Input Asset URI. Required.
        :paramtype uri: str
        """
        super().__init__(mode=mode, uri=uri, description=description, **kwargs)
        self.description = description
        self.job_input_type: str = "custom_model"
        self.mode = mode
        self.uri = uri


class JobOutput(_serialization.Model):
    """Job output definition container information on where to find job output/logs.

    You probably want to use the sub-classes and not this class directly. Known sub-classes are:
    CustomModelJobOutput, MLFlowModelJobOutput, MLTableJobOutput, TritonModelJobOutput,
    UriFileJobOutput, UriFolderJobOutput

    All required parameters must be populated in order to send to Azure.

    :ivar description: Description for the output.
    :vartype description: str
    :ivar job_output_type: [Required] Specifies the type of job. Required. Known values are:
     "uri_file", "uri_folder", "mltable", "custom_model", "mlflow_model", and "triton_model".
    :vartype job_output_type: str or ~azure.mgmt.machinelearningservices.models.JobOutputType
    """

    _validation = {
        "job_output_type": {"required": True},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "job_output_type": {"key": "jobOutputType", "type": "str"},
    }

    _subtype_map = {
        "job_output_type": {
            "custom_model": "CustomModelJobOutput",
            "mlflow_model": "MLFlowModelJobOutput",
            "mltable": "MLTableJobOutput",
            "triton_model": "TritonModelJobOutput",
            "uri_file": "UriFileJobOutput",
            "uri_folder": "UriFolderJobOutput",
        }
    }

    def __init__(self, *, description: Optional[str] = None, **kwargs: Any) -> None:
        """
        :keyword description: Description for the output.
        :paramtype description: str
        """
        super().__init__(**kwargs)
        self.description = description
        self.job_output_type: Optional[str] = None


class CustomModelJobOutput(AssetJobOutput, JobOutput):
    """CustomModelJobOutput.

    All required parameters must be populated in order to send to Azure.

    :ivar description: Description for the output.
    :vartype description: str
    :ivar job_output_type: [Required] Specifies the type of job. Required. Known values are:
     "uri_file", "uri_folder", "mltable", "custom_model", "mlflow_model", and "triton_model".
    :vartype job_output_type: str or ~azure.mgmt.machinelearningservices.models.JobOutputType
    :ivar mode: Output Asset Delivery Mode. Known values are: "ReadWriteMount" and "Upload".
    :vartype mode: str or ~azure.mgmt.machinelearningservices.models.OutputDeliveryMode
    :ivar uri: Output Asset URI.
    :vartype uri: str
    """

    _validation = {
        "job_output_type": {"required": True},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "job_output_type": {"key": "jobOutputType", "type": "str"},
        "mode": {"key": "mode", "type": "str"},
        "uri": {"key": "uri", "type": "str"},
    }

    def __init__(
        self,
        *,
        description: Optional[str] = None,
        mode: Optional[Union[str, "_models.OutputDeliveryMode"]] = None,
        uri: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword description: Description for the output.
        :paramtype description: str
        :keyword mode: Output Asset Delivery Mode. Known values are: "ReadWriteMount" and "Upload".
        :paramtype mode: str or ~azure.mgmt.machinelearningservices.models.OutputDeliveryMode
        :keyword uri: Output Asset URI.
        :paramtype uri: str
        """
        super().__init__(mode=mode, uri=uri, description=description, **kwargs)
        self.description = description
        self.job_output_type: str = "custom_model"
        self.mode = mode
        self.uri = uri


class CustomNCrossValidations(NCrossValidations):
    """N-Cross validations are specified by user.

    All required parameters must be populated in order to send to Azure.

    :ivar mode: [Required] Mode for determining N-Cross validations. Required. Known values are:
     "Auto" and "Custom".
    :vartype mode: str or ~azure.mgmt.machinelearningservices.models.NCrossValidationsMode
    :ivar value: [Required] N-Cross validations value. Required.
    :vartype value: int
    """

    _validation = {
        "mode": {"required": True},
        "value": {"required": True},
    }

    _attribute_map = {
        "mode": {"key": "mode", "type": "str"},
        "value": {"key": "value", "type": "int"},
    }

    def __init__(self, *, value: int, **kwargs: Any) -> None:
        """
        :keyword value: [Required] N-Cross validations value. Required.
        :paramtype value: int
        """
        super().__init__(**kwargs)
        self.mode: str = "Custom"
        self.value = value


class CustomSeasonality(Seasonality):
    """CustomSeasonality.

    All required parameters must be populated in order to send to Azure.

    :ivar mode: [Required] Seasonality mode. Required. Known values are: "Auto" and "Custom".
    :vartype mode: str or ~azure.mgmt.machinelearningservices.models.SeasonalityMode
    :ivar value: [Required] Seasonality value. Required.
    :vartype value: int
    """

    _validation = {
        "mode": {"required": True},
        "value": {"required": True},
    }

    _attribute_map = {
        "mode": {"key": "mode", "type": "str"},
        "value": {"key": "value", "type": "int"},
    }

    def __init__(self, *, value: int, **kwargs: Any) -> None:
        """
        :keyword value: [Required] Seasonality value. Required.
        :paramtype value: int
        """
        super().__init__(**kwargs)
        self.mode: str = "Custom"
        self.value = value


class CustomService(_serialization.Model):
    """Specifies the custom service configuration.

    :ivar additional_properties: Unmatched properties from the message are deserialized to this
     collection.
    :vartype additional_properties: dict[str, any]
    :ivar name: Name of the Custom Service.
    :vartype name: str
    :ivar image: Describes the Image Specifications.
    :vartype image: ~azure.mgmt.machinelearningservices.models.Image
    :ivar environment_variables: Environment Variable for the container.
    :vartype environment_variables: dict[str,
     ~azure.mgmt.machinelearningservices.models.EnvironmentVariable]
    :ivar docker: Describes the docker settings for the image.
    :vartype docker: ~azure.mgmt.machinelearningservices.models.Docker
    :ivar endpoints: Configuring the endpoints for the container.
    :vartype endpoints: list[~azure.mgmt.machinelearningservices.models.Endpoint]
    :ivar volumes: Configuring the volumes for the container.
    :vartype volumes: list[~azure.mgmt.machinelearningservices.models.VolumeDefinition]
    """

    _attribute_map = {
        "additional_properties": {"key": "", "type": "{object}"},
        "name": {"key": "name", "type": "str"},
        "image": {"key": "image", "type": "Image"},
        "environment_variables": {"key": "environmentVariables", "type": "{EnvironmentVariable}"},
        "docker": {"key": "docker", "type": "Docker"},
        "endpoints": {"key": "endpoints", "type": "[Endpoint]"},
        "volumes": {"key": "volumes", "type": "[VolumeDefinition]"},
    }

    def __init__(
        self,
        *,
        additional_properties: Optional[Dict[str, Any]] = None,
        name: Optional[str] = None,
        image: Optional["_models.Image"] = None,
        environment_variables: Optional[Dict[str, "_models.EnvironmentVariable"]] = None,
        docker: Optional["_models.Docker"] = None,
        endpoints: Optional[List["_models.Endpoint"]] = None,
        volumes: Optional[List["_models.VolumeDefinition"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword additional_properties: Unmatched properties from the message are deserialized to this
         collection.
        :paramtype additional_properties: dict[str, any]
        :keyword name: Name of the Custom Service.
        :paramtype name: str
        :keyword image: Describes the Image Specifications.
        :paramtype image: ~azure.mgmt.machinelearningservices.models.Image
        :keyword environment_variables: Environment Variable for the container.
        :paramtype environment_variables: dict[str,
         ~azure.mgmt.machinelearningservices.models.EnvironmentVariable]
        :keyword docker: Describes the docker settings for the image.
        :paramtype docker: ~azure.mgmt.machinelearningservices.models.Docker
        :keyword endpoints: Configuring the endpoints for the container.
        :paramtype endpoints: list[~azure.mgmt.machinelearningservices.models.Endpoint]
        :keyword volumes: Configuring the volumes for the container.
        :paramtype volumes: list[~azure.mgmt.machinelearningservices.models.VolumeDefinition]
        """
        super().__init__(**kwargs)
        self.additional_properties = additional_properties
        self.name = name
        self.image = image
        self.environment_variables = environment_variables
        self.docker = docker
        self.endpoints = endpoints
        self.volumes = volumes


class CustomTargetLags(TargetLags):
    """CustomTargetLags.

    All required parameters must be populated in order to send to Azure.

    :ivar mode: [Required] Set target lags mode - Auto/Custom. Required. Known values are: "Auto"
     and "Custom".
    :vartype mode: str or ~azure.mgmt.machinelearningservices.models.TargetLagsMode
    :ivar values: [Required] Set target lags values. Required.
    :vartype values: list[int]
    """

    _validation = {
        "mode": {"required": True},
        "values": {"required": True},
    }

    _attribute_map = {
        "mode": {"key": "mode", "type": "str"},
        "values": {"key": "values", "type": "[int]"},
    }

    def __init__(self, *, values: List[int], **kwargs: Any) -> None:
        """
        :keyword values: [Required] Set target lags values. Required.
        :paramtype values: list[int]
        """
        super().__init__(**kwargs)
        self.mode: str = "Custom"
        self.values = values


class CustomTargetRollingWindowSize(TargetRollingWindowSize):
    """CustomTargetRollingWindowSize.

    All required parameters must be populated in order to send to Azure.

    :ivar mode: [Required] TargetRollingWindowSiz detection mode. Required. Known values are:
     "Auto" and "Custom".
    :vartype mode: str or ~azure.mgmt.machinelearningservices.models.TargetRollingWindowSizeMode
    :ivar value: [Required] TargetRollingWindowSize value. Required.
    :vartype value: int
    """

    _validation = {
        "mode": {"required": True},
        "value": {"required": True},
    }

    _attribute_map = {
        "mode": {"key": "mode", "type": "str"},
        "value": {"key": "value", "type": "int"},
    }

    def __init__(self, *, value: int, **kwargs: Any) -> None:
        """
        :keyword value: [Required] TargetRollingWindowSize value. Required.
        :paramtype value: int
        """
        super().__init__(**kwargs)
        self.mode: str = "Custom"
        self.value = value


class DatabricksSchema(_serialization.Model):
    """DatabricksSchema.

    :ivar properties: Properties of Databricks.
    :vartype properties: ~azure.mgmt.machinelearningservices.models.DatabricksProperties
    """

    _attribute_map = {
        "properties": {"key": "properties", "type": "DatabricksProperties"},
    }

    def __init__(self, *, properties: Optional["_models.DatabricksProperties"] = None, **kwargs: Any) -> None:
        """
        :keyword properties: Properties of Databricks.
        :paramtype properties: ~azure.mgmt.machinelearningservices.models.DatabricksProperties
        """
        super().__init__(**kwargs)
        self.properties = properties


class Databricks(Compute, DatabricksSchema):  # pylint: disable=too-many-instance-attributes
    """A DataFactory compute.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar properties: Properties of Databricks.
    :vartype properties: ~azure.mgmt.machinelearningservices.models.DatabricksProperties
    :ivar compute_type: The type of compute. Required. Known values are: "AKS", "Kubernetes",
     "AmlCompute", "ComputeInstance", "DataFactory", "VirtualMachine", "HDInsight", "Databricks",
     "DataLakeAnalytics", and "SynapseSpark".
    :vartype compute_type: str or ~azure.mgmt.machinelearningservices.models.ComputeType
    :ivar compute_location: Location for the underlying compute.
    :vartype compute_location: str
    :ivar provisioning_state: The provision state of the cluster. Valid values are Unknown,
     Updating, Provisioning, Succeeded, and Failed. Known values are: "Unknown", "Updating",
     "Creating", "Deleting", "Succeeded", "Failed", and "Canceled".
    :vartype provisioning_state: str or
     ~azure.mgmt.machinelearningservices.models.ProvisioningState
    :ivar description: The description of the Machine Learning compute.
    :vartype description: str
    :ivar created_on: The time at which the compute was created.
    :vartype created_on: ~datetime.datetime
    :ivar modified_on: The time at which the compute was last modified.
    :vartype modified_on: ~datetime.datetime
    :ivar resource_id: ARM resource id of the underlying compute.
    :vartype resource_id: str
    :ivar provisioning_errors: Errors during provisioning.
    :vartype provisioning_errors: list[~azure.mgmt.machinelearningservices.models.ErrorResponse]
    :ivar is_attached_compute: Indicating whether the compute was provisioned by user and brought
     from outside if true, or machine learning service provisioned it if false.
    :vartype is_attached_compute: bool
    :ivar disable_local_auth: Opt-out of local authentication and ensure customers can use only MSI
     and AAD exclusively for authentication.
    :vartype disable_local_auth: bool
    """

    _validation = {
        "compute_type": {"required": True},
        "provisioning_state": {"readonly": True},
        "created_on": {"readonly": True},
        "modified_on": {"readonly": True},
        "provisioning_errors": {"readonly": True},
        "is_attached_compute": {"readonly": True},
    }

    _attribute_map = {
        "properties": {"key": "properties", "type": "DatabricksProperties"},
        "compute_type": {"key": "computeType", "type": "str"},
        "compute_location": {"key": "computeLocation", "type": "str"},
        "provisioning_state": {"key": "provisioningState", "type": "str"},
        "description": {"key": "description", "type": "str"},
        "created_on": {"key": "createdOn", "type": "iso-8601"},
        "modified_on": {"key": "modifiedOn", "type": "iso-8601"},
        "resource_id": {"key": "resourceId", "type": "str"},
        "provisioning_errors": {"key": "provisioningErrors", "type": "[ErrorResponse]"},
        "is_attached_compute": {"key": "isAttachedCompute", "type": "bool"},
        "disable_local_auth": {"key": "disableLocalAuth", "type": "bool"},
    }

    def __init__(
        self,
        *,
        properties: Optional["_models.DatabricksProperties"] = None,
        compute_location: Optional[str] = None,
        description: Optional[str] = None,
        resource_id: Optional[str] = None,
        disable_local_auth: Optional[bool] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword properties: Properties of Databricks.
        :paramtype properties: ~azure.mgmt.machinelearningservices.models.DatabricksProperties
        :keyword compute_location: Location for the underlying compute.
        :paramtype compute_location: str
        :keyword description: The description of the Machine Learning compute.
        :paramtype description: str
        :keyword resource_id: ARM resource id of the underlying compute.
        :paramtype resource_id: str
        :keyword disable_local_auth: Opt-out of local authentication and ensure customers can use only
         MSI and AAD exclusively for authentication.
        :paramtype disable_local_auth: bool
        """
        super().__init__(
            compute_location=compute_location,
            description=description,
            resource_id=resource_id,
            disable_local_auth=disable_local_auth,
            properties=properties,
            **kwargs
        )
        self.properties = properties
        self.compute_type: str = "Databricks"
        self.compute_location = compute_location
        self.provisioning_state = None
        self.description = description
        self.created_on = None
        self.modified_on = None
        self.resource_id = resource_id
        self.provisioning_errors = None
        self.is_attached_compute = None
        self.disable_local_auth = disable_local_auth


class DatabricksComputeSecretsProperties(_serialization.Model):
    """Properties of Databricks Compute Secrets.

    :ivar databricks_access_token: access token for databricks account.
    :vartype databricks_access_token: str
    """

    _attribute_map = {
        "databricks_access_token": {"key": "databricksAccessToken", "type": "str"},
    }

    def __init__(self, *, databricks_access_token: Optional[str] = None, **kwargs: Any) -> None:
        """
        :keyword databricks_access_token: access token for databricks account.
        :paramtype databricks_access_token: str
        """
        super().__init__(**kwargs)
        self.databricks_access_token = databricks_access_token


class DatabricksComputeSecrets(ComputeSecrets, DatabricksComputeSecretsProperties):
    """Secrets related to a Machine Learning compute based on Databricks.

    All required parameters must be populated in order to send to Azure.

    :ivar databricks_access_token: access token for databricks account.
    :vartype databricks_access_token: str
    :ivar compute_type: The type of compute. Required. Known values are: "AKS", "Kubernetes",
     "AmlCompute", "ComputeInstance", "DataFactory", "VirtualMachine", "HDInsight", "Databricks",
     "DataLakeAnalytics", and "SynapseSpark".
    :vartype compute_type: str or ~azure.mgmt.machinelearningservices.models.ComputeType
    """

    _validation = {
        "compute_type": {"required": True},
    }

    _attribute_map = {
        "databricks_access_token": {"key": "databricksAccessToken", "type": "str"},
        "compute_type": {"key": "computeType", "type": "str"},
    }

    def __init__(self, *, databricks_access_token: Optional[str] = None, **kwargs: Any) -> None:
        """
        :keyword databricks_access_token: access token for databricks account.
        :paramtype databricks_access_token: str
        """
        super().__init__(databricks_access_token=databricks_access_token, **kwargs)
        self.databricks_access_token = databricks_access_token
        self.compute_type: str = "Databricks"


class DatabricksProperties(_serialization.Model):
    """Properties of Databricks.

    :ivar databricks_access_token: Databricks access token.
    :vartype databricks_access_token: str
    :ivar workspace_url: Workspace Url.
    :vartype workspace_url: str
    """

    _attribute_map = {
        "databricks_access_token": {"key": "databricksAccessToken", "type": "str"},
        "workspace_url": {"key": "workspaceUrl", "type": "str"},
    }

    def __init__(
        self, *, databricks_access_token: Optional[str] = None, workspace_url: Optional[str] = None, **kwargs: Any
    ) -> None:
        """
        :keyword databricks_access_token: Databricks access token.
        :paramtype databricks_access_token: str
        :keyword workspace_url: Workspace Url.
        :paramtype workspace_url: str
        """
        super().__init__(**kwargs)
        self.databricks_access_token = databricks_access_token
        self.workspace_url = workspace_url


class DataContainer(Resource):
    """Azure Resource Manager resource envelope.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar id: Fully qualified resource ID for the resource. Ex -
     /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}.
    :vartype id: str
    :ivar name: The name of the resource.
    :vartype name: str
    :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or
     "Microsoft.Storage/storageAccounts".
    :vartype type: str
    :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy
     information.
    :vartype system_data: ~azure.mgmt.machinelearningservices.models.SystemData
    :ivar properties: [Required] Additional attributes of the entity. Required.
    :vartype properties: ~azure.mgmt.machinelearningservices.models.DataContainerProperties
    """

    _validation = {
        "id": {"readonly": True},
        "name": {"readonly": True},
        "type": {"readonly": True},
        "system_data": {"readonly": True},
        "properties": {"required": True},
    }

    _attribute_map = {
        "id": {"key": "id", "type": "str"},
        "name": {"key": "name", "type": "str"},
        "type": {"key": "type", "type": "str"},
        "system_data": {"key": "systemData", "type": "SystemData"},
        "properties": {"key": "properties", "type": "DataContainerProperties"},
    }

    def __init__(self, *, properties: "_models.DataContainerProperties", **kwargs: Any) -> None:
        """
        :keyword properties: [Required] Additional attributes of the entity. Required.
        :paramtype properties: ~azure.mgmt.machinelearningservices.models.DataContainerProperties
        """
        super().__init__(**kwargs)
        self.properties = properties


class DataContainerProperties(AssetContainer):
    """Container for data asset versions.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar description: The asset description text.
    :vartype description: str
    :ivar properties: The asset property dictionary.
    :vartype properties: dict[str, str]
    :ivar tags: Tag dictionary. Tags can be added, removed, and updated.
    :vartype tags: dict[str, str]
    :ivar is_archived: Is the asset archived?.
    :vartype is_archived: bool
    :ivar latest_version: The latest version inside this container.
    :vartype latest_version: str
    :ivar next_version: The next auto incremental version.
    :vartype next_version: str
    :ivar data_type: [Required] Specifies the type of data. Required. Known values are: "uri_file",
     "uri_folder", and "mltable".
    :vartype data_type: str or ~azure.mgmt.machinelearningservices.models.DataType
    """

    _validation = {
        "latest_version": {"readonly": True},
        "next_version": {"readonly": True},
        "data_type": {"required": True},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "properties": {"key": "properties", "type": "{str}"},
        "tags": {"key": "tags", "type": "{str}"},
        "is_archived": {"key": "isArchived", "type": "bool"},
        "latest_version": {"key": "latestVersion", "type": "str"},
        "next_version": {"key": "nextVersion", "type": "str"},
        "data_type": {"key": "dataType", "type": "str"},
    }

    def __init__(
        self,
        *,
        data_type: Union[str, "_models.DataType"],
        description: Optional[str] = None,
        properties: Optional[Dict[str, str]] = None,
        tags: Optional[Dict[str, str]] = None,
        is_archived: bool = False,
        **kwargs: Any
    ) -> None:
        """
        :keyword description: The asset description text.
        :paramtype description: str
        :keyword properties: The asset property dictionary.
        :paramtype properties: dict[str, str]
        :keyword tags: Tag dictionary. Tags can be added, removed, and updated.
        :paramtype tags: dict[str, str]
        :keyword is_archived: Is the asset archived?.
        :paramtype is_archived: bool
        :keyword data_type: [Required] Specifies the type of data. Required. Known values are:
         "uri_file", "uri_folder", and "mltable".
        :paramtype data_type: str or ~azure.mgmt.machinelearningservices.models.DataType
        """
        super().__init__(description=description, properties=properties, tags=tags, is_archived=is_archived, **kwargs)
        self.data_type = data_type


class DataContainerResourceArmPaginatedResult(_serialization.Model):
    """A paginated list of DataContainer entities.

    :ivar next_link: The link to the next page of DataContainer objects. If null, there are no
     additional pages.
    :vartype next_link: str
    :ivar value: An array of objects of type DataContainer.
    :vartype value: list[~azure.mgmt.machinelearningservices.models.DataContainer]
    """

    _attribute_map = {
        "next_link": {"key": "nextLink", "type": "str"},
        "value": {"key": "value", "type": "[DataContainer]"},
    }

    def __init__(
        self, *, next_link: Optional[str] = None, value: Optional[List["_models.DataContainer"]] = None, **kwargs: Any
    ) -> None:
        """
        :keyword next_link: The link to the next page of DataContainer objects. If null, there are no
         additional pages.
        :paramtype next_link: str
        :keyword value: An array of objects of type DataContainer.
        :paramtype value: list[~azure.mgmt.machinelearningservices.models.DataContainer]
        """
        super().__init__(**kwargs)
        self.next_link = next_link
        self.value = value


class DataFactory(Compute):
    """A DataFactory compute.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar compute_type: The type of compute. Required. Known values are: "AKS", "Kubernetes",
     "AmlCompute", "ComputeInstance", "DataFactory", "VirtualMachine", "HDInsight", "Databricks",
     "DataLakeAnalytics", and "SynapseSpark".
    :vartype compute_type: str or ~azure.mgmt.machinelearningservices.models.ComputeType
    :ivar compute_location: Location for the underlying compute.
    :vartype compute_location: str
    :ivar provisioning_state: The provision state of the cluster. Valid values are Unknown,
     Updating, Provisioning, Succeeded, and Failed. Known values are: "Unknown", "Updating",
     "Creating", "Deleting", "Succeeded", "Failed", and "Canceled".
    :vartype provisioning_state: str or
     ~azure.mgmt.machinelearningservices.models.ProvisioningState
    :ivar description: The description of the Machine Learning compute.
    :vartype description: str
    :ivar created_on: The time at which the compute was created.
    :vartype created_on: ~datetime.datetime
    :ivar modified_on: The time at which the compute was last modified.
    :vartype modified_on: ~datetime.datetime
    :ivar resource_id: ARM resource id of the underlying compute.
    :vartype resource_id: str
    :ivar provisioning_errors: Errors during provisioning.
    :vartype provisioning_errors: list[~azure.mgmt.machinelearningservices.models.ErrorResponse]
    :ivar is_attached_compute: Indicating whether the compute was provisioned by user and brought
     from outside if true, or machine learning service provisioned it if false.
    :vartype is_attached_compute: bool
    :ivar disable_local_auth: Opt-out of local authentication and ensure customers can use only MSI
     and AAD exclusively for authentication.
    :vartype disable_local_auth: bool
    """

    _validation = {
        "compute_type": {"required": True},
        "provisioning_state": {"readonly": True},
        "created_on": {"readonly": True},
        "modified_on": {"readonly": True},
        "provisioning_errors": {"readonly": True},
        "is_attached_compute": {"readonly": True},
    }

    _attribute_map = {
        "compute_type": {"key": "computeType", "type": "str"},
        "compute_location": {"key": "computeLocation", "type": "str"},
        "provisioning_state": {"key": "provisioningState", "type": "str"},
        "description": {"key": "description", "type": "str"},
        "created_on": {"key": "createdOn", "type": "iso-8601"},
        "modified_on": {"key": "modifiedOn", "type": "iso-8601"},
        "resource_id": {"key": "resourceId", "type": "str"},
        "provisioning_errors": {"key": "provisioningErrors", "type": "[ErrorResponse]"},
        "is_attached_compute": {"key": "isAttachedCompute", "type": "bool"},
        "disable_local_auth": {"key": "disableLocalAuth", "type": "bool"},
    }

    def __init__(
        self,
        *,
        compute_location: Optional[str] = None,
        description: Optional[str] = None,
        resource_id: Optional[str] = None,
        disable_local_auth: Optional[bool] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword compute_location: Location for the underlying compute.
        :paramtype compute_location: str
        :keyword description: The description of the Machine Learning compute.
        :paramtype description: str
        :keyword resource_id: ARM resource id of the underlying compute.
        :paramtype resource_id: str
        :keyword disable_local_auth: Opt-out of local authentication and ensure customers can use only
         MSI and AAD exclusively for authentication.
        :paramtype disable_local_auth: bool
        """
        super().__init__(
            compute_location=compute_location,
            description=description,
            resource_id=resource_id,
            disable_local_auth=disable_local_auth,
            **kwargs
        )
        self.compute_type: str = "DataFactory"


class DataLakeAnalyticsSchema(_serialization.Model):
    """DataLakeAnalyticsSchema.

    :ivar properties:
    :vartype properties:
     ~azure.mgmt.machinelearningservices.models.DataLakeAnalyticsSchemaProperties
    """

    _attribute_map = {
        "properties": {"key": "properties", "type": "DataLakeAnalyticsSchemaProperties"},
    }

    def __init__(
        self, *, properties: Optional["_models.DataLakeAnalyticsSchemaProperties"] = None, **kwargs: Any
    ) -> None:
        """
        :keyword properties:
        :paramtype properties:
         ~azure.mgmt.machinelearningservices.models.DataLakeAnalyticsSchemaProperties
        """
        super().__init__(**kwargs)
        self.properties = properties


class DataLakeAnalytics(Compute, DataLakeAnalyticsSchema):  # pylint: disable=too-many-instance-attributes
    """A DataLakeAnalytics compute.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar properties:
    :vartype properties:
     ~azure.mgmt.machinelearningservices.models.DataLakeAnalyticsSchemaProperties
    :ivar compute_type: The type of compute. Required. Known values are: "AKS", "Kubernetes",
     "AmlCompute", "ComputeInstance", "DataFactory", "VirtualMachine", "HDInsight", "Databricks",
     "DataLakeAnalytics", and "SynapseSpark".
    :vartype compute_type: str or ~azure.mgmt.machinelearningservices.models.ComputeType
    :ivar compute_location: Location for the underlying compute.
    :vartype compute_location: str
    :ivar provisioning_state: The provision state of the cluster. Valid values are Unknown,
     Updating, Provisioning, Succeeded, and Failed. Known values are: "Unknown", "Updating",
     "Creating", "Deleting", "Succeeded", "Failed", and "Canceled".
    :vartype provisioning_state: str or
     ~azure.mgmt.machinelearningservices.models.ProvisioningState
    :ivar description: The description of the Machine Learning compute.
    :vartype description: str
    :ivar created_on: The time at which the compute was created.
    :vartype created_on: ~datetime.datetime
    :ivar modified_on: The time at which the compute was last modified.
    :vartype modified_on: ~datetime.datetime
    :ivar resource_id: ARM resource id of the underlying compute.
    :vartype resource_id: str
    :ivar provisioning_errors: Errors during provisioning.
    :vartype provisioning_errors: list[~azure.mgmt.machinelearningservices.models.ErrorResponse]
    :ivar is_attached_compute: Indicating whether the compute was provisioned by user and brought
     from outside if true, or machine learning service provisioned it if false.
    :vartype is_attached_compute: bool
    :ivar disable_local_auth: Opt-out of local authentication and ensure customers can use only MSI
     and AAD exclusively for authentication.
    :vartype disable_local_auth: bool
    """

    _validation = {
        "compute_type": {"required": True},
        "provisioning_state": {"readonly": True},
        "created_on": {"readonly": True},
        "modified_on": {"readonly": True},
        "provisioning_errors": {"readonly": True},
        "is_attached_compute": {"readonly": True},
    }

    _attribute_map = {
        "properties": {"key": "properties", "type": "DataLakeAnalyticsSchemaProperties"},
        "compute_type": {"key": "computeType", "type": "str"},
        "compute_location": {"key": "computeLocation", "type": "str"},
        "provisioning_state": {"key": "provisioningState", "type": "str"},
        "description": {"key": "description", "type": "str"},
        "created_on": {"key": "createdOn", "type": "iso-8601"},
        "modified_on": {"key": "modifiedOn", "type": "iso-8601"},
        "resource_id": {"key": "resourceId", "type": "str"},
        "provisioning_errors": {"key": "provisioningErrors", "type": "[ErrorResponse]"},
        "is_attached_compute": {"key": "isAttachedCompute", "type": "bool"},
        "disable_local_auth": {"key": "disableLocalAuth", "type": "bool"},
    }

    def __init__(
        self,
        *,
        properties: Optional["_models.DataLakeAnalyticsSchemaProperties"] = None,
        compute_location: Optional[str] = None,
        description: Optional[str] = None,
        resource_id: Optional[str] = None,
        disable_local_auth: Optional[bool] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword properties:
        :paramtype properties:
         ~azure.mgmt.machinelearningservices.models.DataLakeAnalyticsSchemaProperties
        :keyword compute_location: Location for the underlying compute.
        :paramtype compute_location: str
        :keyword description: The description of the Machine Learning compute.
        :paramtype description: str
        :keyword resource_id: ARM resource id of the underlying compute.
        :paramtype resource_id: str
        :keyword disable_local_auth: Opt-out of local authentication and ensure customers can use only
         MSI and AAD exclusively for authentication.
        :paramtype disable_local_auth: bool
        """
        super().__init__(
            compute_location=compute_location,
            description=description,
            resource_id=resource_id,
            disable_local_auth=disable_local_auth,
            properties=properties,
            **kwargs
        )
        self.properties = properties
        self.compute_type: str = "DataLakeAnalytics"
        self.compute_location = compute_location
        self.provisioning_state = None
        self.description = description
        self.created_on = None
        self.modified_on = None
        self.resource_id = resource_id
        self.provisioning_errors = None
        self.is_attached_compute = None
        self.disable_local_auth = disable_local_auth


class DataLakeAnalyticsSchemaProperties(_serialization.Model):
    """DataLakeAnalyticsSchemaProperties.

    :ivar data_lake_store_account_name: DataLake Store Account Name.
    :vartype data_lake_store_account_name: str
    """

    _attribute_map = {
        "data_lake_store_account_name": {"key": "dataLakeStoreAccountName", "type": "str"},
    }

    def __init__(self, *, data_lake_store_account_name: Optional[str] = None, **kwargs: Any) -> None:
        """
        :keyword data_lake_store_account_name: DataLake Store Account Name.
        :paramtype data_lake_store_account_name: str
        """
        super().__init__(**kwargs)
        self.data_lake_store_account_name = data_lake_store_account_name


class DataPathAssetReference(AssetReferenceBase):
    """Reference to an asset via its path in a datastore.

    All required parameters must be populated in order to send to Azure.

    :ivar reference_type: [Required] Specifies the type of asset reference. Required. Known values
     are: "Id", "DataPath", and "OutputPath".
    :vartype reference_type: str or ~azure.mgmt.machinelearningservices.models.ReferenceType
    :ivar datastore_id: ARM resource ID of the datastore where the asset is located.
    :vartype datastore_id: str
    :ivar path: The path of the file/directory in the datastore.
    :vartype path: str
    """

    _validation = {
        "reference_type": {"required": True},
    }

    _attribute_map = {
        "reference_type": {"key": "referenceType", "type": "str"},
        "datastore_id": {"key": "datastoreId", "type": "str"},
        "path": {"key": "path", "type": "str"},
    }

    def __init__(self, *, datastore_id: Optional[str] = None, path: Optional[str] = None, **kwargs: Any) -> None:
        """
        :keyword datastore_id: ARM resource ID of the datastore where the asset is located.
        :paramtype datastore_id: str
        :keyword path: The path of the file/directory in the datastore.
        :paramtype path: str
        """
        super().__init__(**kwargs)
        self.reference_type: str = "DataPath"
        self.datastore_id = datastore_id
        self.path = path


class Datastore(Resource):
    """Azure Resource Manager resource envelope.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar id: Fully qualified resource ID for the resource. Ex -
     /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}.
    :vartype id: str
    :ivar name: The name of the resource.
    :vartype name: str
    :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or
     "Microsoft.Storage/storageAccounts".
    :vartype type: str
    :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy
     information.
    :vartype system_data: ~azure.mgmt.machinelearningservices.models.SystemData
    :ivar properties: [Required] Additional attributes of the entity. Required.
    :vartype properties: ~azure.mgmt.machinelearningservices.models.DatastoreProperties
    """

    _validation = {
        "id": {"readonly": True},
        "name": {"readonly": True},
        "type": {"readonly": True},
        "system_data": {"readonly": True},
        "properties": {"required": True},
    }

    _attribute_map = {
        "id": {"key": "id", "type": "str"},
        "name": {"key": "name", "type": "str"},
        "type": {"key": "type", "type": "str"},
        "system_data": {"key": "systemData", "type": "SystemData"},
        "properties": {"key": "properties", "type": "DatastoreProperties"},
    }

    def __init__(self, *, properties: "_models.DatastoreProperties", **kwargs: Any) -> None:
        """
        :keyword properties: [Required] Additional attributes of the entity. Required.
        :paramtype properties: ~azure.mgmt.machinelearningservices.models.DatastoreProperties
        """
        super().__init__(**kwargs)
        self.properties = properties


class DatastoreResourceArmPaginatedResult(_serialization.Model):
    """A paginated list of Datastore entities.

    :ivar next_link: The link to the next page of Datastore objects. If null, there are no
     additional pages.
    :vartype next_link: str
    :ivar value: An array of objects of type Datastore.
    :vartype value: list[~azure.mgmt.machinelearningservices.models.Datastore]
    """

    _attribute_map = {
        "next_link": {"key": "nextLink", "type": "str"},
        "value": {"key": "value", "type": "[Datastore]"},
    }

    def __init__(
        self, *, next_link: Optional[str] = None, value: Optional[List["_models.Datastore"]] = None, **kwargs: Any
    ) -> None:
        """
        :keyword next_link: The link to the next page of Datastore objects. If null, there are no
         additional pages.
        :paramtype next_link: str
        :keyword value: An array of objects of type Datastore.
        :paramtype value: list[~azure.mgmt.machinelearningservices.models.Datastore]
        """
        super().__init__(**kwargs)
        self.next_link = next_link
        self.value = value


class DataVersionBase(Resource):
    """Azure Resource Manager resource envelope.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar id: Fully qualified resource ID for the resource. Ex -
     /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}.
    :vartype id: str
    :ivar name: The name of the resource.
    :vartype name: str
    :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or
     "Microsoft.Storage/storageAccounts".
    :vartype type: str
    :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy
     information.
    :vartype system_data: ~azure.mgmt.machinelearningservices.models.SystemData
    :ivar properties: [Required] Additional attributes of the entity. Required.
    :vartype properties: ~azure.mgmt.machinelearningservices.models.DataVersionBaseProperties
    """

    _validation = {
        "id": {"readonly": True},
        "name": {"readonly": True},
        "type": {"readonly": True},
        "system_data": {"readonly": True},
        "properties": {"required": True},
    }

    _attribute_map = {
        "id": {"key": "id", "type": "str"},
        "name": {"key": "name", "type": "str"},
        "type": {"key": "type", "type": "str"},
        "system_data": {"key": "systemData", "type": "SystemData"},
        "properties": {"key": "properties", "type": "DataVersionBaseProperties"},
    }

    def __init__(self, *, properties: "_models.DataVersionBaseProperties", **kwargs: Any) -> None:
        """
        :keyword properties: [Required] Additional attributes of the entity. Required.
        :paramtype properties: ~azure.mgmt.machinelearningservices.models.DataVersionBaseProperties
        """
        super().__init__(**kwargs)
        self.properties = properties


class DataVersionBaseProperties(AssetBase):
    """Data version base definition.

    You probably want to use the sub-classes and not this class directly. Known sub-classes are:
    MLTableData, UriFileDataVersion, UriFolderDataVersion

    All required parameters must be populated in order to send to Azure.

    :ivar description: The asset description text.
    :vartype description: str
    :ivar properties: The asset property dictionary.
    :vartype properties: dict[str, str]
    :ivar tags: Tag dictionary. Tags can be added, removed, and updated.
    :vartype tags: dict[str, str]
    :ivar is_anonymous: If the name version are system generated (anonymous registration).
    :vartype is_anonymous: bool
    :ivar is_archived: Is the asset archived?.
    :vartype is_archived: bool
    :ivar data_type: [Required] Specifies the type of data. Required. Known values are: "uri_file",
     "uri_folder", and "mltable".
    :vartype data_type: str or ~azure.mgmt.machinelearningservices.models.DataType
    :ivar data_uri: [Required] Uri of the data. Example:
     https://go.microsoft.com/fwlink/?linkid=2202330. Required.
    :vartype data_uri: str
    """

    _validation = {
        "data_type": {"required": True},
        "data_uri": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "properties": {"key": "properties", "type": "{str}"},
        "tags": {"key": "tags", "type": "{str}"},
        "is_anonymous": {"key": "isAnonymous", "type": "bool"},
        "is_archived": {"key": "isArchived", "type": "bool"},
        "data_type": {"key": "dataType", "type": "str"},
        "data_uri": {"key": "dataUri", "type": "str"},
    }

    _subtype_map = {
        "data_type": {"mltable": "MLTableData", "uri_file": "UriFileDataVersion", "uri_folder": "UriFolderDataVersion"}
    }

    def __init__(
        self,
        *,
        data_uri: str,
        description: Optional[str] = None,
        properties: Optional[Dict[str, str]] = None,
        tags: Optional[Dict[str, str]] = None,
        is_anonymous: bool = False,
        is_archived: bool = False,
        **kwargs: Any
    ) -> None:
        """
        :keyword description: The asset description text.
        :paramtype description: str
        :keyword properties: The asset property dictionary.
        :paramtype properties: dict[str, str]
        :keyword tags: Tag dictionary. Tags can be added, removed, and updated.
        :paramtype tags: dict[str, str]
        :keyword is_anonymous: If the name version are system generated (anonymous registration).
        :paramtype is_anonymous: bool
        :keyword is_archived: Is the asset archived?.
        :paramtype is_archived: bool
        :keyword data_uri: [Required] Uri of the data. Example:
         https://go.microsoft.com/fwlink/?linkid=2202330. Required.
        :paramtype data_uri: str
        """
        super().__init__(
            description=description,
            properties=properties,
            tags=tags,
            is_anonymous=is_anonymous,
            is_archived=is_archived,
            **kwargs
        )
        self.data_type: Optional[str] = None
        self.data_uri = data_uri


class DataVersionBaseResourceArmPaginatedResult(_serialization.Model):
    """A paginated list of DataVersionBase entities.

    :ivar next_link: The link to the next page of DataVersionBase objects. If null, there are no
     additional pages.
    :vartype next_link: str
    :ivar value: An array of objects of type DataVersionBase.
    :vartype value: list[~azure.mgmt.machinelearningservices.models.DataVersionBase]
    """

    _attribute_map = {
        "next_link": {"key": "nextLink", "type": "str"},
        "value": {"key": "value", "type": "[DataVersionBase]"},
    }

    def __init__(
        self, *, next_link: Optional[str] = None, value: Optional[List["_models.DataVersionBase"]] = None, **kwargs: Any
    ) -> None:
        """
        :keyword next_link: The link to the next page of DataVersionBase objects. If null, there are no
         additional pages.
        :paramtype next_link: str
        :keyword value: An array of objects of type DataVersionBase.
        :paramtype value: list[~azure.mgmt.machinelearningservices.models.DataVersionBase]
        """
        super().__init__(**kwargs)
        self.next_link = next_link
        self.value = value


class OnlineScaleSettings(_serialization.Model):
    """Online deployment scaling configuration.

    You probably want to use the sub-classes and not this class directly. Known sub-classes are:
    DefaultScaleSettings, TargetUtilizationScaleSettings

    All required parameters must be populated in order to send to Azure.

    :ivar scale_type: [Required] Type of deployment scaling algorithm. Required. Known values are:
     "Default" and "TargetUtilization".
    :vartype scale_type: str or ~azure.mgmt.machinelearningservices.models.ScaleType
    """

    _validation = {
        "scale_type": {"required": True},
    }

    _attribute_map = {
        "scale_type": {"key": "scaleType", "type": "str"},
    }

    _subtype_map = {
        "scale_type": {"Default": "DefaultScaleSettings", "TargetUtilization": "TargetUtilizationScaleSettings"}
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.scale_type: Optional[str] = None


class DefaultScaleSettings(OnlineScaleSettings):
    """DefaultScaleSettings.

    All required parameters must be populated in order to send to Azure.

    :ivar scale_type: [Required] Type of deployment scaling algorithm. Required. Known values are:
     "Default" and "TargetUtilization".
    :vartype scale_type: str or ~azure.mgmt.machinelearningservices.models.ScaleType
    """

    _validation = {
        "scale_type": {"required": True},
    }

    _attribute_map = {
        "scale_type": {"key": "scaleType", "type": "str"},
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.scale_type: str = "Default"


class DeploymentLogs(_serialization.Model):
    """DeploymentLogs.

    :ivar content: The retrieved online deployment logs.
    :vartype content: str
    """

    _attribute_map = {
        "content": {"key": "content", "type": "str"},
    }

    def __init__(self, *, content: Optional[str] = None, **kwargs: Any) -> None:
        """
        :keyword content: The retrieved online deployment logs.
        :paramtype content: str
        """
        super().__init__(**kwargs)
        self.content = content


class DeploymentLogsRequest(_serialization.Model):
    """DeploymentLogsRequest.

    :ivar container_type: The type of container to retrieve logs from. Known values are:
     "StorageInitializer" and "InferenceServer".
    :vartype container_type: str or ~azure.mgmt.machinelearningservices.models.ContainerType
    :ivar tail: The maximum number of lines to tail.
    :vartype tail: int
    """

    _attribute_map = {
        "container_type": {"key": "containerType", "type": "str"},
        "tail": {"key": "tail", "type": "int"},
    }

    def __init__(
        self,
        *,
        container_type: Optional[Union[str, "_models.ContainerType"]] = None,
        tail: Optional[int] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword container_type: The type of container to retrieve logs from. Known values are:
         "StorageInitializer" and "InferenceServer".
        :paramtype container_type: str or ~azure.mgmt.machinelearningservices.models.ContainerType
        :keyword tail: The maximum number of lines to tail.
        :paramtype tail: int
        """
        super().__init__(**kwargs)
        self.container_type = container_type
        self.tail = tail


class ResourceConfiguration(_serialization.Model):
    """ResourceConfiguration.

    :ivar instance_count: Optional number of instances or nodes used by the compute target.
    :vartype instance_count: int
    :ivar instance_type: Optional type of VM used as supported by the compute target.
    :vartype instance_type: str
    :ivar properties: Additional properties bag.
    :vartype properties: dict[str, JSON]
    """

    _attribute_map = {
        "instance_count": {"key": "instanceCount", "type": "int"},
        "instance_type": {"key": "instanceType", "type": "str"},
        "properties": {"key": "properties", "type": "{object}"},
    }

    def __init__(
        self,
        *,
        instance_count: int = 1,
        instance_type: Optional[str] = None,
        properties: Optional[Dict[str, JSON]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword instance_count: Optional number of instances or nodes used by the compute target.
        :paramtype instance_count: int
        :keyword instance_type: Optional type of VM used as supported by the compute target.
        :paramtype instance_type: str
        :keyword properties: Additional properties bag.
        :paramtype properties: dict[str, JSON]
        """
        super().__init__(**kwargs)
        self.instance_count = instance_count
        self.instance_type = instance_type
        self.properties = properties


class DeploymentResourceConfiguration(ResourceConfiguration):
    """DeploymentResourceConfiguration.

    :ivar instance_count: Optional number of instances or nodes used by the compute target.
    :vartype instance_count: int
    :ivar instance_type: Optional type of VM used as supported by the compute target.
    :vartype instance_type: str
    :ivar properties: Additional properties bag.
    :vartype properties: dict[str, JSON]
    """

    _attribute_map = {
        "instance_count": {"key": "instanceCount", "type": "int"},
        "instance_type": {"key": "instanceType", "type": "str"},
        "properties": {"key": "properties", "type": "{object}"},
    }

    def __init__(
        self,
        *,
        instance_count: int = 1,
        instance_type: Optional[str] = None,
        properties: Optional[Dict[str, JSON]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword instance_count: Optional number of instances or nodes used by the compute target.
        :paramtype instance_count: int
        :keyword instance_type: Optional type of VM used as supported by the compute target.
        :paramtype instance_type: str
        :keyword properties: Additional properties bag.
        :paramtype properties: dict[str, JSON]
        """
        super().__init__(instance_count=instance_count, instance_type=instance_type, properties=properties, **kwargs)


class DiagnoseRequestProperties(_serialization.Model):
    """DiagnoseRequestProperties.

    :ivar udr: Setting for diagnosing user defined routing.
    :vartype udr: dict[str, JSON]
    :ivar nsg: Setting for diagnosing network security group.
    :vartype nsg: dict[str, JSON]
    :ivar resource_lock: Setting for diagnosing resource lock.
    :vartype resource_lock: dict[str, JSON]
    :ivar dns_resolution: Setting for diagnosing dns resolution.
    :vartype dns_resolution: dict[str, JSON]
    :ivar storage_account: Setting for diagnosing dependent storage account.
    :vartype storage_account: dict[str, JSON]
    :ivar key_vault: Setting for diagnosing dependent key vault.
    :vartype key_vault: dict[str, JSON]
    :ivar container_registry: Setting for diagnosing dependent container registry.
    :vartype container_registry: dict[str, JSON]
    :ivar application_insights: Setting for diagnosing dependent application insights.
    :vartype application_insights: dict[str, JSON]
    :ivar others: Setting for diagnosing unclassified category of problems.
    :vartype others: dict[str, JSON]
    """

    _attribute_map = {
        "udr": {"key": "udr", "type": "{object}"},
        "nsg": {"key": "nsg", "type": "{object}"},
        "resource_lock": {"key": "resourceLock", "type": "{object}"},
        "dns_resolution": {"key": "dnsResolution", "type": "{object}"},
        "storage_account": {"key": "storageAccount", "type": "{object}"},
        "key_vault": {"key": "keyVault", "type": "{object}"},
        "container_registry": {"key": "containerRegistry", "type": "{object}"},
        "application_insights": {"key": "applicationInsights", "type": "{object}"},
        "others": {"key": "others", "type": "{object}"},
    }

    def __init__(
        self,
        *,
        udr: Optional[Dict[str, JSON]] = None,
        nsg: Optional[Dict[str, JSON]] = None,
        resource_lock: Optional[Dict[str, JSON]] = None,
        dns_resolution: Optional[Dict[str, JSON]] = None,
        storage_account: Optional[Dict[str, JSON]] = None,
        key_vault: Optional[Dict[str, JSON]] = None,
        container_registry: Optional[Dict[str, JSON]] = None,
        application_insights: Optional[Dict[str, JSON]] = None,
        others: Optional[Dict[str, JSON]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword udr: Setting for diagnosing user defined routing.
        :paramtype udr: dict[str, JSON]
        :keyword nsg: Setting for diagnosing network security group.
        :paramtype nsg: dict[str, JSON]
        :keyword resource_lock: Setting for diagnosing resource lock.
        :paramtype resource_lock: dict[str, JSON]
        :keyword dns_resolution: Setting for diagnosing dns resolution.
        :paramtype dns_resolution: dict[str, JSON]
        :keyword storage_account: Setting for diagnosing dependent storage account.
        :paramtype storage_account: dict[str, JSON]
        :keyword key_vault: Setting for diagnosing dependent key vault.
        :paramtype key_vault: dict[str, JSON]
        :keyword container_registry: Setting for diagnosing dependent container registry.
        :paramtype container_registry: dict[str, JSON]
        :keyword application_insights: Setting for diagnosing dependent application insights.
        :paramtype application_insights: dict[str, JSON]
        :keyword others: Setting for diagnosing unclassified category of problems.
        :paramtype others: dict[str, JSON]
        """
        super().__init__(**kwargs)
        self.udr = udr
        self.nsg = nsg
        self.resource_lock = resource_lock
        self.dns_resolution = dns_resolution
        self.storage_account = storage_account
        self.key_vault = key_vault
        self.container_registry = container_registry
        self.application_insights = application_insights
        self.others = others


class DiagnoseResponseResult(_serialization.Model):
    """DiagnoseResponseResult.

    :ivar value:
    :vartype value: ~azure.mgmt.machinelearningservices.models.DiagnoseResponseResultValue
    """

    _attribute_map = {
        "value": {"key": "value", "type": "DiagnoseResponseResultValue"},
    }

    def __init__(self, *, value: Optional["_models.DiagnoseResponseResultValue"] = None, **kwargs: Any) -> None:
        """
        :keyword value:
        :paramtype value: ~azure.mgmt.machinelearningservices.models.DiagnoseResponseResultValue
        """
        super().__init__(**kwargs)
        self.value = value


class DiagnoseResponseResultValue(_serialization.Model):
    """DiagnoseResponseResultValue.

    :ivar user_defined_route_results:
    :vartype user_defined_route_results:
     list[~azure.mgmt.machinelearningservices.models.DiagnoseResult]
    :ivar network_security_rule_results:
    :vartype network_security_rule_results:
     list[~azure.mgmt.machinelearningservices.models.DiagnoseResult]
    :ivar resource_lock_results:
    :vartype resource_lock_results: list[~azure.mgmt.machinelearningservices.models.DiagnoseResult]
    :ivar dns_resolution_results:
    :vartype dns_resolution_results:
     list[~azure.mgmt.machinelearningservices.models.DiagnoseResult]
    :ivar storage_account_results:
    :vartype storage_account_results:
     list[~azure.mgmt.machinelearningservices.models.DiagnoseResult]
    :ivar key_vault_results:
    :vartype key_vault_results: list[~azure.mgmt.machinelearningservices.models.DiagnoseResult]
    :ivar container_registry_results:
    :vartype container_registry_results:
     list[~azure.mgmt.machinelearningservices.models.DiagnoseResult]
    :ivar application_insights_results:
    :vartype application_insights_results:
     list[~azure.mgmt.machinelearningservices.models.DiagnoseResult]
    :ivar other_results:
    :vartype other_results: list[~azure.mgmt.machinelearningservices.models.DiagnoseResult]
    """

    _attribute_map = {
        "user_defined_route_results": {"key": "userDefinedRouteResults", "type": "[DiagnoseResult]"},
        "network_security_rule_results": {"key": "networkSecurityRuleResults", "type": "[DiagnoseResult]"},
        "resource_lock_results": {"key": "resourceLockResults", "type": "[DiagnoseResult]"},
        "dns_resolution_results": {"key": "dnsResolutionResults", "type": "[DiagnoseResult]"},
        "storage_account_results": {"key": "storageAccountResults", "type": "[DiagnoseResult]"},
        "key_vault_results": {"key": "keyVaultResults", "type": "[DiagnoseResult]"},
        "container_registry_results": {"key": "containerRegistryResults", "type": "[DiagnoseResult]"},
        "application_insights_results": {"key": "applicationInsightsResults", "type": "[DiagnoseResult]"},
        "other_results": {"key": "otherResults", "type": "[DiagnoseResult]"},
    }

    def __init__(
        self,
        *,
        user_defined_route_results: Optional[List["_models.DiagnoseResult"]] = None,
        network_security_rule_results: Optional[List["_models.DiagnoseResult"]] = None,
        resource_lock_results: Optional[List["_models.DiagnoseResult"]] = None,
        dns_resolution_results: Optional[List["_models.DiagnoseResult"]] = None,
        storage_account_results: Optional[List["_models.DiagnoseResult"]] = None,
        key_vault_results: Optional[List["_models.DiagnoseResult"]] = None,
        container_registry_results: Optional[List["_models.DiagnoseResult"]] = None,
        application_insights_results: Optional[List["_models.DiagnoseResult"]] = None,
        other_results: Optional[List["_models.DiagnoseResult"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword user_defined_route_results:
        :paramtype user_defined_route_results:
         list[~azure.mgmt.machinelearningservices.models.DiagnoseResult]
        :keyword network_security_rule_results:
        :paramtype network_security_rule_results:
         list[~azure.mgmt.machinelearningservices.models.DiagnoseResult]
        :keyword resource_lock_results:
        :paramtype resource_lock_results:
         list[~azure.mgmt.machinelearningservices.models.DiagnoseResult]
        :keyword dns_resolution_results:
        :paramtype dns_resolution_results:
         list[~azure.mgmt.machinelearningservices.models.DiagnoseResult]
        :keyword storage_account_results:
        :paramtype storage_account_results:
         list[~azure.mgmt.machinelearningservices.models.DiagnoseResult]
        :keyword key_vault_results:
        :paramtype key_vault_results: list[~azure.mgmt.machinelearningservices.models.DiagnoseResult]
        :keyword container_registry_results:
        :paramtype container_registry_results:
         list[~azure.mgmt.machinelearningservices.models.DiagnoseResult]
        :keyword application_insights_results:
        :paramtype application_insights_results:
         list[~azure.mgmt.machinelearningservices.models.DiagnoseResult]
        :keyword other_results:
        :paramtype other_results: list[~azure.mgmt.machinelearningservices.models.DiagnoseResult]
        """
        super().__init__(**kwargs)
        self.user_defined_route_results = user_defined_route_results
        self.network_security_rule_results = network_security_rule_results
        self.resource_lock_results = resource_lock_results
        self.dns_resolution_results = dns_resolution_results
        self.storage_account_results = storage_account_results
        self.key_vault_results = key_vault_results
        self.container_registry_results = container_registry_results
        self.application_insights_results = application_insights_results
        self.other_results = other_results


class DiagnoseResult(_serialization.Model):
    """Result of Diagnose.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar code: Code for workspace setup error.
    :vartype code: str
    :ivar level: Level of workspace setup error. Known values are: "Warning", "Error", and
     "Information".
    :vartype level: str or ~azure.mgmt.machinelearningservices.models.DiagnoseResultLevel
    :ivar message: Message of workspace setup error.
    :vartype message: str
    """

    _validation = {
        "code": {"readonly": True},
        "level": {"readonly": True},
        "message": {"readonly": True},
    }

    _attribute_map = {
        "code": {"key": "code", "type": "str"},
        "level": {"key": "level", "type": "str"},
        "message": {"key": "message", "type": "str"},
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.code = None
        self.level = None
        self.message = None


class DiagnoseWorkspaceParameters(_serialization.Model):
    """Parameters to diagnose a workspace.

    :ivar value: Value of Parameters.
    :vartype value: ~azure.mgmt.machinelearningservices.models.DiagnoseRequestProperties
    """

    _attribute_map = {
        "value": {"key": "value", "type": "DiagnoseRequestProperties"},
    }

    def __init__(self, *, value: Optional["_models.DiagnoseRequestProperties"] = None, **kwargs: Any) -> None:
        """
        :keyword value: Value of Parameters.
        :paramtype value: ~azure.mgmt.machinelearningservices.models.DiagnoseRequestProperties
        """
        super().__init__(**kwargs)
        self.value = value


class DistributionConfiguration(_serialization.Model):
    """Base definition for job distribution configuration.

    You probably want to use the sub-classes and not this class directly. Known sub-classes are:
    Mpi, PyTorch, TensorFlow

    All required parameters must be populated in order to send to Azure.

    :ivar distribution_type: [Required] Specifies the type of distribution framework. Required.
     Known values are: "PyTorch", "TensorFlow", and "Mpi".
    :vartype distribution_type: str or ~azure.mgmt.machinelearningservices.models.DistributionType
    """

    _validation = {
        "distribution_type": {"required": True},
    }

    _attribute_map = {
        "distribution_type": {"key": "distributionType", "type": "str"},
    }

    _subtype_map = {"distribution_type": {"Mpi": "Mpi", "PyTorch": "PyTorch", "TensorFlow": "TensorFlow"}}

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.distribution_type: Optional[str] = None


class Docker(_serialization.Model):
    """Docker container configuration.

    :ivar additional_properties: Unmatched properties from the message are deserialized to this
     collection.
    :vartype additional_properties: dict[str, any]
    :ivar privileged: Indicate whether container shall run in privileged or non-privileged mode.
    :vartype privileged: bool
    """

    _attribute_map = {
        "additional_properties": {"key": "", "type": "{object}"},
        "privileged": {"key": "privileged", "type": "bool"},
    }

    def __init__(
        self,
        *,
        additional_properties: Optional[Dict[str, Any]] = None,
        privileged: Optional[bool] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword additional_properties: Unmatched properties from the message are deserialized to this
         collection.
        :paramtype additional_properties: dict[str, any]
        :keyword privileged: Indicate whether container shall run in privileged or non-privileged mode.
        :paramtype privileged: bool
        """
        super().__init__(**kwargs)
        self.additional_properties = additional_properties
        self.privileged = privileged


class EncryptionKeyVaultProperties(_serialization.Model):
    """EncryptionKeyVaultProperties.

    All required parameters must be populated in order to send to Azure.

    :ivar key_vault_arm_id: The ArmId of the keyVault where the customer owned encryption key is
     present. Required.
    :vartype key_vault_arm_id: str
    :ivar key_identifier: Key vault uri to access the encryption key. Required.
    :vartype key_identifier: str
    :ivar identity_client_id: For future use - The client id of the identity which will be used to
     access key vault.
    :vartype identity_client_id: str
    """

    _validation = {
        "key_vault_arm_id": {"required": True},
        "key_identifier": {"required": True},
    }

    _attribute_map = {
        "key_vault_arm_id": {"key": "keyVaultArmId", "type": "str"},
        "key_identifier": {"key": "keyIdentifier", "type": "str"},
        "identity_client_id": {"key": "identityClientId", "type": "str"},
    }

    def __init__(
        self, *, key_vault_arm_id: str, key_identifier: str, identity_client_id: Optional[str] = None, **kwargs: Any
    ) -> None:
        """
        :keyword key_vault_arm_id: The ArmId of the keyVault where the customer owned encryption key is
         present. Required.
        :paramtype key_vault_arm_id: str
        :keyword key_identifier: Key vault uri to access the encryption key. Required.
        :paramtype key_identifier: str
        :keyword identity_client_id: For future use - The client id of the identity which will be used
         to access key vault.
        :paramtype identity_client_id: str
        """
        super().__init__(**kwargs)
        self.key_vault_arm_id = key_vault_arm_id
        self.key_identifier = key_identifier
        self.identity_client_id = identity_client_id


class EncryptionProperty(_serialization.Model):
    """EncryptionProperty.

    All required parameters must be populated in order to send to Azure.

    :ivar status: Indicates whether or not the encryption is enabled for the workspace. Required.
     Known values are: "Enabled" and "Disabled".
    :vartype status: str or ~azure.mgmt.machinelearningservices.models.EncryptionStatus
    :ivar identity: The identity that will be used to access the key vault for encryption at rest.
    :vartype identity: ~azure.mgmt.machinelearningservices.models.IdentityForCmk
    :ivar key_vault_properties: Customer Key vault properties. Required.
    :vartype key_vault_properties:
     ~azure.mgmt.machinelearningservices.models.EncryptionKeyVaultProperties
    """

    _validation = {
        "status": {"required": True},
        "key_vault_properties": {"required": True},
    }

    _attribute_map = {
        "status": {"key": "status", "type": "str"},
        "identity": {"key": "identity", "type": "IdentityForCmk"},
        "key_vault_properties": {"key": "keyVaultProperties", "type": "EncryptionKeyVaultProperties"},
    }

    def __init__(
        self,
        *,
        status: Union[str, "_models.EncryptionStatus"],
        key_vault_properties: "_models.EncryptionKeyVaultProperties",
        identity: Optional["_models.IdentityForCmk"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword status: Indicates whether or not the encryption is enabled for the workspace.
         Required. Known values are: "Enabled" and "Disabled".
        :paramtype status: str or ~azure.mgmt.machinelearningservices.models.EncryptionStatus
        :keyword identity: The identity that will be used to access the key vault for encryption at
         rest.
        :paramtype identity: ~azure.mgmt.machinelearningservices.models.IdentityForCmk
        :keyword key_vault_properties: Customer Key vault properties. Required.
        :paramtype key_vault_properties:
         ~azure.mgmt.machinelearningservices.models.EncryptionKeyVaultProperties
        """
        super().__init__(**kwargs)
        self.status = status
        self.identity = identity
        self.key_vault_properties = key_vault_properties


class Endpoint(_serialization.Model):
    """Describes the endpoint configuration for the container.

    :ivar protocol: Protocol over which communication will happen over this endpoint. Known values
     are: "tcp", "udp", and "http".
    :vartype protocol: str or ~azure.mgmt.machinelearningservices.models.Protocol
    :ivar name: Name of the Endpoint.
    :vartype name: str
    :ivar target: Application port inside the container.
    :vartype target: int
    :ivar published: Port over which the application is exposed from container.
    :vartype published: int
    :ivar host_ip: Host IP over which the application is exposed from the container.
    :vartype host_ip: str
    """

    _attribute_map = {
        "protocol": {"key": "protocol", "type": "str"},
        "name": {"key": "name", "type": "str"},
        "target": {"key": "target", "type": "int"},
        "published": {"key": "published", "type": "int"},
        "host_ip": {"key": "hostIp", "type": "str"},
    }

    def __init__(
        self,
        *,
        protocol: Union[str, "_models.Protocol"] = "tcp",
        name: Optional[str] = None,
        target: Optional[int] = None,
        published: Optional[int] = None,
        host_ip: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword protocol: Protocol over which communication will happen over this endpoint. Known
         values are: "tcp", "udp", and "http".
        :paramtype protocol: str or ~azure.mgmt.machinelearningservices.models.Protocol
        :keyword name: Name of the Endpoint.
        :paramtype name: str
        :keyword target: Application port inside the container.
        :paramtype target: int
        :keyword published: Port over which the application is exposed from container.
        :paramtype published: int
        :keyword host_ip: Host IP over which the application is exposed from the container.
        :paramtype host_ip: str
        """
        super().__init__(**kwargs)
        self.protocol = protocol
        self.name = name
        self.target = target
        self.published = published
        self.host_ip = host_ip


class EndpointAuthKeys(_serialization.Model):
    """Keys for endpoint authentication.

    :ivar primary_key: The primary key.
    :vartype primary_key: str
    :ivar secondary_key: The secondary key.
    :vartype secondary_key: str
    """

    _attribute_map = {
        "primary_key": {"key": "primaryKey", "type": "str"},
        "secondary_key": {"key": "secondaryKey", "type": "str"},
    }

    def __init__(
        self, *, primary_key: Optional[str] = None, secondary_key: Optional[str] = None, **kwargs: Any
    ) -> None:
        """
        :keyword primary_key: The primary key.
        :paramtype primary_key: str
        :keyword secondary_key: The secondary key.
        :paramtype secondary_key: str
        """
        super().__init__(**kwargs)
        self.primary_key = primary_key
        self.secondary_key = secondary_key


class EndpointAuthToken(_serialization.Model):
    """Service Token.

    :ivar access_token: Access token for endpoint authentication.
    :vartype access_token: str
    :ivar expiry_time_utc: Access token expiry time (UTC).
    :vartype expiry_time_utc: int
    :ivar refresh_after_time_utc: Refresh access token after time (UTC).
    :vartype refresh_after_time_utc: int
    :ivar token_type: Access token type.
    :vartype token_type: str
    """

    _attribute_map = {
        "access_token": {"key": "accessToken", "type": "str"},
        "expiry_time_utc": {"key": "expiryTimeUtc", "type": "int"},
        "refresh_after_time_utc": {"key": "refreshAfterTimeUtc", "type": "int"},
        "token_type": {"key": "tokenType", "type": "str"},
    }

    def __init__(
        self,
        *,
        access_token: Optional[str] = None,
        expiry_time_utc: int = 0,
        refresh_after_time_utc: int = 0,
        token_type: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword access_token: Access token for endpoint authentication.
        :paramtype access_token: str
        :keyword expiry_time_utc: Access token expiry time (UTC).
        :paramtype expiry_time_utc: int
        :keyword refresh_after_time_utc: Refresh access token after time (UTC).
        :paramtype refresh_after_time_utc: int
        :keyword token_type: Access token type.
        :paramtype token_type: str
        """
        super().__init__(**kwargs)
        self.access_token = access_token
        self.expiry_time_utc = expiry_time_utc
        self.refresh_after_time_utc = refresh_after_time_utc
        self.token_type = token_type


class ScheduleActionBase(_serialization.Model):
    """ScheduleActionBase.

    You probably want to use the sub-classes and not this class directly. Known sub-classes are:
    JobScheduleAction, EndpointScheduleAction

    All required parameters must be populated in order to send to Azure.

    :ivar action_type: [Required] Specifies the action type of the schedule. Required. Known values
     are: "CreateJob" and "InvokeBatchEndpoint".
    :vartype action_type: str or ~azure.mgmt.machinelearningservices.models.ScheduleActionType
    """

    _validation = {
        "action_type": {"required": True},
    }

    _attribute_map = {
        "action_type": {"key": "actionType", "type": "str"},
    }

    _subtype_map = {"action_type": {"CreateJob": "JobScheduleAction", "InvokeBatchEndpoint": "EndpointScheduleAction"}}

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.action_type: Optional[str] = None


class EndpointScheduleAction(ScheduleActionBase):
    """EndpointScheduleAction.

    All required parameters must be populated in order to send to Azure.

    :ivar action_type: [Required] Specifies the action type of the schedule. Required. Known values
     are: "CreateJob" and "InvokeBatchEndpoint".
    :vartype action_type: str or ~azure.mgmt.machinelearningservices.models.ScheduleActionType
    :ivar endpoint_invocation_definition: [Required] Defines Schedule action definition details.


     .. raw:: html

        <see href="TBD" />. Required.
    :vartype endpoint_invocation_definition: JSON
    """

    _validation = {
        "action_type": {"required": True},
        "endpoint_invocation_definition": {"required": True},
    }

    _attribute_map = {
        "action_type": {"key": "actionType", "type": "str"},
        "endpoint_invocation_definition": {"key": "endpointInvocationDefinition", "type": "object"},
    }

    def __init__(self, *, endpoint_invocation_definition: JSON, **kwargs: Any) -> None:
        """
        :keyword endpoint_invocation_definition: [Required] Defines Schedule action definition details.


         .. raw:: html

            <see href="TBD" />. Required.
        :paramtype endpoint_invocation_definition: JSON
        """
        super().__init__(**kwargs)
        self.action_type: str = "InvokeBatchEndpoint"
        self.endpoint_invocation_definition = endpoint_invocation_definition


class EnvironmentContainer(Resource):
    """Azure Resource Manager resource envelope.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar id: Fully qualified resource ID for the resource. Ex -
     /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}.
    :vartype id: str
    :ivar name: The name of the resource.
    :vartype name: str
    :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or
     "Microsoft.Storage/storageAccounts".
    :vartype type: str
    :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy
     information.
    :vartype system_data: ~azure.mgmt.machinelearningservices.models.SystemData
    :ivar properties: [Required] Additional attributes of the entity. Required.
    :vartype properties: ~azure.mgmt.machinelearningservices.models.EnvironmentContainerProperties
    """

    _validation = {
        "id": {"readonly": True},
        "name": {"readonly": True},
        "type": {"readonly": True},
        "system_data": {"readonly": True},
        "properties": {"required": True},
    }

    _attribute_map = {
        "id": {"key": "id", "type": "str"},
        "name": {"key": "name", "type": "str"},
        "type": {"key": "type", "type": "str"},
        "system_data": {"key": "systemData", "type": "SystemData"},
        "properties": {"key": "properties", "type": "EnvironmentContainerProperties"},
    }

    def __init__(self, *, properties: "_models.EnvironmentContainerProperties", **kwargs: Any) -> None:
        """
        :keyword properties: [Required] Additional attributes of the entity. Required.
        :paramtype properties:
         ~azure.mgmt.machinelearningservices.models.EnvironmentContainerProperties
        """
        super().__init__(**kwargs)
        self.properties = properties


class EnvironmentContainerProperties(AssetContainer):
    """Container for environment specification versions.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar description: The asset description text.
    :vartype description: str
    :ivar properties: The asset property dictionary.
    :vartype properties: dict[str, str]
    :ivar tags: Tag dictionary. Tags can be added, removed, and updated.
    :vartype tags: dict[str, str]
    :ivar is_archived: Is the asset archived?.
    :vartype is_archived: bool
    :ivar latest_version: The latest version inside this container.
    :vartype latest_version: str
    :ivar next_version: The next auto incremental version.
    :vartype next_version: str
    :ivar provisioning_state: Provisioning state for the environment container. Known values are:
     "Succeeded", "Failed", "Canceled", "Creating", "Updating", and "Deleting".
    :vartype provisioning_state: str or
     ~azure.mgmt.machinelearningservices.models.AssetProvisioningState
    """

    _validation = {
        "latest_version": {"readonly": True},
        "next_version": {"readonly": True},
        "provisioning_state": {"readonly": True},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "properties": {"key": "properties", "type": "{str}"},
        "tags": {"key": "tags", "type": "{str}"},
        "is_archived": {"key": "isArchived", "type": "bool"},
        "latest_version": {"key": "latestVersion", "type": "str"},
        "next_version": {"key": "nextVersion", "type": "str"},
        "provisioning_state": {"key": "provisioningState", "type": "str"},
    }

    def __init__(
        self,
        *,
        description: Optional[str] = None,
        properties: Optional[Dict[str, str]] = None,
        tags: Optional[Dict[str, str]] = None,
        is_archived: bool = False,
        **kwargs: Any
    ) -> None:
        """
        :keyword description: The asset description text.
        :paramtype description: str
        :keyword properties: The asset property dictionary.
        :paramtype properties: dict[str, str]
        :keyword tags: Tag dictionary. Tags can be added, removed, and updated.
        :paramtype tags: dict[str, str]
        :keyword is_archived: Is the asset archived?.
        :paramtype is_archived: bool
        """
        super().__init__(description=description, properties=properties, tags=tags, is_archived=is_archived, **kwargs)
        self.provisioning_state = None


class EnvironmentContainerResourceArmPaginatedResult(_serialization.Model):
    """A paginated list of EnvironmentContainer entities.

    :ivar next_link: The link to the next page of EnvironmentContainer objects. If null, there are
     no additional pages.
    :vartype next_link: str
    :ivar value: An array of objects of type EnvironmentContainer.
    :vartype value: list[~azure.mgmt.machinelearningservices.models.EnvironmentContainer]
    """

    _attribute_map = {
        "next_link": {"key": "nextLink", "type": "str"},
        "value": {"key": "value", "type": "[EnvironmentContainer]"},
    }

    def __init__(
        self,
        *,
        next_link: Optional[str] = None,
        value: Optional[List["_models.EnvironmentContainer"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword next_link: The link to the next page of EnvironmentContainer objects. If null, there
         are no additional pages.
        :paramtype next_link: str
        :keyword value: An array of objects of type EnvironmentContainer.
        :paramtype value: list[~azure.mgmt.machinelearningservices.models.EnvironmentContainer]
        """
        super().__init__(**kwargs)
        self.next_link = next_link
        self.value = value


class EnvironmentVariable(_serialization.Model):
    """Environment Variables for the container.

    :ivar additional_properties: Unmatched properties from the message are deserialized to this
     collection.
    :vartype additional_properties: dict[str, any]
    :ivar type: Type of the Environment Variable. Possible values are: local - For local variable.
     "local"
    :vartype type: str or ~azure.mgmt.machinelearningservices.models.EnvironmentVariableType
    :ivar value: Value of the Environment variable.
    :vartype value: str
    """

    _attribute_map = {
        "additional_properties": {"key": "", "type": "{object}"},
        "type": {"key": "type", "type": "str"},
        "value": {"key": "value", "type": "str"},
    }

    def __init__(
        self,
        *,
        additional_properties: Optional[Dict[str, Any]] = None,
        type: Union[str, "_models.EnvironmentVariableType"] = "local",
        value: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword additional_properties: Unmatched properties from the message are deserialized to this
         collection.
        :paramtype additional_properties: dict[str, any]
        :keyword type: Type of the Environment Variable. Possible values are: local - For local
         variable. "local"
        :paramtype type: str or ~azure.mgmt.machinelearningservices.models.EnvironmentVariableType
        :keyword value: Value of the Environment variable.
        :paramtype value: str
        """
        super().__init__(**kwargs)
        self.additional_properties = additional_properties
        self.type = type
        self.value = value


class EnvironmentVersion(Resource):
    """Azure Resource Manager resource envelope.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar id: Fully qualified resource ID for the resource. Ex -
     /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}.
    :vartype id: str
    :ivar name: The name of the resource.
    :vartype name: str
    :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or
     "Microsoft.Storage/storageAccounts".
    :vartype type: str
    :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy
     information.
    :vartype system_data: ~azure.mgmt.machinelearningservices.models.SystemData
    :ivar properties: [Required] Additional attributes of the entity. Required.
    :vartype properties: ~azure.mgmt.machinelearningservices.models.EnvironmentVersionProperties
    """

    _validation = {
        "id": {"readonly": True},
        "name": {"readonly": True},
        "type": {"readonly": True},
        "system_data": {"readonly": True},
        "properties": {"required": True},
    }

    _attribute_map = {
        "id": {"key": "id", "type": "str"},
        "name": {"key": "name", "type": "str"},
        "type": {"key": "type", "type": "str"},
        "system_data": {"key": "systemData", "type": "SystemData"},
        "properties": {"key": "properties", "type": "EnvironmentVersionProperties"},
    }

    def __init__(self, *, properties: "_models.EnvironmentVersionProperties", **kwargs: Any) -> None:
        """
        :keyword properties: [Required] Additional attributes of the entity. Required.
        :paramtype properties: ~azure.mgmt.machinelearningservices.models.EnvironmentVersionProperties
        """
        super().__init__(**kwargs)
        self.properties = properties


class EnvironmentVersionProperties(AssetBase):  # pylint: disable=too-many-instance-attributes
    """Environment version details.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar description: The asset description text.
    :vartype description: str
    :ivar properties: The asset property dictionary.
    :vartype properties: dict[str, str]
    :ivar tags: Tag dictionary. Tags can be added, removed, and updated.
    :vartype tags: dict[str, str]
    :ivar is_anonymous: If the name version are system generated (anonymous registration).
    :vartype is_anonymous: bool
    :ivar is_archived: Is the asset archived?.
    :vartype is_archived: bool
    :ivar auto_rebuild: Defines if image needs to be rebuilt based on base image changes. Known
     values are: "Disabled" and "OnBaseImageUpdate".
    :vartype auto_rebuild: str or ~azure.mgmt.machinelearningservices.models.AutoRebuildSetting
    :ivar build: Configuration settings for Docker build context.
    :vartype build: ~azure.mgmt.machinelearningservices.models.BuildContext
    :ivar conda_file: Standard configuration file used by Conda that lets you install any kind of
     package, including Python, R, and C/C++ packages.


     .. raw:: html

        <see
     href="https://repo2docker.readthedocs.io/en/latest/config_files.html#environment-yml-install-a-conda-environment"
     />.
    :vartype conda_file: str
    :ivar environment_type: Environment type is either user managed or curated by the Azure ML
     service


     .. raw:: html

        <see
     href="https://docs.microsoft.com/en-us/azure/machine-learning/resource-curated-environments"
     />. Known values are: "Curated" and "UserCreated".
    :vartype environment_type: str or ~azure.mgmt.machinelearningservices.models.EnvironmentType
    :ivar image: Name of the image that will be used for the environment.


     .. raw:: html

        <seealso
     href="https://docs.microsoft.com/en-us/azure/machine-learning/how-to-deploy-custom-docker-image#use-a-custom-base-image"
     />.
    :vartype image: str
    :ivar inference_config: Defines configuration specific to inference.
    :vartype inference_config:
     ~azure.mgmt.machinelearningservices.models.InferenceContainerProperties
    :ivar os_type: The OS type of the environment. Known values are: "Linux" and "Windows".
    :vartype os_type: str or ~azure.mgmt.machinelearningservices.models.OperatingSystemType
    :ivar provisioning_state: Provisioning state for the environment version. Known values are:
     "Succeeded", "Failed", "Canceled", "Creating", "Updating", and "Deleting".
    :vartype provisioning_state: str or
     ~azure.mgmt.machinelearningservices.models.AssetProvisioningState
    :ivar stage: Stage in the environment lifecycle assigned to this environment.
    :vartype stage: str
    """

    _validation = {
        "environment_type": {"readonly": True},
        "provisioning_state": {"readonly": True},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "properties": {"key": "properties", "type": "{str}"},
        "tags": {"key": "tags", "type": "{str}"},
        "is_anonymous": {"key": "isAnonymous", "type": "bool"},
        "is_archived": {"key": "isArchived", "type": "bool"},
        "auto_rebuild": {"key": "autoRebuild", "type": "str"},
        "build": {"key": "build", "type": "BuildContext"},
        "conda_file": {"key": "condaFile", "type": "str"},
        "environment_type": {"key": "environmentType", "type": "str"},
        "image": {"key": "image", "type": "str"},
        "inference_config": {"key": "inferenceConfig", "type": "InferenceContainerProperties"},
        "os_type": {"key": "osType", "type": "str"},
        "provisioning_state": {"key": "provisioningState", "type": "str"},
        "stage": {"key": "stage", "type": "str"},
    }

    def __init__(
        self,
        *,
        description: Optional[str] = None,
        properties: Optional[Dict[str, str]] = None,
        tags: Optional[Dict[str, str]] = None,
        is_anonymous: bool = False,
        is_archived: bool = False,
        auto_rebuild: Optional[Union[str, "_models.AutoRebuildSetting"]] = None,
        build: Optional["_models.BuildContext"] = None,
        conda_file: Optional[str] = None,
        image: Optional[str] = None,
        inference_config: Optional["_models.InferenceContainerProperties"] = None,
        os_type: Optional[Union[str, "_models.OperatingSystemType"]] = None,
        stage: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword description: The asset description text.
        :paramtype description: str
        :keyword properties: The asset property dictionary.
        :paramtype properties: dict[str, str]
        :keyword tags: Tag dictionary. Tags can be added, removed, and updated.
        :paramtype tags: dict[str, str]
        :keyword is_anonymous: If the name version are system generated (anonymous registration).
        :paramtype is_anonymous: bool
        :keyword is_archived: Is the asset archived?.
        :paramtype is_archived: bool
        :keyword auto_rebuild: Defines if image needs to be rebuilt based on base image changes. Known
         values are: "Disabled" and "OnBaseImageUpdate".
        :paramtype auto_rebuild: str or ~azure.mgmt.machinelearningservices.models.AutoRebuildSetting
        :keyword build: Configuration settings for Docker build context.
        :paramtype build: ~azure.mgmt.machinelearningservices.models.BuildContext
        :keyword conda_file: Standard configuration file used by Conda that lets you install any kind
         of package, including Python, R, and C/C++ packages.


         .. raw:: html

            <see
         href="https://repo2docker.readthedocs.io/en/latest/config_files.html#environment-yml-install-a-conda-environment"
         />.
        :paramtype conda_file: str
        :keyword image: Name of the image that will be used for the environment.


         .. raw:: html

            <seealso
         href="https://docs.microsoft.com/en-us/azure/machine-learning/how-to-deploy-custom-docker-image#use-a-custom-base-image"
         />.
        :paramtype image: str
        :keyword inference_config: Defines configuration specific to inference.
        :paramtype inference_config:
         ~azure.mgmt.machinelearningservices.models.InferenceContainerProperties
        :keyword os_type: The OS type of the environment. Known values are: "Linux" and "Windows".
        :paramtype os_type: str or ~azure.mgmt.machinelearningservices.models.OperatingSystemType
        :keyword stage: Stage in the environment lifecycle assigned to this environment.
        :paramtype stage: str
        """
        super().__init__(
            description=description,
            properties=properties,
            tags=tags,
            is_anonymous=is_anonymous,
            is_archived=is_archived,
            **kwargs
        )
        self.auto_rebuild = auto_rebuild
        self.build = build
        self.conda_file = conda_file
        self.environment_type = None
        self.image = image
        self.inference_config = inference_config
        self.os_type = os_type
        self.provisioning_state = None
        self.stage = stage


class EnvironmentVersionResourceArmPaginatedResult(_serialization.Model):
    """A paginated list of EnvironmentVersion entities.

    :ivar next_link: The link to the next page of EnvironmentVersion objects. If null, there are no
     additional pages.
    :vartype next_link: str
    :ivar value: An array of objects of type EnvironmentVersion.
    :vartype value: list[~azure.mgmt.machinelearningservices.models.EnvironmentVersion]
    """

    _attribute_map = {
        "next_link": {"key": "nextLink", "type": "str"},
        "value": {"key": "value", "type": "[EnvironmentVersion]"},
    }

    def __init__(
        self,
        *,
        next_link: Optional[str] = None,
        value: Optional[List["_models.EnvironmentVersion"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword next_link: The link to the next page of EnvironmentVersion objects. If null, there are
         no additional pages.
        :paramtype next_link: str
        :keyword value: An array of objects of type EnvironmentVersion.
        :paramtype value: list[~azure.mgmt.machinelearningservices.models.EnvironmentVersion]
        """
        super().__init__(**kwargs)
        self.next_link = next_link
        self.value = value


class ErrorAdditionalInfo(_serialization.Model):
    """The resource management error additional info.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar type: The additional info type.
    :vartype type: str
    :ivar info: The additional info.
    :vartype info: JSON
    """

    _validation = {
        "type": {"readonly": True},
        "info": {"readonly": True},
    }

    _attribute_map = {
        "type": {"key": "type", "type": "str"},
        "info": {"key": "info", "type": "object"},
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.type = None
        self.info = None


class ErrorDetail(_serialization.Model):
    """The error detail.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar code: The error code.
    :vartype code: str
    :ivar message: The error message.
    :vartype message: str
    :ivar target: The error target.
    :vartype target: str
    :ivar details: The error details.
    :vartype details: list[~azure.mgmt.machinelearningservices.models.ErrorDetail]
    :ivar additional_info: The error additional info.
    :vartype additional_info: list[~azure.mgmt.machinelearningservices.models.ErrorAdditionalInfo]
    """

    _validation = {
        "code": {"readonly": True},
        "message": {"readonly": True},
        "target": {"readonly": True},
        "details": {"readonly": True},
        "additional_info": {"readonly": True},
    }

    _attribute_map = {
        "code": {"key": "code", "type": "str"},
        "message": {"key": "message", "type": "str"},
        "target": {"key": "target", "type": "str"},
        "details": {"key": "details", "type": "[ErrorDetail]"},
        "additional_info": {"key": "additionalInfo", "type": "[ErrorAdditionalInfo]"},
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.code = None
        self.message = None
        self.target = None
        self.details = None
        self.additional_info = None


class ErrorResponse(_serialization.Model):
    """Common error response for all Azure Resource Manager APIs to return error details for failed
    operations. (This also follows the OData error response format.).

    :ivar error: The error object.
    :vartype error: ~azure.mgmt.machinelearningservices.models.ErrorDetail
    """

    _attribute_map = {
        "error": {"key": "error", "type": "ErrorDetail"},
    }

    def __init__(self, *, error: Optional["_models.ErrorDetail"] = None, **kwargs: Any) -> None:
        """
        :keyword error: The error object.
        :paramtype error: ~azure.mgmt.machinelearningservices.models.ErrorDetail
        """
        super().__init__(**kwargs)
        self.error = error


class EstimatedVMPrice(_serialization.Model):
    """The estimated price info for using a VM of a particular OS type, tier, etc.

    All required parameters must be populated in order to send to Azure.

    :ivar retail_price: The price charged for using the VM. Required.
    :vartype retail_price: float
    :ivar os_type: Operating system type used by the VM. Required. Known values are: "Linux" and
     "Windows".
    :vartype os_type: str or ~azure.mgmt.machinelearningservices.models.VMPriceOSType
    :ivar vm_tier: The type of the VM. Required. Known values are: "Standard", "LowPriority", and
     "Spot".
    :vartype vm_tier: str or ~azure.mgmt.machinelearningservices.models.VMTier
    """

    _validation = {
        "retail_price": {"required": True},
        "os_type": {"required": True},
        "vm_tier": {"required": True},
    }

    _attribute_map = {
        "retail_price": {"key": "retailPrice", "type": "float"},
        "os_type": {"key": "osType", "type": "str"},
        "vm_tier": {"key": "vmTier", "type": "str"},
    }

    def __init__(
        self,
        *,
        retail_price: float,
        os_type: Union[str, "_models.VMPriceOSType"],
        vm_tier: Union[str, "_models.VMTier"],
        **kwargs: Any
    ) -> None:
        """
        :keyword retail_price: The price charged for using the VM. Required.
        :paramtype retail_price: float
        :keyword os_type: Operating system type used by the VM. Required. Known values are: "Linux" and
         "Windows".
        :paramtype os_type: str or ~azure.mgmt.machinelearningservices.models.VMPriceOSType
        :keyword vm_tier: The type of the VM. Required. Known values are: "Standard", "LowPriority",
         and "Spot".
        :paramtype vm_tier: str or ~azure.mgmt.machinelearningservices.models.VMTier
        """
        super().__init__(**kwargs)
        self.retail_price = retail_price
        self.os_type = os_type
        self.vm_tier = vm_tier


class EstimatedVMPrices(_serialization.Model):
    """The estimated price info for using a VM.

    All required parameters must be populated in order to send to Azure.

    :ivar billing_currency: Three lettered code specifying the currency of the VM price. Example:
     USD. Required. "USD"
    :vartype billing_currency: str or ~azure.mgmt.machinelearningservices.models.BillingCurrency
    :ivar unit_of_measure: The unit of time measurement for the specified VM price. Example:
     OneHour. Required. "OneHour"
    :vartype unit_of_measure: str or ~azure.mgmt.machinelearningservices.models.UnitOfMeasure
    :ivar values: The list of estimated prices for using a VM of a particular OS type, tier, etc.
     Required.
    :vartype values: list[~azure.mgmt.machinelearningservices.models.EstimatedVMPrice]
    """

    _validation = {
        "billing_currency": {"required": True},
        "unit_of_measure": {"required": True},
        "values": {"required": True},
    }

    _attribute_map = {
        "billing_currency": {"key": "billingCurrency", "type": "str"},
        "unit_of_measure": {"key": "unitOfMeasure", "type": "str"},
        "values": {"key": "values", "type": "[EstimatedVMPrice]"},
    }

    def __init__(
        self,
        *,
        billing_currency: Union[str, "_models.BillingCurrency"],
        unit_of_measure: Union[str, "_models.UnitOfMeasure"],
        values: List["_models.EstimatedVMPrice"],
        **kwargs: Any
    ) -> None:
        """
        :keyword billing_currency: Three lettered code specifying the currency of the VM price.
         Example: USD. Required. "USD"
        :paramtype billing_currency: str or ~azure.mgmt.machinelearningservices.models.BillingCurrency
        :keyword unit_of_measure: The unit of time measurement for the specified VM price. Example:
         OneHour. Required. "OneHour"
        :paramtype unit_of_measure: str or ~azure.mgmt.machinelearningservices.models.UnitOfMeasure
        :keyword values: The list of estimated prices for using a VM of a particular OS type, tier,
         etc. Required.
        :paramtype values: list[~azure.mgmt.machinelearningservices.models.EstimatedVMPrice]
        """
        super().__init__(**kwargs)
        self.billing_currency = billing_currency
        self.unit_of_measure = unit_of_measure
        self.values = values


class ExternalFQDNResponse(_serialization.Model):
    """ExternalFQDNResponse.

    :ivar value:
    :vartype value: list[~azure.mgmt.machinelearningservices.models.FQDNEndpoints]
    """

    _attribute_map = {
        "value": {"key": "value", "type": "[FQDNEndpoints]"},
    }

    def __init__(self, *, value: Optional[List["_models.FQDNEndpoints"]] = None, **kwargs: Any) -> None:
        """
        :keyword value:
        :paramtype value: list[~azure.mgmt.machinelearningservices.models.FQDNEndpoints]
        """
        super().__init__(**kwargs)
        self.value = value


class FeaturizationSettings(_serialization.Model):
    """Featurization Configuration.

    :ivar dataset_language: Dataset language, useful for the text data.
    :vartype dataset_language: str
    """

    _attribute_map = {
        "dataset_language": {"key": "datasetLanguage", "type": "str"},
    }

    def __init__(self, *, dataset_language: Optional[str] = None, **kwargs: Any) -> None:
        """
        :keyword dataset_language: Dataset language, useful for the text data.
        :paramtype dataset_language: str
        """
        super().__init__(**kwargs)
        self.dataset_language = dataset_language


class FlavorData(_serialization.Model):
    """FlavorData.

    :ivar data: Model flavor-specific data.
    :vartype data: dict[str, str]
    """

    _attribute_map = {
        "data": {"key": "data", "type": "{str}"},
    }

    def __init__(self, *, data: Optional[Dict[str, str]] = None, **kwargs: Any) -> None:
        """
        :keyword data: Model flavor-specific data.
        :paramtype data: dict[str, str]
        """
        super().__init__(**kwargs)
        self.data = data


class Forecasting(TableVertical, AutoMLVertical):  # pylint: disable=too-many-instance-attributes
    """Forecasting task in AutoML Table vertical.

    All required parameters must be populated in order to send to Azure.

    :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info",
     "Warning", "Error", and "Critical".
    :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity
    :ivar target_column_name: Target column name: This is prediction values column.
     Also known as label column name in context of classification tasks.
    :vartype target_column_name: str
    :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are:
     "Classification", "Regression", "Forecasting", "ImageClassification",
     "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation",
     "TextClassification", "TextClassificationMultilabel", and "TextNER".
    :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType
    :ivar training_data: [Required] Training data input. Required.
    :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
    :ivar cv_split_column_names: Columns to use for CVSplit data.
    :vartype cv_split_column_names: list[str]
    :ivar featurization_settings: Featurization inputs needed for AutoML job.
    :vartype featurization_settings:
     ~azure.mgmt.machinelearningservices.models.TableVerticalFeaturizationSettings
    :ivar limit_settings: Execution constraints for AutoMLJob.
    :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.TableVerticalLimitSettings
    :ivar n_cross_validations: Number of cross validation folds to be applied on training dataset
     when validation dataset is not provided.
    :vartype n_cross_validations: ~azure.mgmt.machinelearningservices.models.NCrossValidations
    :ivar test_data: Test data input.
    :vartype test_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
    :ivar test_data_size: The fraction of test dataset that needs to be set aside for validation
     purpose.
     Values between (0.0 , 1.0)
     Applied when validation dataset is not provided.
    :vartype test_data_size: float
    :ivar validation_data: Validation data inputs.
    :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
    :ivar validation_data_size: The fraction of training dataset that needs to be set aside for
     validation purpose.
     Values between (0.0 , 1.0)
     Applied when validation dataset is not provided.
    :vartype validation_data_size: float
    :ivar weight_column_name: The name of the sample weight column. Automated ML supports a
     weighted column as an input, causing rows in the data to be weighted up or down.
    :vartype weight_column_name: str
    :ivar forecasting_settings: Forecasting task specific inputs.
    :vartype forecasting_settings: ~azure.mgmt.machinelearningservices.models.ForecastingSettings
    :ivar primary_metric: Primary metric for forecasting task. Known values are:
     "SpearmanCorrelation", "NormalizedRootMeanSquaredError", "R2Score", and
     "NormalizedMeanAbsoluteError".
    :vartype primary_metric: str or
     ~azure.mgmt.machinelearningservices.models.ForecastingPrimaryMetrics
    :ivar training_settings: Inputs for training phase for an AutoML Job.
    :vartype training_settings:
     ~azure.mgmt.machinelearningservices.models.ForecastingTrainingSettings
    """

    _validation = {
        "task_type": {"required": True},
        "training_data": {"required": True},
    }

    _attribute_map = {
        "log_verbosity": {"key": "logVerbosity", "type": "str"},
        "target_column_name": {"key": "targetColumnName", "type": "str"},
        "task_type": {"key": "taskType", "type": "str"},
        "training_data": {"key": "trainingData", "type": "MLTableJobInput"},
        "cv_split_column_names": {"key": "cvSplitColumnNames", "type": "[str]"},
        "featurization_settings": {"key": "featurizationSettings", "type": "TableVerticalFeaturizationSettings"},
        "limit_settings": {"key": "limitSettings", "type": "TableVerticalLimitSettings"},
        "n_cross_validations": {"key": "nCrossValidations", "type": "NCrossValidations"},
        "test_data": {"key": "testData", "type": "MLTableJobInput"},
        "test_data_size": {"key": "testDataSize", "type": "float"},
        "validation_data": {"key": "validationData", "type": "MLTableJobInput"},
        "validation_data_size": {"key": "validationDataSize", "type": "float"},
        "weight_column_name": {"key": "weightColumnName", "type": "str"},
        "forecasting_settings": {"key": "forecastingSettings", "type": "ForecastingSettings"},
        "primary_metric": {"key": "primaryMetric", "type": "str"},
        "training_settings": {"key": "trainingSettings", "type": "ForecastingTrainingSettings"},
    }

    def __init__(
        self,
        *,
        training_data: "_models.MLTableJobInput",
        log_verbosity: Optional[Union[str, "_models.LogVerbosity"]] = None,
        target_column_name: Optional[str] = None,
        cv_split_column_names: Optional[List[str]] = None,
        featurization_settings: Optional["_models.TableVerticalFeaturizationSettings"] = None,
        limit_settings: Optional["_models.TableVerticalLimitSettings"] = None,
        n_cross_validations: Optional["_models.NCrossValidations"] = None,
        test_data: Optional["_models.MLTableJobInput"] = None,
        test_data_size: Optional[float] = None,
        validation_data: Optional["_models.MLTableJobInput"] = None,
        validation_data_size: Optional[float] = None,
        weight_column_name: Optional[str] = None,
        forecasting_settings: Optional["_models.ForecastingSettings"] = None,
        primary_metric: Optional[Union[str, "_models.ForecastingPrimaryMetrics"]] = None,
        training_settings: Optional["_models.ForecastingTrainingSettings"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info",
         "Warning", "Error", and "Critical".
        :paramtype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity
        :keyword target_column_name: Target column name: This is prediction values column.
         Also known as label column name in context of classification tasks.
        :paramtype target_column_name: str
        :keyword training_data: [Required] Training data input. Required.
        :paramtype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
        :keyword cv_split_column_names: Columns to use for CVSplit data.
        :paramtype cv_split_column_names: list[str]
        :keyword featurization_settings: Featurization inputs needed for AutoML job.
        :paramtype featurization_settings:
         ~azure.mgmt.machinelearningservices.models.TableVerticalFeaturizationSettings
        :keyword limit_settings: Execution constraints for AutoMLJob.
        :paramtype limit_settings:
         ~azure.mgmt.machinelearningservices.models.TableVerticalLimitSettings
        :keyword n_cross_validations: Number of cross validation folds to be applied on training
         dataset
         when validation dataset is not provided.
        :paramtype n_cross_validations: ~azure.mgmt.machinelearningservices.models.NCrossValidations
        :keyword test_data: Test data input.
        :paramtype test_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
        :keyword test_data_size: The fraction of test dataset that needs to be set aside for validation
         purpose.
         Values between (0.0 , 1.0)
         Applied when validation dataset is not provided.
        :paramtype test_data_size: float
        :keyword validation_data: Validation data inputs.
        :paramtype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
        :keyword validation_data_size: The fraction of training dataset that needs to be set aside for
         validation purpose.
         Values between (0.0 , 1.0)
         Applied when validation dataset is not provided.
        :paramtype validation_data_size: float
        :keyword weight_column_name: The name of the sample weight column. Automated ML supports a
         weighted column as an input, causing rows in the data to be weighted up or down.
        :paramtype weight_column_name: str
        :keyword forecasting_settings: Forecasting task specific inputs.
        :paramtype forecasting_settings: ~azure.mgmt.machinelearningservices.models.ForecastingSettings
        :keyword primary_metric: Primary metric for forecasting task. Known values are:
         "SpearmanCorrelation", "NormalizedRootMeanSquaredError", "R2Score", and
         "NormalizedMeanAbsoluteError".
        :paramtype primary_metric: str or
         ~azure.mgmt.machinelearningservices.models.ForecastingPrimaryMetrics
        :keyword training_settings: Inputs for training phase for an AutoML Job.
        :paramtype training_settings:
         ~azure.mgmt.machinelearningservices.models.ForecastingTrainingSettings
        """
        super().__init__(
            cv_split_column_names=cv_split_column_names,
            featurization_settings=featurization_settings,
            limit_settings=limit_settings,
            n_cross_validations=n_cross_validations,
            test_data=test_data,
            test_data_size=test_data_size,
            validation_data=validation_data,
            validation_data_size=validation_data_size,
            weight_column_name=weight_column_name,
            log_verbosity=log_verbosity,
            target_column_name=target_column_name,
            training_data=training_data,
            **kwargs
        )
        self.log_verbosity = log_verbosity
        self.target_column_name = target_column_name
        self.task_type: str = "Forecasting"
        self.training_data = training_data
        self.forecasting_settings = forecasting_settings
        self.primary_metric = primary_metric
        self.training_settings = training_settings
        self.cv_split_column_names = cv_split_column_names
        self.featurization_settings = featurization_settings
        self.limit_settings = limit_settings
        self.n_cross_validations = n_cross_validations
        self.test_data = test_data
        self.test_data_size = test_data_size
        self.validation_data = validation_data
        self.validation_data_size = validation_data_size
        self.weight_column_name = weight_column_name


class ForecastingSettings(_serialization.Model):  # pylint: disable=too-many-instance-attributes
    """Forecasting specific parameters.

    :ivar country_or_region_for_holidays: Country or region for holidays for forecasting tasks.
     These should be ISO 3166 two-letter country/region codes, for example 'US' or 'GB'.
    :vartype country_or_region_for_holidays: str
    :ivar cv_step_size: Number of periods between the origin time of one CV fold and the next fold.
     For
     example, if ``CVStepSize`` = 3 for daily data, the origin time for each fold will be
     three days apart.
    :vartype cv_step_size: int
    :ivar feature_lags: Flag for generating lags for the numeric features with 'auto' or null.
     Known values are: "None" and "Auto".
    :vartype feature_lags: str or ~azure.mgmt.machinelearningservices.models.FeatureLags
    :ivar forecast_horizon: The desired maximum forecast horizon in units of time-series frequency.
    :vartype forecast_horizon: ~azure.mgmt.machinelearningservices.models.ForecastHorizon
    :ivar frequency: When forecasting, this parameter represents the period with which the forecast
     is desired, for example daily, weekly, yearly, etc. The forecast frequency is dataset frequency
     by default.
    :vartype frequency: str
    :ivar seasonality: Set time series seasonality as an integer multiple of the series frequency.
     If seasonality is set to 'auto', it will be inferred.
    :vartype seasonality: ~azure.mgmt.machinelearningservices.models.Seasonality
    :ivar short_series_handling_config: The parameter defining how if AutoML should handle short
     time series. Known values are: "None", "Auto", "Pad", and "Drop".
    :vartype short_series_handling_config: str or
     ~azure.mgmt.machinelearningservices.models.ShortSeriesHandlingConfiguration
    :ivar target_aggregate_function: The function to be used to aggregate the time series target
     column to conform to a user specified frequency.
     If the TargetAggregateFunction is set i.e. not 'None', but the freq parameter is not set, the
     error is raised. The possible target aggregation functions are: "sum", "max", "min" and "mean".
     Known values are: "None", "Sum", "Max", "Min", and "Mean".
    :vartype target_aggregate_function: str or
     ~azure.mgmt.machinelearningservices.models.TargetAggregationFunction
    :ivar target_lags: The number of past periods to lag from the target column.
    :vartype target_lags: ~azure.mgmt.machinelearningservices.models.TargetLags
    :ivar target_rolling_window_size: The number of past periods used to create a rolling window
     average of the target column.
    :vartype target_rolling_window_size:
     ~azure.mgmt.machinelearningservices.models.TargetRollingWindowSize
    :ivar time_column_name: The name of the time column. This parameter is required when
     forecasting to specify the datetime column in the input data used for building the time series
     and inferring its frequency.
    :vartype time_column_name: str
    :ivar time_series_id_column_names: The names of columns used to group a timeseries. It can be
     used to create multiple series.
     If grain is not defined, the data set is assumed to be one time-series. This parameter is used
     with task type forecasting.
    :vartype time_series_id_column_names: list[str]
    :ivar use_stl: Configure STL Decomposition of the time-series target column. Known values are:
     "None", "Season", and "SeasonTrend".
    :vartype use_stl: str or ~azure.mgmt.machinelearningservices.models.UseStl
    """

    _attribute_map = {
        "country_or_region_for_holidays": {"key": "countryOrRegionForHolidays", "type": "str"},
        "cv_step_size": {"key": "cvStepSize", "type": "int"},
        "feature_lags": {"key": "featureLags", "type": "str"},
        "forecast_horizon": {"key": "forecastHorizon", "type": "ForecastHorizon"},
        "frequency": {"key": "frequency", "type": "str"},
        "seasonality": {"key": "seasonality", "type": "Seasonality"},
        "short_series_handling_config": {"key": "shortSeriesHandlingConfig", "type": "str"},
        "target_aggregate_function": {"key": "targetAggregateFunction", "type": "str"},
        "target_lags": {"key": "targetLags", "type": "TargetLags"},
        "target_rolling_window_size": {"key": "targetRollingWindowSize", "type": "TargetRollingWindowSize"},
        "time_column_name": {"key": "timeColumnName", "type": "str"},
        "time_series_id_column_names": {"key": "timeSeriesIdColumnNames", "type": "[str]"},
        "use_stl": {"key": "useStl", "type": "str"},
    }

    def __init__(
        self,
        *,
        country_or_region_for_holidays: Optional[str] = None,
        cv_step_size: Optional[int] = None,
        feature_lags: Optional[Union[str, "_models.FeatureLags"]] = None,
        forecast_horizon: Optional["_models.ForecastHorizon"] = None,
        frequency: Optional[str] = None,
        seasonality: Optional["_models.Seasonality"] = None,
        short_series_handling_config: Optional[Union[str, "_models.ShortSeriesHandlingConfiguration"]] = None,
        target_aggregate_function: Optional[Union[str, "_models.TargetAggregationFunction"]] = None,
        target_lags: Optional["_models.TargetLags"] = None,
        target_rolling_window_size: Optional["_models.TargetRollingWindowSize"] = None,
        time_column_name: Optional[str] = None,
        time_series_id_column_names: Optional[List[str]] = None,
        use_stl: Optional[Union[str, "_models.UseStl"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword country_or_region_for_holidays: Country or region for holidays for forecasting tasks.
         These should be ISO 3166 two-letter country/region codes, for example 'US' or 'GB'.
        :paramtype country_or_region_for_holidays: str
        :keyword cv_step_size: Number of periods between the origin time of one CV fold and the next
         fold. For
         example, if ``CVStepSize`` = 3 for daily data, the origin time for each fold will be
         three days apart.
        :paramtype cv_step_size: int
        :keyword feature_lags: Flag for generating lags for the numeric features with 'auto' or null.
         Known values are: "None" and "Auto".
        :paramtype feature_lags: str or ~azure.mgmt.machinelearningservices.models.FeatureLags
        :keyword forecast_horizon: The desired maximum forecast horizon in units of time-series
         frequency.
        :paramtype forecast_horizon: ~azure.mgmt.machinelearningservices.models.ForecastHorizon
        :keyword frequency: When forecasting, this parameter represents the period with which the
         forecast is desired, for example daily, weekly, yearly, etc. The forecast frequency is dataset
         frequency by default.
        :paramtype frequency: str
        :keyword seasonality: Set time series seasonality as an integer multiple of the series
         frequency.
         If seasonality is set to 'auto', it will be inferred.
        :paramtype seasonality: ~azure.mgmt.machinelearningservices.models.Seasonality
        :keyword short_series_handling_config: The parameter defining how if AutoML should handle short
         time series. Known values are: "None", "Auto", "Pad", and "Drop".
        :paramtype short_series_handling_config: str or
         ~azure.mgmt.machinelearningservices.models.ShortSeriesHandlingConfiguration
        :keyword target_aggregate_function: The function to be used to aggregate the time series target
         column to conform to a user specified frequency.
         If the TargetAggregateFunction is set i.e. not 'None', but the freq parameter is not set, the
         error is raised. The possible target aggregation functions are: "sum", "max", "min" and "mean".
         Known values are: "None", "Sum", "Max", "Min", and "Mean".
        :paramtype target_aggregate_function: str or
         ~azure.mgmt.machinelearningservices.models.TargetAggregationFunction
        :keyword target_lags: The number of past periods to lag from the target column.
        :paramtype target_lags: ~azure.mgmt.machinelearningservices.models.TargetLags
        :keyword target_rolling_window_size: The number of past periods used to create a rolling window
         average of the target column.
        :paramtype target_rolling_window_size:
         ~azure.mgmt.machinelearningservices.models.TargetRollingWindowSize
        :keyword time_column_name: The name of the time column. This parameter is required when
         forecasting to specify the datetime column in the input data used for building the time series
         and inferring its frequency.
        :paramtype time_column_name: str
        :keyword time_series_id_column_names: The names of columns used to group a timeseries. It can
         be used to create multiple series.
         If grain is not defined, the data set is assumed to be one time-series. This parameter is used
         with task type forecasting.
        :paramtype time_series_id_column_names: list[str]
        :keyword use_stl: Configure STL Decomposition of the time-series target column. Known values
         are: "None", "Season", and "SeasonTrend".
        :paramtype use_stl: str or ~azure.mgmt.machinelearningservices.models.UseStl
        """
        super().__init__(**kwargs)
        self.country_or_region_for_holidays = country_or_region_for_holidays
        self.cv_step_size = cv_step_size
        self.feature_lags = feature_lags
        self.forecast_horizon = forecast_horizon
        self.frequency = frequency
        self.seasonality = seasonality
        self.short_series_handling_config = short_series_handling_config
        self.target_aggregate_function = target_aggregate_function
        self.target_lags = target_lags
        self.target_rolling_window_size = target_rolling_window_size
        self.time_column_name = time_column_name
        self.time_series_id_column_names = time_series_id_column_names
        self.use_stl = use_stl


class ForecastingTrainingSettings(TrainingSettings):
    """Forecasting Training related configuration.

    :ivar enable_dnn_training: Enable recommendation of DNN models.
    :vartype enable_dnn_training: bool
    :ivar enable_model_explainability: Flag to turn on explainability on best model.
    :vartype enable_model_explainability: bool
    :ivar enable_onnx_compatible_models: Flag for enabling onnx compatible models.
    :vartype enable_onnx_compatible_models: bool
    :ivar enable_stack_ensemble: Enable stack ensemble run.
    :vartype enable_stack_ensemble: bool
    :ivar enable_vote_ensemble: Enable voting ensemble run.
    :vartype enable_vote_ensemble: bool
    :ivar ensemble_model_download_timeout: During VotingEnsemble and StackEnsemble model
     generation, multiple fitted models from the previous child runs are downloaded.
     Configure this parameter with a higher value than 300 secs, if more time is needed.
    :vartype ensemble_model_download_timeout: ~datetime.timedelta
    :ivar stack_ensemble_settings: Stack ensemble settings for stack ensemble run.
    :vartype stack_ensemble_settings:
     ~azure.mgmt.machinelearningservices.models.StackEnsembleSettings
    :ivar allowed_training_algorithms: Allowed models for forecasting task.
    :vartype allowed_training_algorithms: list[str or
     ~azure.mgmt.machinelearningservices.models.ForecastingModels]
    :ivar blocked_training_algorithms: Blocked models for forecasting task.
    :vartype blocked_training_algorithms: list[str or
     ~azure.mgmt.machinelearningservices.models.ForecastingModels]
    """

    _attribute_map = {
        "enable_dnn_training": {"key": "enableDnnTraining", "type": "bool"},
        "enable_model_explainability": {"key": "enableModelExplainability", "type": "bool"},
        "enable_onnx_compatible_models": {"key": "enableOnnxCompatibleModels", "type": "bool"},
        "enable_stack_ensemble": {"key": "enableStackEnsemble", "type": "bool"},
        "enable_vote_ensemble": {"key": "enableVoteEnsemble", "type": "bool"},
        "ensemble_model_download_timeout": {"key": "ensembleModelDownloadTimeout", "type": "duration"},
        "stack_ensemble_settings": {"key": "stackEnsembleSettings", "type": "StackEnsembleSettings"},
        "allowed_training_algorithms": {"key": "allowedTrainingAlgorithms", "type": "[str]"},
        "blocked_training_algorithms": {"key": "blockedTrainingAlgorithms", "type": "[str]"},
    }

    def __init__(
        self,
        *,
        enable_dnn_training: bool = False,
        enable_model_explainability: bool = True,
        enable_onnx_compatible_models: bool = False,
        enable_stack_ensemble: bool = True,
        enable_vote_ensemble: bool = True,
        ensemble_model_download_timeout: datetime.timedelta = "PT5M",
        stack_ensemble_settings: Optional["_models.StackEnsembleSettings"] = None,
        allowed_training_algorithms: Optional[List[Union[str, "_models.ForecastingModels"]]] = None,
        blocked_training_algorithms: Optional[List[Union[str, "_models.ForecastingModels"]]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword enable_dnn_training: Enable recommendation of DNN models.
        :paramtype enable_dnn_training: bool
        :keyword enable_model_explainability: Flag to turn on explainability on best model.
        :paramtype enable_model_explainability: bool
        :keyword enable_onnx_compatible_models: Flag for enabling onnx compatible models.
        :paramtype enable_onnx_compatible_models: bool
        :keyword enable_stack_ensemble: Enable stack ensemble run.
        :paramtype enable_stack_ensemble: bool
        :keyword enable_vote_ensemble: Enable voting ensemble run.
        :paramtype enable_vote_ensemble: bool
        :keyword ensemble_model_download_timeout: During VotingEnsemble and StackEnsemble model
         generation, multiple fitted models from the previous child runs are downloaded.
         Configure this parameter with a higher value than 300 secs, if more time is needed.
        :paramtype ensemble_model_download_timeout: ~datetime.timedelta
        :keyword stack_ensemble_settings: Stack ensemble settings for stack ensemble run.
        :paramtype stack_ensemble_settings:
         ~azure.mgmt.machinelearningservices.models.StackEnsembleSettings
        :keyword allowed_training_algorithms: Allowed models for forecasting task.
        :paramtype allowed_training_algorithms: list[str or
         ~azure.mgmt.machinelearningservices.models.ForecastingModels]
        :keyword blocked_training_algorithms: Blocked models for forecasting task.
        :paramtype blocked_training_algorithms: list[str or
         ~azure.mgmt.machinelearningservices.models.ForecastingModels]
        """
        super().__init__(
            enable_dnn_training=enable_dnn_training,
            enable_model_explainability=enable_model_explainability,
            enable_onnx_compatible_models=enable_onnx_compatible_models,
            enable_stack_ensemble=enable_stack_ensemble,
            enable_vote_ensemble=enable_vote_ensemble,
            ensemble_model_download_timeout=ensemble_model_download_timeout,
            stack_ensemble_settings=stack_ensemble_settings,
            **kwargs
        )
        self.allowed_training_algorithms = allowed_training_algorithms
        self.blocked_training_algorithms = blocked_training_algorithms


class FQDNEndpoint(_serialization.Model):
    """FQDNEndpoint.

    :ivar domain_name:
    :vartype domain_name: str
    :ivar endpoint_details:
    :vartype endpoint_details: list[~azure.mgmt.machinelearningservices.models.FQDNEndpointDetail]
    """

    _attribute_map = {
        "domain_name": {"key": "domainName", "type": "str"},
        "endpoint_details": {"key": "endpointDetails", "type": "[FQDNEndpointDetail]"},
    }

    def __init__(
        self,
        *,
        domain_name: Optional[str] = None,
        endpoint_details: Optional[List["_models.FQDNEndpointDetail"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword domain_name:
        :paramtype domain_name: str
        :keyword endpoint_details:
        :paramtype endpoint_details:
         list[~azure.mgmt.machinelearningservices.models.FQDNEndpointDetail]
        """
        super().__init__(**kwargs)
        self.domain_name = domain_name
        self.endpoint_details = endpoint_details


class FQDNEndpointDetail(_serialization.Model):
    """FQDNEndpointDetail.

    :ivar port:
    :vartype port: int
    """

    _attribute_map = {
        "port": {"key": "port", "type": "int"},
    }

    def __init__(self, *, port: Optional[int] = None, **kwargs: Any) -> None:
        """
        :keyword port:
        :paramtype port: int
        """
        super().__init__(**kwargs)
        self.port = port


class FQDNEndpoints(_serialization.Model):
    """FQDNEndpoints.

    :ivar properties:
    :vartype properties: ~azure.mgmt.machinelearningservices.models.FQDNEndpointsProperties
    """

    _attribute_map = {
        "properties": {"key": "properties", "type": "FQDNEndpointsProperties"},
    }

    def __init__(self, *, properties: Optional["_models.FQDNEndpointsProperties"] = None, **kwargs: Any) -> None:
        """
        :keyword properties:
        :paramtype properties: ~azure.mgmt.machinelearningservices.models.FQDNEndpointsProperties
        """
        super().__init__(**kwargs)
        self.properties = properties


class FQDNEndpointsProperties(_serialization.Model):
    """FQDNEndpointsProperties.

    :ivar category:
    :vartype category: str
    :ivar endpoints:
    :vartype endpoints: list[~azure.mgmt.machinelearningservices.models.FQDNEndpoint]
    """

    _attribute_map = {
        "category": {"key": "category", "type": "str"},
        "endpoints": {"key": "endpoints", "type": "[FQDNEndpoint]"},
    }

    def __init__(
        self, *, category: Optional[str] = None, endpoints: Optional[List["_models.FQDNEndpoint"]] = None, **kwargs: Any
    ) -> None:
        """
        :keyword category:
        :paramtype category: str
        :keyword endpoints:
        :paramtype endpoints: list[~azure.mgmt.machinelearningservices.models.FQDNEndpoint]
        """
        super().__init__(**kwargs)
        self.category = category
        self.endpoints = endpoints


class GridSamplingAlgorithm(SamplingAlgorithm):
    """Defines a Sampling Algorithm that exhaustively generates every value combination in the space.

    All required parameters must be populated in order to send to Azure.

    :ivar sampling_algorithm_type: [Required] The algorithm used for generating hyperparameter
     values, along with configuration properties. Required. Known values are: "Grid", "Random", and
     "Bayesian".
    :vartype sampling_algorithm_type: str or
     ~azure.mgmt.machinelearningservices.models.SamplingAlgorithmType
    """

    _validation = {
        "sampling_algorithm_type": {"required": True},
    }

    _attribute_map = {
        "sampling_algorithm_type": {"key": "samplingAlgorithmType", "type": "str"},
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.sampling_algorithm_type: str = "Grid"


class HDInsightSchema(_serialization.Model):
    """HDInsightSchema.

    :ivar properties: HDInsight compute properties.
    :vartype properties: ~azure.mgmt.machinelearningservices.models.HDInsightProperties
    """

    _attribute_map = {
        "properties": {"key": "properties", "type": "HDInsightProperties"},
    }

    def __init__(self, *, properties: Optional["_models.HDInsightProperties"] = None, **kwargs: Any) -> None:
        """
        :keyword properties: HDInsight compute properties.
        :paramtype properties: ~azure.mgmt.machinelearningservices.models.HDInsightProperties
        """
        super().__init__(**kwargs)
        self.properties = properties


class HDInsight(Compute, HDInsightSchema):  # pylint: disable=too-many-instance-attributes
    """A HDInsight compute.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar properties: HDInsight compute properties.
    :vartype properties: ~azure.mgmt.machinelearningservices.models.HDInsightProperties
    :ivar compute_type: The type of compute. Required. Known values are: "AKS", "Kubernetes",
     "AmlCompute", "ComputeInstance", "DataFactory", "VirtualMachine", "HDInsight", "Databricks",
     "DataLakeAnalytics", and "SynapseSpark".
    :vartype compute_type: str or ~azure.mgmt.machinelearningservices.models.ComputeType
    :ivar compute_location: Location for the underlying compute.
    :vartype compute_location: str
    :ivar provisioning_state: The provision state of the cluster. Valid values are Unknown,
     Updating, Provisioning, Succeeded, and Failed. Known values are: "Unknown", "Updating",
     "Creating", "Deleting", "Succeeded", "Failed", and "Canceled".
    :vartype provisioning_state: str or
     ~azure.mgmt.machinelearningservices.models.ProvisioningState
    :ivar description: The description of the Machine Learning compute.
    :vartype description: str
    :ivar created_on: The time at which the compute was created.
    :vartype created_on: ~datetime.datetime
    :ivar modified_on: The time at which the compute was last modified.
    :vartype modified_on: ~datetime.datetime
    :ivar resource_id: ARM resource id of the underlying compute.
    :vartype resource_id: str
    :ivar provisioning_errors: Errors during provisioning.
    :vartype provisioning_errors: list[~azure.mgmt.machinelearningservices.models.ErrorResponse]
    :ivar is_attached_compute: Indicating whether the compute was provisioned by user and brought
     from outside if true, or machine learning service provisioned it if false.
    :vartype is_attached_compute: bool
    :ivar disable_local_auth: Opt-out of local authentication and ensure customers can use only MSI
     and AAD exclusively for authentication.
    :vartype disable_local_auth: bool
    """

    _validation = {
        "compute_type": {"required": True},
        "provisioning_state": {"readonly": True},
        "created_on": {"readonly": True},
        "modified_on": {"readonly": True},
        "provisioning_errors": {"readonly": True},
        "is_attached_compute": {"readonly": True},
    }

    _attribute_map = {
        "properties": {"key": "properties", "type": "HDInsightProperties"},
        "compute_type": {"key": "computeType", "type": "str"},
        "compute_location": {"key": "computeLocation", "type": "str"},
        "provisioning_state": {"key": "provisioningState", "type": "str"},
        "description": {"key": "description", "type": "str"},
        "created_on": {"key": "createdOn", "type": "iso-8601"},
        "modified_on": {"key": "modifiedOn", "type": "iso-8601"},
        "resource_id": {"key": "resourceId", "type": "str"},
        "provisioning_errors": {"key": "provisioningErrors", "type": "[ErrorResponse]"},
        "is_attached_compute": {"key": "isAttachedCompute", "type": "bool"},
        "disable_local_auth": {"key": "disableLocalAuth", "type": "bool"},
    }

    def __init__(
        self,
        *,
        properties: Optional["_models.HDInsightProperties"] = None,
        compute_location: Optional[str] = None,
        description: Optional[str] = None,
        resource_id: Optional[str] = None,
        disable_local_auth: Optional[bool] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword properties: HDInsight compute properties.
        :paramtype properties: ~azure.mgmt.machinelearningservices.models.HDInsightProperties
        :keyword compute_location: Location for the underlying compute.
        :paramtype compute_location: str
        :keyword description: The description of the Machine Learning compute.
        :paramtype description: str
        :keyword resource_id: ARM resource id of the underlying compute.
        :paramtype resource_id: str
        :keyword disable_local_auth: Opt-out of local authentication and ensure customers can use only
         MSI and AAD exclusively for authentication.
        :paramtype disable_local_auth: bool
        """
        super().__init__(
            compute_location=compute_location,
            description=description,
            resource_id=resource_id,
            disable_local_auth=disable_local_auth,
            properties=properties,
            **kwargs
        )
        self.properties = properties
        self.compute_type: str = "HDInsight"
        self.compute_location = compute_location
        self.provisioning_state = None
        self.description = description
        self.created_on = None
        self.modified_on = None
        self.resource_id = resource_id
        self.provisioning_errors = None
        self.is_attached_compute = None
        self.disable_local_auth = disable_local_auth


class HDInsightProperties(_serialization.Model):
    """HDInsight compute properties.

    :ivar ssh_port: Port open for ssh connections on the master node of the cluster.
    :vartype ssh_port: int
    :ivar address: Public IP address of the master node of the cluster.
    :vartype address: str
    :ivar administrator_account: Admin credentials for master node of the cluster.
    :vartype administrator_account:
     ~azure.mgmt.machinelearningservices.models.VirtualMachineSshCredentials
    """

    _attribute_map = {
        "ssh_port": {"key": "sshPort", "type": "int"},
        "address": {"key": "address", "type": "str"},
        "administrator_account": {"key": "administratorAccount", "type": "VirtualMachineSshCredentials"},
    }

    def __init__(
        self,
        *,
        ssh_port: Optional[int] = None,
        address: Optional[str] = None,
        administrator_account: Optional["_models.VirtualMachineSshCredentials"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword ssh_port: Port open for ssh connections on the master node of the cluster.
        :paramtype ssh_port: int
        :keyword address: Public IP address of the master node of the cluster.
        :paramtype address: str
        :keyword administrator_account: Admin credentials for master node of the cluster.
        :paramtype administrator_account:
         ~azure.mgmt.machinelearningservices.models.VirtualMachineSshCredentials
        """
        super().__init__(**kwargs)
        self.ssh_port = ssh_port
        self.address = address
        self.administrator_account = administrator_account


class IdAssetReference(AssetReferenceBase):
    """Reference to an asset via its ARM resource ID.

    All required parameters must be populated in order to send to Azure.

    :ivar reference_type: [Required] Specifies the type of asset reference. Required. Known values
     are: "Id", "DataPath", and "OutputPath".
    :vartype reference_type: str or ~azure.mgmt.machinelearningservices.models.ReferenceType
    :ivar asset_id: [Required] ARM resource ID of the asset. Required.
    :vartype asset_id: str
    """

    _validation = {
        "reference_type": {"required": True},
        "asset_id": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"},
    }

    _attribute_map = {
        "reference_type": {"key": "referenceType", "type": "str"},
        "asset_id": {"key": "assetId", "type": "str"},
    }

    def __init__(self, *, asset_id: str, **kwargs: Any) -> None:
        """
        :keyword asset_id: [Required] ARM resource ID of the asset. Required.
        :paramtype asset_id: str
        """
        super().__init__(**kwargs)
        self.reference_type: str = "Id"
        self.asset_id = asset_id


class IdentityForCmk(_serialization.Model):
    """Identity that will be used to access key vault for encryption at rest.

    :ivar user_assigned_identity: The ArmId of the user assigned identity that will be used to
     access the customer managed key vault.
    :vartype user_assigned_identity: str
    """

    _attribute_map = {
        "user_assigned_identity": {"key": "userAssignedIdentity", "type": "str"},
    }

    def __init__(self, *, user_assigned_identity: Optional[str] = None, **kwargs: Any) -> None:
        """
        :keyword user_assigned_identity: The ArmId of the user assigned identity that will be used to
         access the customer managed key vault.
        :paramtype user_assigned_identity: str
        """
        super().__init__(**kwargs)
        self.user_assigned_identity = user_assigned_identity


class IdleShutdownSetting(_serialization.Model):
    """Stops compute instance after user defined period of inactivity.

    :ivar idle_time_before_shutdown: Time is defined in ISO8601 format. Minimum is 15 min, maximum
     is 3 days.
    :vartype idle_time_before_shutdown: str
    """

    _attribute_map = {
        "idle_time_before_shutdown": {"key": "idleTimeBeforeShutdown", "type": "str"},
    }

    def __init__(self, *, idle_time_before_shutdown: Optional[str] = None, **kwargs: Any) -> None:
        """
        :keyword idle_time_before_shutdown: Time is defined in ISO8601 format. Minimum is 15 min,
         maximum is 3 days.
        :paramtype idle_time_before_shutdown: str
        """
        super().__init__(**kwargs)
        self.idle_time_before_shutdown = idle_time_before_shutdown


class Image(_serialization.Model):
    """Describes the Image Specifications.

    :ivar additional_properties: Unmatched properties from the message are deserialized to this
     collection.
    :vartype additional_properties: dict[str, any]
    :ivar type: Type of the image. Possible values are: docker - For docker images. azureml - For
     AzureML images. Known values are: "docker" and "azureml".
    :vartype type: str or ~azure.mgmt.machinelearningservices.models.ImageType
    :ivar reference: Image reference.
    :vartype reference: str
    """

    _attribute_map = {
        "additional_properties": {"key": "", "type": "{object}"},
        "type": {"key": "type", "type": "str"},
        "reference": {"key": "reference", "type": "str"},
    }

    def __init__(
        self,
        *,
        additional_properties: Optional[Dict[str, Any]] = None,
        type: Union[str, "_models.ImageType"] = "docker",
        reference: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword additional_properties: Unmatched properties from the message are deserialized to this
         collection.
        :paramtype additional_properties: dict[str, any]
        :keyword type: Type of the image. Possible values are: docker - For docker images. azureml -
         For AzureML images. Known values are: "docker" and "azureml".
        :paramtype type: str or ~azure.mgmt.machinelearningservices.models.ImageType
        :keyword reference: Image reference.
        :paramtype reference: str
        """
        super().__init__(**kwargs)
        self.additional_properties = additional_properties
        self.type = type
        self.reference = reference


class ImageVertical(_serialization.Model):
    """Abstract class for AutoML tasks that train image (computer vision) models -
    such as Image Classification / Image Classification Multilabel / Image Object Detection / Image
    Instance Segmentation.

    All required parameters must be populated in order to send to Azure.

    :ivar limit_settings: [Required] Limit settings for the AutoML job. Required.
    :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings
    :ivar sweep_settings: Model sweeping and hyperparameter sweeping related settings.
    :vartype sweep_settings: ~azure.mgmt.machinelearningservices.models.ImageSweepSettings
    :ivar validation_data: Validation data inputs.
    :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
    :ivar validation_data_size: The fraction of training dataset that needs to be set aside for
     validation purpose.
     Values between (0.0 , 1.0)
     Applied when validation dataset is not provided.
    :vartype validation_data_size: float
    """

    _validation = {
        "limit_settings": {"required": True},
    }

    _attribute_map = {
        "limit_settings": {"key": "limitSettings", "type": "ImageLimitSettings"},
        "sweep_settings": {"key": "sweepSettings", "type": "ImageSweepSettings"},
        "validation_data": {"key": "validationData", "type": "MLTableJobInput"},
        "validation_data_size": {"key": "validationDataSize", "type": "float"},
    }

    def __init__(
        self,
        *,
        limit_settings: "_models.ImageLimitSettings",
        sweep_settings: Optional["_models.ImageSweepSettings"] = None,
        validation_data: Optional["_models.MLTableJobInput"] = None,
        validation_data_size: Optional[float] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword limit_settings: [Required] Limit settings for the AutoML job. Required.
        :paramtype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings
        :keyword sweep_settings: Model sweeping and hyperparameter sweeping related settings.
        :paramtype sweep_settings: ~azure.mgmt.machinelearningservices.models.ImageSweepSettings
        :keyword validation_data: Validation data inputs.
        :paramtype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
        :keyword validation_data_size: The fraction of training dataset that needs to be set aside for
         validation purpose.
         Values between (0.0 , 1.0)
         Applied when validation dataset is not provided.
        :paramtype validation_data_size: float
        """
        super().__init__(**kwargs)
        self.limit_settings = limit_settings
        self.sweep_settings = sweep_settings
        self.validation_data = validation_data
        self.validation_data_size = validation_data_size


class ImageClassificationBase(ImageVertical):
    """ImageClassificationBase.

    All required parameters must be populated in order to send to Azure.

    :ivar limit_settings: [Required] Limit settings for the AutoML job. Required.
    :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings
    :ivar sweep_settings: Model sweeping and hyperparameter sweeping related settings.
    :vartype sweep_settings: ~azure.mgmt.machinelearningservices.models.ImageSweepSettings
    :ivar validation_data: Validation data inputs.
    :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
    :ivar validation_data_size: The fraction of training dataset that needs to be set aside for
     validation purpose.
     Values between (0.0 , 1.0)
     Applied when validation dataset is not provided.
    :vartype validation_data_size: float
    :ivar model_settings: Settings used for training the model.
    :vartype model_settings:
     ~azure.mgmt.machinelearningservices.models.ImageModelSettingsClassification
    :ivar search_space: Search space for sampling different combinations of models and their
     hyperparameters.
    :vartype search_space:
     list[~azure.mgmt.machinelearningservices.models.ImageModelDistributionSettingsClassification]
    """

    _validation = {
        "limit_settings": {"required": True},
    }

    _attribute_map = {
        "limit_settings": {"key": "limitSettings", "type": "ImageLimitSettings"},
        "sweep_settings": {"key": "sweepSettings", "type": "ImageSweepSettings"},
        "validation_data": {"key": "validationData", "type": "MLTableJobInput"},
        "validation_data_size": {"key": "validationDataSize", "type": "float"},
        "model_settings": {"key": "modelSettings", "type": "ImageModelSettingsClassification"},
        "search_space": {"key": "searchSpace", "type": "[ImageModelDistributionSettingsClassification]"},
    }

    def __init__(
        self,
        *,
        limit_settings: "_models.ImageLimitSettings",
        sweep_settings: Optional["_models.ImageSweepSettings"] = None,
        validation_data: Optional["_models.MLTableJobInput"] = None,
        validation_data_size: Optional[float] = None,
        model_settings: Optional["_models.ImageModelSettingsClassification"] = None,
        search_space: Optional[List["_models.ImageModelDistributionSettingsClassification"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword limit_settings: [Required] Limit settings for the AutoML job. Required.
        :paramtype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings
        :keyword sweep_settings: Model sweeping and hyperparameter sweeping related settings.
        :paramtype sweep_settings: ~azure.mgmt.machinelearningservices.models.ImageSweepSettings
        :keyword validation_data: Validation data inputs.
        :paramtype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
        :keyword validation_data_size: The fraction of training dataset that needs to be set aside for
         validation purpose.
         Values between (0.0 , 1.0)
         Applied when validation dataset is not provided.
        :paramtype validation_data_size: float
        :keyword model_settings: Settings used for training the model.
        :paramtype model_settings:
         ~azure.mgmt.machinelearningservices.models.ImageModelSettingsClassification
        :keyword search_space: Search space for sampling different combinations of models and their
         hyperparameters.
        :paramtype search_space:
         list[~azure.mgmt.machinelearningservices.models.ImageModelDistributionSettingsClassification]
        """
        super().__init__(
            limit_settings=limit_settings,
            sweep_settings=sweep_settings,
            validation_data=validation_data,
            validation_data_size=validation_data_size,
            **kwargs
        )
        self.model_settings = model_settings
        self.search_space = search_space


class ImageClassification(ImageClassificationBase, AutoMLVertical):  # pylint: disable=too-many-instance-attributes
    """Image Classification. Multi-class image classification is used when an image is classified with
    only a single label
    from a set of classes - e.g. each image is classified as either an image of a 'cat' or a 'dog'
    or a 'duck'.

    All required parameters must be populated in order to send to Azure.

    :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info",
     "Warning", "Error", and "Critical".
    :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity
    :ivar target_column_name: Target column name: This is prediction values column.
     Also known as label column name in context of classification tasks.
    :vartype target_column_name: str
    :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are:
     "Classification", "Regression", "Forecasting", "ImageClassification",
     "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation",
     "TextClassification", "TextClassificationMultilabel", and "TextNER".
    :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType
    :ivar training_data: [Required] Training data input. Required.
    :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
    :ivar limit_settings: [Required] Limit settings for the AutoML job. Required.
    :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings
    :ivar sweep_settings: Model sweeping and hyperparameter sweeping related settings.
    :vartype sweep_settings: ~azure.mgmt.machinelearningservices.models.ImageSweepSettings
    :ivar validation_data: Validation data inputs.
    :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
    :ivar validation_data_size: The fraction of training dataset that needs to be set aside for
     validation purpose.
     Values between (0.0 , 1.0)
     Applied when validation dataset is not provided.
    :vartype validation_data_size: float
    :ivar model_settings: Settings used for training the model.
    :vartype model_settings:
     ~azure.mgmt.machinelearningservices.models.ImageModelSettingsClassification
    :ivar search_space: Search space for sampling different combinations of models and their
     hyperparameters.
    :vartype search_space:
     list[~azure.mgmt.machinelearningservices.models.ImageModelDistributionSettingsClassification]
    :ivar primary_metric: Primary metric to optimize for this task. Known values are:
     "AUCWeighted", "Accuracy", "NormMacroRecall", "AveragePrecisionScoreWeighted", and
     "PrecisionScoreWeighted".
    :vartype primary_metric: str or
     ~azure.mgmt.machinelearningservices.models.ClassificationPrimaryMetrics
    """

    _validation = {
        "task_type": {"required": True},
        "training_data": {"required": True},
        "limit_settings": {"required": True},
    }

    _attribute_map = {
        "log_verbosity": {"key": "logVerbosity", "type": "str"},
        "target_column_name": {"key": "targetColumnName", "type": "str"},
        "task_type": {"key": "taskType", "type": "str"},
        "training_data": {"key": "trainingData", "type": "MLTableJobInput"},
        "limit_settings": {"key": "limitSettings", "type": "ImageLimitSettings"},
        "sweep_settings": {"key": "sweepSettings", "type": "ImageSweepSettings"},
        "validation_data": {"key": "validationData", "type": "MLTableJobInput"},
        "validation_data_size": {"key": "validationDataSize", "type": "float"},
        "model_settings": {"key": "modelSettings", "type": "ImageModelSettingsClassification"},
        "search_space": {"key": "searchSpace", "type": "[ImageModelDistributionSettingsClassification]"},
        "primary_metric": {"key": "primaryMetric", "type": "str"},
    }

    def __init__(
        self,
        *,
        training_data: "_models.MLTableJobInput",
        limit_settings: "_models.ImageLimitSettings",
        log_verbosity: Optional[Union[str, "_models.LogVerbosity"]] = None,
        target_column_name: Optional[str] = None,
        sweep_settings: Optional["_models.ImageSweepSettings"] = None,
        validation_data: Optional["_models.MLTableJobInput"] = None,
        validation_data_size: Optional[float] = None,
        model_settings: Optional["_models.ImageModelSettingsClassification"] = None,
        search_space: Optional[List["_models.ImageModelDistributionSettingsClassification"]] = None,
        primary_metric: Optional[Union[str, "_models.ClassificationPrimaryMetrics"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info",
         "Warning", "Error", and "Critical".
        :paramtype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity
        :keyword target_column_name: Target column name: This is prediction values column.
         Also known as label column name in context of classification tasks.
        :paramtype target_column_name: str
        :keyword training_data: [Required] Training data input. Required.
        :paramtype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
        :keyword limit_settings: [Required] Limit settings for the AutoML job. Required.
        :paramtype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings
        :keyword sweep_settings: Model sweeping and hyperparameter sweeping related settings.
        :paramtype sweep_settings: ~azure.mgmt.machinelearningservices.models.ImageSweepSettings
        :keyword validation_data: Validation data inputs.
        :paramtype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
        :keyword validation_data_size: The fraction of training dataset that needs to be set aside for
         validation purpose.
         Values between (0.0 , 1.0)
         Applied when validation dataset is not provided.
        :paramtype validation_data_size: float
        :keyword model_settings: Settings used for training the model.
        :paramtype model_settings:
         ~azure.mgmt.machinelearningservices.models.ImageModelSettingsClassification
        :keyword search_space: Search space for sampling different combinations of models and their
         hyperparameters.
        :paramtype search_space:
         list[~azure.mgmt.machinelearningservices.models.ImageModelDistributionSettingsClassification]
        :keyword primary_metric: Primary metric to optimize for this task. Known values are:
         "AUCWeighted", "Accuracy", "NormMacroRecall", "AveragePrecisionScoreWeighted", and
         "PrecisionScoreWeighted".
        :paramtype primary_metric: str or
         ~azure.mgmt.machinelearningservices.models.ClassificationPrimaryMetrics
        """
        super().__init__(
            limit_settings=limit_settings,
            sweep_settings=sweep_settings,
            validation_data=validation_data,
            validation_data_size=validation_data_size,
            model_settings=model_settings,
            search_space=search_space,
            log_verbosity=log_verbosity,
            target_column_name=target_column_name,
            training_data=training_data,
            **kwargs
        )
        self.log_verbosity = log_verbosity
        self.target_column_name = target_column_name
        self.task_type: str = "ImageClassification"
        self.training_data = training_data
        self.primary_metric = primary_metric
        self.limit_settings = limit_settings
        self.sweep_settings = sweep_settings
        self.validation_data = validation_data
        self.validation_data_size = validation_data_size
        self.model_settings = model_settings
        self.search_space = search_space


class ImageClassificationMultilabel(
    ImageClassificationBase, AutoMLVertical
):  # pylint: disable=too-many-instance-attributes
    """Image Classification Multilabel. Multi-label image classification is used when an image could
    have one or more labels
    from a set of labels - e.g. an image could be labeled with both 'cat' and 'dog'.

    All required parameters must be populated in order to send to Azure.

    :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info",
     "Warning", "Error", and "Critical".
    :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity
    :ivar target_column_name: Target column name: This is prediction values column.
     Also known as label column name in context of classification tasks.
    :vartype target_column_name: str
    :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are:
     "Classification", "Regression", "Forecasting", "ImageClassification",
     "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation",
     "TextClassification", "TextClassificationMultilabel", and "TextNER".
    :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType
    :ivar training_data: [Required] Training data input. Required.
    :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
    :ivar limit_settings: [Required] Limit settings for the AutoML job. Required.
    :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings
    :ivar sweep_settings: Model sweeping and hyperparameter sweeping related settings.
    :vartype sweep_settings: ~azure.mgmt.machinelearningservices.models.ImageSweepSettings
    :ivar validation_data: Validation data inputs.
    :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
    :ivar validation_data_size: The fraction of training dataset that needs to be set aside for
     validation purpose.
     Values between (0.0 , 1.0)
     Applied when validation dataset is not provided.
    :vartype validation_data_size: float
    :ivar model_settings: Settings used for training the model.
    :vartype model_settings:
     ~azure.mgmt.machinelearningservices.models.ImageModelSettingsClassification
    :ivar search_space: Search space for sampling different combinations of models and their
     hyperparameters.
    :vartype search_space:
     list[~azure.mgmt.machinelearningservices.models.ImageModelDistributionSettingsClassification]
    :ivar primary_metric: Primary metric to optimize for this task. Known values are:
     "AUCWeighted", "Accuracy", "NormMacroRecall", "AveragePrecisionScoreWeighted",
     "PrecisionScoreWeighted", and "IOU".
    :vartype primary_metric: str or
     ~azure.mgmt.machinelearningservices.models.ClassificationMultilabelPrimaryMetrics
    """

    _validation = {
        "task_type": {"required": True},
        "training_data": {"required": True},
        "limit_settings": {"required": True},
    }

    _attribute_map = {
        "log_verbosity": {"key": "logVerbosity", "type": "str"},
        "target_column_name": {"key": "targetColumnName", "type": "str"},
        "task_type": {"key": "taskType", "type": "str"},
        "training_data": {"key": "trainingData", "type": "MLTableJobInput"},
        "limit_settings": {"key": "limitSettings", "type": "ImageLimitSettings"},
        "sweep_settings": {"key": "sweepSettings", "type": "ImageSweepSettings"},
        "validation_data": {"key": "validationData", "type": "MLTableJobInput"},
        "validation_data_size": {"key": "validationDataSize", "type": "float"},
        "model_settings": {"key": "modelSettings", "type": "ImageModelSettingsClassification"},
        "search_space": {"key": "searchSpace", "type": "[ImageModelDistributionSettingsClassification]"},
        "primary_metric": {"key": "primaryMetric", "type": "str"},
    }

    def __init__(
        self,
        *,
        training_data: "_models.MLTableJobInput",
        limit_settings: "_models.ImageLimitSettings",
        log_verbosity: Optional[Union[str, "_models.LogVerbosity"]] = None,
        target_column_name: Optional[str] = None,
        sweep_settings: Optional["_models.ImageSweepSettings"] = None,
        validation_data: Optional["_models.MLTableJobInput"] = None,
        validation_data_size: Optional[float] = None,
        model_settings: Optional["_models.ImageModelSettingsClassification"] = None,
        search_space: Optional[List["_models.ImageModelDistributionSettingsClassification"]] = None,
        primary_metric: Optional[Union[str, "_models.ClassificationMultilabelPrimaryMetrics"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info",
         "Warning", "Error", and "Critical".
        :paramtype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity
        :keyword target_column_name: Target column name: This is prediction values column.
         Also known as label column name in context of classification tasks.
        :paramtype target_column_name: str
        :keyword training_data: [Required] Training data input. Required.
        :paramtype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
        :keyword limit_settings: [Required] Limit settings for the AutoML job. Required.
        :paramtype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings
        :keyword sweep_settings: Model sweeping and hyperparameter sweeping related settings.
        :paramtype sweep_settings: ~azure.mgmt.machinelearningservices.models.ImageSweepSettings
        :keyword validation_data: Validation data inputs.
        :paramtype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
        :keyword validation_data_size: The fraction of training dataset that needs to be set aside for
         validation purpose.
         Values between (0.0 , 1.0)
         Applied when validation dataset is not provided.
        :paramtype validation_data_size: float
        :keyword model_settings: Settings used for training the model.
        :paramtype model_settings:
         ~azure.mgmt.machinelearningservices.models.ImageModelSettingsClassification
        :keyword search_space: Search space for sampling different combinations of models and their
         hyperparameters.
        :paramtype search_space:
         list[~azure.mgmt.machinelearningservices.models.ImageModelDistributionSettingsClassification]
        :keyword primary_metric: Primary metric to optimize for this task. Known values are:
         "AUCWeighted", "Accuracy", "NormMacroRecall", "AveragePrecisionScoreWeighted",
         "PrecisionScoreWeighted", and "IOU".
        :paramtype primary_metric: str or
         ~azure.mgmt.machinelearningservices.models.ClassificationMultilabelPrimaryMetrics
        """
        super().__init__(
            limit_settings=limit_settings,
            sweep_settings=sweep_settings,
            validation_data=validation_data,
            validation_data_size=validation_data_size,
            model_settings=model_settings,
            search_space=search_space,
            log_verbosity=log_verbosity,
            target_column_name=target_column_name,
            training_data=training_data,
            **kwargs
        )
        self.log_verbosity = log_verbosity
        self.target_column_name = target_column_name
        self.task_type: str = "ImageClassificationMultilabel"
        self.training_data = training_data
        self.primary_metric = primary_metric
        self.limit_settings = limit_settings
        self.sweep_settings = sweep_settings
        self.validation_data = validation_data
        self.validation_data_size = validation_data_size
        self.model_settings = model_settings
        self.search_space = search_space


class ImageObjectDetectionBase(ImageVertical):
    """ImageObjectDetectionBase.

    All required parameters must be populated in order to send to Azure.

    :ivar limit_settings: [Required] Limit settings for the AutoML job. Required.
    :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings
    :ivar sweep_settings: Model sweeping and hyperparameter sweeping related settings.
    :vartype sweep_settings: ~azure.mgmt.machinelearningservices.models.ImageSweepSettings
    :ivar validation_data: Validation data inputs.
    :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
    :ivar validation_data_size: The fraction of training dataset that needs to be set aside for
     validation purpose.
     Values between (0.0 , 1.0)
     Applied when validation dataset is not provided.
    :vartype validation_data_size: float
    :ivar model_settings: Settings used for training the model.
    :vartype model_settings:
     ~azure.mgmt.machinelearningservices.models.ImageModelSettingsObjectDetection
    :ivar search_space: Search space for sampling different combinations of models and their
     hyperparameters.
    :vartype search_space:
     list[~azure.mgmt.machinelearningservices.models.ImageModelDistributionSettingsObjectDetection]
    """

    _validation = {
        "limit_settings": {"required": True},
    }

    _attribute_map = {
        "limit_settings": {"key": "limitSettings", "type": "ImageLimitSettings"},
        "sweep_settings": {"key": "sweepSettings", "type": "ImageSweepSettings"},
        "validation_data": {"key": "validationData", "type": "MLTableJobInput"},
        "validation_data_size": {"key": "validationDataSize", "type": "float"},
        "model_settings": {"key": "modelSettings", "type": "ImageModelSettingsObjectDetection"},
        "search_space": {"key": "searchSpace", "type": "[ImageModelDistributionSettingsObjectDetection]"},
    }

    def __init__(
        self,
        *,
        limit_settings: "_models.ImageLimitSettings",
        sweep_settings: Optional["_models.ImageSweepSettings"] = None,
        validation_data: Optional["_models.MLTableJobInput"] = None,
        validation_data_size: Optional[float] = None,
        model_settings: Optional["_models.ImageModelSettingsObjectDetection"] = None,
        search_space: Optional[List["_models.ImageModelDistributionSettingsObjectDetection"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword limit_settings: [Required] Limit settings for the AutoML job. Required.
        :paramtype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings
        :keyword sweep_settings: Model sweeping and hyperparameter sweeping related settings.
        :paramtype sweep_settings: ~azure.mgmt.machinelearningservices.models.ImageSweepSettings
        :keyword validation_data: Validation data inputs.
        :paramtype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
        :keyword validation_data_size: The fraction of training dataset that needs to be set aside for
         validation purpose.
         Values between (0.0 , 1.0)
         Applied when validation dataset is not provided.
        :paramtype validation_data_size: float
        :keyword model_settings: Settings used for training the model.
        :paramtype model_settings:
         ~azure.mgmt.machinelearningservices.models.ImageModelSettingsObjectDetection
        :keyword search_space: Search space for sampling different combinations of models and their
         hyperparameters.
        :paramtype search_space:
         list[~azure.mgmt.machinelearningservices.models.ImageModelDistributionSettingsObjectDetection]
        """
        super().__init__(
            limit_settings=limit_settings,
            sweep_settings=sweep_settings,
            validation_data=validation_data,
            validation_data_size=validation_data_size,
            **kwargs
        )
        self.model_settings = model_settings
        self.search_space = search_space


class ImageInstanceSegmentation(
    ImageObjectDetectionBase, AutoMLVertical
):  # pylint: disable=too-many-instance-attributes
    """Image Instance Segmentation. Instance segmentation is used to identify objects in an image at
    the pixel level,
    drawing a polygon around each object in the image.

    All required parameters must be populated in order to send to Azure.

    :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info",
     "Warning", "Error", and "Critical".
    :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity
    :ivar target_column_name: Target column name: This is prediction values column.
     Also known as label column name in context of classification tasks.
    :vartype target_column_name: str
    :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are:
     "Classification", "Regression", "Forecasting", "ImageClassification",
     "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation",
     "TextClassification", "TextClassificationMultilabel", and "TextNER".
    :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType
    :ivar training_data: [Required] Training data input. Required.
    :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
    :ivar limit_settings: [Required] Limit settings for the AutoML job. Required.
    :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings
    :ivar sweep_settings: Model sweeping and hyperparameter sweeping related settings.
    :vartype sweep_settings: ~azure.mgmt.machinelearningservices.models.ImageSweepSettings
    :ivar validation_data: Validation data inputs.
    :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
    :ivar validation_data_size: The fraction of training dataset that needs to be set aside for
     validation purpose.
     Values between (0.0 , 1.0)
     Applied when validation dataset is not provided.
    :vartype validation_data_size: float
    :ivar model_settings: Settings used for training the model.
    :vartype model_settings:
     ~azure.mgmt.machinelearningservices.models.ImageModelSettingsObjectDetection
    :ivar search_space: Search space for sampling different combinations of models and their
     hyperparameters.
    :vartype search_space:
     list[~azure.mgmt.machinelearningservices.models.ImageModelDistributionSettingsObjectDetection]
    :ivar primary_metric: Primary metric to optimize for this task. "MeanAveragePrecision"
    :vartype primary_metric: str or
     ~azure.mgmt.machinelearningservices.models.InstanceSegmentationPrimaryMetrics
    """

    _validation = {
        "task_type": {"required": True},
        "training_data": {"required": True},
        "limit_settings": {"required": True},
    }

    _attribute_map = {
        "log_verbosity": {"key": "logVerbosity", "type": "str"},
        "target_column_name": {"key": "targetColumnName", "type": "str"},
        "task_type": {"key": "taskType", "type": "str"},
        "training_data": {"key": "trainingData", "type": "MLTableJobInput"},
        "limit_settings": {"key": "limitSettings", "type": "ImageLimitSettings"},
        "sweep_settings": {"key": "sweepSettings", "type": "ImageSweepSettings"},
        "validation_data": {"key": "validationData", "type": "MLTableJobInput"},
        "validation_data_size": {"key": "validationDataSize", "type": "float"},
        "model_settings": {"key": "modelSettings", "type": "ImageModelSettingsObjectDetection"},
        "search_space": {"key": "searchSpace", "type": "[ImageModelDistributionSettingsObjectDetection]"},
        "primary_metric": {"key": "primaryMetric", "type": "str"},
    }

    def __init__(
        self,
        *,
        training_data: "_models.MLTableJobInput",
        limit_settings: "_models.ImageLimitSettings",
        log_verbosity: Optional[Union[str, "_models.LogVerbosity"]] = None,
        target_column_name: Optional[str] = None,
        sweep_settings: Optional["_models.ImageSweepSettings"] = None,
        validation_data: Optional["_models.MLTableJobInput"] = None,
        validation_data_size: Optional[float] = None,
        model_settings: Optional["_models.ImageModelSettingsObjectDetection"] = None,
        search_space: Optional[List["_models.ImageModelDistributionSettingsObjectDetection"]] = None,
        primary_metric: Optional[Union[str, "_models.InstanceSegmentationPrimaryMetrics"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info",
         "Warning", "Error", and "Critical".
        :paramtype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity
        :keyword target_column_name: Target column name: This is prediction values column.
         Also known as label column name in context of classification tasks.
        :paramtype target_column_name: str
        :keyword training_data: [Required] Training data input. Required.
        :paramtype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
        :keyword limit_settings: [Required] Limit settings for the AutoML job. Required.
        :paramtype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings
        :keyword sweep_settings: Model sweeping and hyperparameter sweeping related settings.
        :paramtype sweep_settings: ~azure.mgmt.machinelearningservices.models.ImageSweepSettings
        :keyword validation_data: Validation data inputs.
        :paramtype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
        :keyword validation_data_size: The fraction of training dataset that needs to be set aside for
         validation purpose.
         Values between (0.0 , 1.0)
         Applied when validation dataset is not provided.
        :paramtype validation_data_size: float
        :keyword model_settings: Settings used for training the model.
        :paramtype model_settings:
         ~azure.mgmt.machinelearningservices.models.ImageModelSettingsObjectDetection
        :keyword search_space: Search space for sampling different combinations of models and their
         hyperparameters.
        :paramtype search_space:
         list[~azure.mgmt.machinelearningservices.models.ImageModelDistributionSettingsObjectDetection]
        :keyword primary_metric: Primary metric to optimize for this task. "MeanAveragePrecision"
        :paramtype primary_metric: str or
         ~azure.mgmt.machinelearningservices.models.InstanceSegmentationPrimaryMetrics
        """
        super().__init__(
            limit_settings=limit_settings,
            sweep_settings=sweep_settings,
            validation_data=validation_data,
            validation_data_size=validation_data_size,
            model_settings=model_settings,
            search_space=search_space,
            log_verbosity=log_verbosity,
            target_column_name=target_column_name,
            training_data=training_data,
            **kwargs
        )
        self.log_verbosity = log_verbosity
        self.target_column_name = target_column_name
        self.task_type: str = "ImageInstanceSegmentation"
        self.training_data = training_data
        self.primary_metric = primary_metric
        self.limit_settings = limit_settings
        self.sweep_settings = sweep_settings
        self.validation_data = validation_data
        self.validation_data_size = validation_data_size
        self.model_settings = model_settings
        self.search_space = search_space


class ImageLimitSettings(_serialization.Model):
    """Limit settings for the AutoML job.

    :ivar max_concurrent_trials: Maximum number of concurrent AutoML iterations.
    :vartype max_concurrent_trials: int
    :ivar max_trials: Maximum number of AutoML iterations.
    :vartype max_trials: int
    :ivar timeout: AutoML job timeout.
    :vartype timeout: ~datetime.timedelta
    """

    _attribute_map = {
        "max_concurrent_trials": {"key": "maxConcurrentTrials", "type": "int"},
        "max_trials": {"key": "maxTrials", "type": "int"},
        "timeout": {"key": "timeout", "type": "duration"},
    }

    def __init__(
        self, *, max_concurrent_trials: int = 1, max_trials: int = 1, timeout: datetime.timedelta = "P7D", **kwargs: Any
    ) -> None:
        """
        :keyword max_concurrent_trials: Maximum number of concurrent AutoML iterations.
        :paramtype max_concurrent_trials: int
        :keyword max_trials: Maximum number of AutoML iterations.
        :paramtype max_trials: int
        :keyword timeout: AutoML job timeout.
        :paramtype timeout: ~datetime.timedelta
        """
        super().__init__(**kwargs)
        self.max_concurrent_trials = max_concurrent_trials
        self.max_trials = max_trials
        self.timeout = timeout


class ImageMetadata(_serialization.Model):
    """Returns metadata about the operating system image for this compute instance.

    :ivar current_image_version: Specifies the current operating system image version this compute
     instance is running on.
    :vartype current_image_version: str
    :ivar latest_image_version: Specifies the latest available operating system image version.
    :vartype latest_image_version: str
    :ivar is_latest_os_image_version: Specifies whether this compute instance is running on the
     latest operating system image.
    :vartype is_latest_os_image_version: bool
    """

    _attribute_map = {
        "current_image_version": {"key": "currentImageVersion", "type": "str"},
        "latest_image_version": {"key": "latestImageVersion", "type": "str"},
        "is_latest_os_image_version": {"key": "isLatestOsImageVersion", "type": "bool"},
    }

    def __init__(
        self,
        *,
        current_image_version: Optional[str] = None,
        latest_image_version: Optional[str] = None,
        is_latest_os_image_version: Optional[bool] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword current_image_version: Specifies the current operating system image version this
         compute instance is running on.
        :paramtype current_image_version: str
        :keyword latest_image_version: Specifies the latest available operating system image version.
        :paramtype latest_image_version: str
        :keyword is_latest_os_image_version: Specifies whether this compute instance is running on the
         latest operating system image.
        :paramtype is_latest_os_image_version: bool
        """
        super().__init__(**kwargs)
        self.current_image_version = current_image_version
        self.latest_image_version = latest_image_version
        self.is_latest_os_image_version = is_latest_os_image_version


class ImageModelDistributionSettings(_serialization.Model):  # pylint: disable=too-many-instance-attributes
    """Distribution expressions to sweep over values of model settings.

    :code:`<example>
    Some examples are:
    ```
    ModelName = "choice('seresnext', 'resnest50')";
    LearningRate = "uniform(0.001, 0.01)";
    LayersToFreeze = "choice(0, 2)";
    ```</example>`
    All distributions can be specified as distribution_name(min, max) or choice(val1, val2, ...,
    valn)
    where distribution name can be: uniform, quniform, loguniform, etc
    For more details on how to compose distribution expressions please check the documentation:
    https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters
    For more information on the available settings please visit the official documentation:
    https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.

    :ivar ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'.
    :vartype ams_gradient: str
    :ivar augmentations: Settings for using Augmentations.
    :vartype augmentations: str
    :ivar beta1: Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range
     [0, 1].
    :vartype beta1: str
    :ivar beta2: Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range
     [0, 1].
    :vartype beta2: str
    :ivar distributed: Whether to use distributer training.
    :vartype distributed: str
    :ivar early_stopping: Enable early stopping logic during training.
    :vartype early_stopping: str
    :ivar early_stopping_delay: Minimum number of epochs or validation evaluations to wait before
     primary metric improvement
     is tracked for early stopping. Must be a positive integer.
    :vartype early_stopping_delay: str
    :ivar early_stopping_patience: Minimum number of epochs or validation evaluations with no
     primary metric improvement before
     the run is stopped. Must be a positive integer.
    :vartype early_stopping_patience: str
    :ivar enable_onnx_normalization: Enable normalization when exporting ONNX model.
    :vartype enable_onnx_normalization: str
    :ivar evaluation_frequency: Frequency to evaluate validation dataset to get metric scores. Must
     be a positive integer.
    :vartype evaluation_frequency: str
    :ivar gradient_accumulation_step: Gradient accumulation means running a configured number of
     "GradAccumulationStep" steps without
     updating the model weights while accumulating the gradients of those steps, and then using
     the accumulated gradients to compute the weight updates. Must be a positive integer.
    :vartype gradient_accumulation_step: str
    :ivar layers_to_freeze: Number of layers to freeze for the model. Must be a positive integer.
     For instance, passing 2 as value for 'seresnext' means
     freezing layer0 and layer1. For a full list of models supported and details on layer freeze,
     please
     see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
    :vartype layers_to_freeze: str
    :ivar learning_rate: Initial learning rate. Must be a float in the range [0, 1].
    :vartype learning_rate: str
    :ivar learning_rate_scheduler: Type of learning rate scheduler. Must be 'warmup_cosine' or
     'step'.
    :vartype learning_rate_scheduler: str
    :ivar model_name: Name of the model to use for training.
     For more information on the available models please visit the official documentation:
     https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
    :vartype model_name: str
    :ivar momentum: Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1].
    :vartype momentum: str
    :ivar nesterov: Enable nesterov when optimizer is 'sgd'.
    :vartype nesterov: str
    :ivar number_of_epochs: Number of training epochs. Must be a positive integer.
    :vartype number_of_epochs: str
    :ivar number_of_workers: Number of data loader workers. Must be a non-negative integer.
    :vartype number_of_workers: str
    :ivar optimizer: Type of optimizer. Must be either 'sgd', 'adam', or 'adamw'.
    :vartype optimizer: str
    :ivar random_seed: Random seed to be used when using deterministic training.
    :vartype random_seed: str
    :ivar step_lr_gamma: Value of gamma when learning rate scheduler is 'step'. Must be a float in
     the range [0, 1].
    :vartype step_lr_gamma: str
    :ivar step_lr_step_size: Value of step size when learning rate scheduler is 'step'. Must be a
     positive integer.
    :vartype step_lr_step_size: str
    :ivar training_batch_size: Training batch size. Must be a positive integer.
    :vartype training_batch_size: str
    :ivar validation_batch_size: Validation batch size. Must be a positive integer.
    :vartype validation_batch_size: str
    :ivar warmup_cosine_lr_cycles: Value of cosine cycle when learning rate scheduler is
     'warmup_cosine'. Must be a float in the range [0, 1].
    :vartype warmup_cosine_lr_cycles: str
    :ivar warmup_cosine_lr_warmup_epochs: Value of warmup epochs when learning rate scheduler is
     'warmup_cosine'. Must be a positive integer.
    :vartype warmup_cosine_lr_warmup_epochs: str
    :ivar weight_decay: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be
     a float in the range[0, 1].
    :vartype weight_decay: str
    """

    _attribute_map = {
        "ams_gradient": {"key": "amsGradient", "type": "str"},
        "augmentations": {"key": "augmentations", "type": "str"},
        "beta1": {"key": "beta1", "type": "str"},
        "beta2": {"key": "beta2", "type": "str"},
        "distributed": {"key": "distributed", "type": "str"},
        "early_stopping": {"key": "earlyStopping", "type": "str"},
        "early_stopping_delay": {"key": "earlyStoppingDelay", "type": "str"},
        "early_stopping_patience": {"key": "earlyStoppingPatience", "type": "str"},
        "enable_onnx_normalization": {"key": "enableOnnxNormalization", "type": "str"},
        "evaluation_frequency": {"key": "evaluationFrequency", "type": "str"},
        "gradient_accumulation_step": {"key": "gradientAccumulationStep", "type": "str"},
        "layers_to_freeze": {"key": "layersToFreeze", "type": "str"},
        "learning_rate": {"key": "learningRate", "type": "str"},
        "learning_rate_scheduler": {"key": "learningRateScheduler", "type": "str"},
        "model_name": {"key": "modelName", "type": "str"},
        "momentum": {"key": "momentum", "type": "str"},
        "nesterov": {"key": "nesterov", "type": "str"},
        "number_of_epochs": {"key": "numberOfEpochs", "type": "str"},
        "number_of_workers": {"key": "numberOfWorkers", "type": "str"},
        "optimizer": {"key": "optimizer", "type": "str"},
        "random_seed": {"key": "randomSeed", "type": "str"},
        "step_lr_gamma": {"key": "stepLRGamma", "type": "str"},
        "step_lr_step_size": {"key": "stepLRStepSize", "type": "str"},
        "training_batch_size": {"key": "trainingBatchSize", "type": "str"},
        "validation_batch_size": {"key": "validationBatchSize", "type": "str"},
        "warmup_cosine_lr_cycles": {"key": "warmupCosineLRCycles", "type": "str"},
        "warmup_cosine_lr_warmup_epochs": {"key": "warmupCosineLRWarmupEpochs", "type": "str"},
        "weight_decay": {"key": "weightDecay", "type": "str"},
    }

    def __init__(  # pylint: disable=too-many-locals
        self,
        *,
        ams_gradient: Optional[str] = None,
        augmentations: Optional[str] = None,
        beta1: Optional[str] = None,
        beta2: Optional[str] = None,
        distributed: Optional[str] = None,
        early_stopping: Optional[str] = None,
        early_stopping_delay: Optional[str] = None,
        early_stopping_patience: Optional[str] = None,
        enable_onnx_normalization: Optional[str] = None,
        evaluation_frequency: Optional[str] = None,
        gradient_accumulation_step: Optional[str] = None,
        layers_to_freeze: Optional[str] = None,
        learning_rate: Optional[str] = None,
        learning_rate_scheduler: Optional[str] = None,
        model_name: Optional[str] = None,
        momentum: Optional[str] = None,
        nesterov: Optional[str] = None,
        number_of_epochs: Optional[str] = None,
        number_of_workers: Optional[str] = None,
        optimizer: Optional[str] = None,
        random_seed: Optional[str] = None,
        step_lr_gamma: Optional[str] = None,
        step_lr_step_size: Optional[str] = None,
        training_batch_size: Optional[str] = None,
        validation_batch_size: Optional[str] = None,
        warmup_cosine_lr_cycles: Optional[str] = None,
        warmup_cosine_lr_warmup_epochs: Optional[str] = None,
        weight_decay: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'.
        :paramtype ams_gradient: str
        :keyword augmentations: Settings for using Augmentations.
        :paramtype augmentations: str
        :keyword beta1: Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the
         range [0, 1].
        :paramtype beta1: str
        :keyword beta2: Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the
         range [0, 1].
        :paramtype beta2: str
        :keyword distributed: Whether to use distributer training.
        :paramtype distributed: str
        :keyword early_stopping: Enable early stopping logic during training.
        :paramtype early_stopping: str
        :keyword early_stopping_delay: Minimum number of epochs or validation evaluations to wait
         before primary metric improvement
         is tracked for early stopping. Must be a positive integer.
        :paramtype early_stopping_delay: str
        :keyword early_stopping_patience: Minimum number of epochs or validation evaluations with no
         primary metric improvement before
         the run is stopped. Must be a positive integer.
        :paramtype early_stopping_patience: str
        :keyword enable_onnx_normalization: Enable normalization when exporting ONNX model.
        :paramtype enable_onnx_normalization: str
        :keyword evaluation_frequency: Frequency to evaluate validation dataset to get metric scores.
         Must be a positive integer.
        :paramtype evaluation_frequency: str
        :keyword gradient_accumulation_step: Gradient accumulation means running a configured number of
         "GradAccumulationStep" steps without
         updating the model weights while accumulating the gradients of those steps, and then using
         the accumulated gradients to compute the weight updates. Must be a positive integer.
        :paramtype gradient_accumulation_step: str
        :keyword layers_to_freeze: Number of layers to freeze for the model. Must be a positive
         integer.
         For instance, passing 2 as value for 'seresnext' means
         freezing layer0 and layer1. For a full list of models supported and details on layer freeze,
         please
         see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
        :paramtype layers_to_freeze: str
        :keyword learning_rate: Initial learning rate. Must be a float in the range [0, 1].
        :paramtype learning_rate: str
        :keyword learning_rate_scheduler: Type of learning rate scheduler. Must be 'warmup_cosine' or
         'step'.
        :paramtype learning_rate_scheduler: str
        :keyword model_name: Name of the model to use for training.
         For more information on the available models please visit the official documentation:
         https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
        :paramtype model_name: str
        :keyword momentum: Value of momentum when optimizer is 'sgd'. Must be a float in the range [0,
         1].
        :paramtype momentum: str
        :keyword nesterov: Enable nesterov when optimizer is 'sgd'.
        :paramtype nesterov: str
        :keyword number_of_epochs: Number of training epochs. Must be a positive integer.
        :paramtype number_of_epochs: str
        :keyword number_of_workers: Number of data loader workers. Must be a non-negative integer.
        :paramtype number_of_workers: str
        :keyword optimizer: Type of optimizer. Must be either 'sgd', 'adam', or 'adamw'.
        :paramtype optimizer: str
        :keyword random_seed: Random seed to be used when using deterministic training.
        :paramtype random_seed: str
        :keyword step_lr_gamma: Value of gamma when learning rate scheduler is 'step'. Must be a float
         in the range [0, 1].
        :paramtype step_lr_gamma: str
        :keyword step_lr_step_size: Value of step size when learning rate scheduler is 'step'. Must be
         a positive integer.
        :paramtype step_lr_step_size: str
        :keyword training_batch_size: Training batch size. Must be a positive integer.
        :paramtype training_batch_size: str
        :keyword validation_batch_size: Validation batch size. Must be a positive integer.
        :paramtype validation_batch_size: str
        :keyword warmup_cosine_lr_cycles: Value of cosine cycle when learning rate scheduler is
         'warmup_cosine'. Must be a float in the range [0, 1].
        :paramtype warmup_cosine_lr_cycles: str
        :keyword warmup_cosine_lr_warmup_epochs: Value of warmup epochs when learning rate scheduler is
         'warmup_cosine'. Must be a positive integer.
        :paramtype warmup_cosine_lr_warmup_epochs: str
        :keyword weight_decay: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must
         be a float in the range[0, 1].
        :paramtype weight_decay: str
        """
        super().__init__(**kwargs)
        self.ams_gradient = ams_gradient
        self.augmentations = augmentations
        self.beta1 = beta1
        self.beta2 = beta2
        self.distributed = distributed
        self.early_stopping = early_stopping
        self.early_stopping_delay = early_stopping_delay
        self.early_stopping_patience = early_stopping_patience
        self.enable_onnx_normalization = enable_onnx_normalization
        self.evaluation_frequency = evaluation_frequency
        self.gradient_accumulation_step = gradient_accumulation_step
        self.layers_to_freeze = layers_to_freeze
        self.learning_rate = learning_rate
        self.learning_rate_scheduler = learning_rate_scheduler
        self.model_name = model_name
        self.momentum = momentum
        self.nesterov = nesterov
        self.number_of_epochs = number_of_epochs
        self.number_of_workers = number_of_workers
        self.optimizer = optimizer
        self.random_seed = random_seed
        self.step_lr_gamma = step_lr_gamma
        self.step_lr_step_size = step_lr_step_size
        self.training_batch_size = training_batch_size
        self.validation_batch_size = validation_batch_size
        self.warmup_cosine_lr_cycles = warmup_cosine_lr_cycles
        self.warmup_cosine_lr_warmup_epochs = warmup_cosine_lr_warmup_epochs
        self.weight_decay = weight_decay


class ImageModelDistributionSettingsClassification(
    ImageModelDistributionSettings
):  # pylint: disable=too-many-instance-attributes
    """Distribution expressions to sweep over values of model settings.

    :code:`<example>
    Some examples are:
    ```
    ModelName = "choice('seresnext', 'resnest50')";
    LearningRate = "uniform(0.001, 0.01)";
    LayersToFreeze = "choice(0, 2)";
    ```</example>`
    For more details on how to compose distribution expressions please check the documentation:
    https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters
    For more information on the available settings please visit the official documentation:
    https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.

    :ivar ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'.
    :vartype ams_gradient: str
    :ivar augmentations: Settings for using Augmentations.
    :vartype augmentations: str
    :ivar beta1: Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range
     [0, 1].
    :vartype beta1: str
    :ivar beta2: Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range
     [0, 1].
    :vartype beta2: str
    :ivar distributed: Whether to use distributer training.
    :vartype distributed: str
    :ivar early_stopping: Enable early stopping logic during training.
    :vartype early_stopping: str
    :ivar early_stopping_delay: Minimum number of epochs or validation evaluations to wait before
     primary metric improvement
     is tracked for early stopping. Must be a positive integer.
    :vartype early_stopping_delay: str
    :ivar early_stopping_patience: Minimum number of epochs or validation evaluations with no
     primary metric improvement before
     the run is stopped. Must be a positive integer.
    :vartype early_stopping_patience: str
    :ivar enable_onnx_normalization: Enable normalization when exporting ONNX model.
    :vartype enable_onnx_normalization: str
    :ivar evaluation_frequency: Frequency to evaluate validation dataset to get metric scores. Must
     be a positive integer.
    :vartype evaluation_frequency: str
    :ivar gradient_accumulation_step: Gradient accumulation means running a configured number of
     "GradAccumulationStep" steps without
     updating the model weights while accumulating the gradients of those steps, and then using
     the accumulated gradients to compute the weight updates. Must be a positive integer.
    :vartype gradient_accumulation_step: str
    :ivar layers_to_freeze: Number of layers to freeze for the model. Must be a positive integer.
     For instance, passing 2 as value for 'seresnext' means
     freezing layer0 and layer1. For a full list of models supported and details on layer freeze,
     please
     see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
    :vartype layers_to_freeze: str
    :ivar learning_rate: Initial learning rate. Must be a float in the range [0, 1].
    :vartype learning_rate: str
    :ivar learning_rate_scheduler: Type of learning rate scheduler. Must be 'warmup_cosine' or
     'step'.
    :vartype learning_rate_scheduler: str
    :ivar model_name: Name of the model to use for training.
     For more information on the available models please visit the official documentation:
     https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
    :vartype model_name: str
    :ivar momentum: Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1].
    :vartype momentum: str
    :ivar nesterov: Enable nesterov when optimizer is 'sgd'.
    :vartype nesterov: str
    :ivar number_of_epochs: Number of training epochs. Must be a positive integer.
    :vartype number_of_epochs: str
    :ivar number_of_workers: Number of data loader workers. Must be a non-negative integer.
    :vartype number_of_workers: str
    :ivar optimizer: Type of optimizer. Must be either 'sgd', 'adam', or 'adamw'.
    :vartype optimizer: str
    :ivar random_seed: Random seed to be used when using deterministic training.
    :vartype random_seed: str
    :ivar step_lr_gamma: Value of gamma when learning rate scheduler is 'step'. Must be a float in
     the range [0, 1].
    :vartype step_lr_gamma: str
    :ivar step_lr_step_size: Value of step size when learning rate scheduler is 'step'. Must be a
     positive integer.
    :vartype step_lr_step_size: str
    :ivar training_batch_size: Training batch size. Must be a positive integer.
    :vartype training_batch_size: str
    :ivar validation_batch_size: Validation batch size. Must be a positive integer.
    :vartype validation_batch_size: str
    :ivar warmup_cosine_lr_cycles: Value of cosine cycle when learning rate scheduler is
     'warmup_cosine'. Must be a float in the range [0, 1].
    :vartype warmup_cosine_lr_cycles: str
    :ivar warmup_cosine_lr_warmup_epochs: Value of warmup epochs when learning rate scheduler is
     'warmup_cosine'. Must be a positive integer.
    :vartype warmup_cosine_lr_warmup_epochs: str
    :ivar weight_decay: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be
     a float in the range[0, 1].
    :vartype weight_decay: str
    :ivar training_crop_size: Image crop size that is input to the neural network for the training
     dataset. Must be a positive integer.
    :vartype training_crop_size: str
    :ivar validation_crop_size: Image crop size that is input to the neural network for the
     validation dataset. Must be a positive integer.
    :vartype validation_crop_size: str
    :ivar validation_resize_size: Image size to which to resize before cropping for validation
     dataset. Must be a positive integer.
    :vartype validation_resize_size: str
    :ivar weighted_loss: Weighted loss. The accepted values are 0 for no weighted loss.
     1 for weighted loss with sqrt.(class_weights). 2 for weighted loss with class_weights. Must be
     0 or 1 or 2.
    :vartype weighted_loss: str
    """

    _attribute_map = {
        "ams_gradient": {"key": "amsGradient", "type": "str"},
        "augmentations": {"key": "augmentations", "type": "str"},
        "beta1": {"key": "beta1", "type": "str"},
        "beta2": {"key": "beta2", "type": "str"},
        "distributed": {"key": "distributed", "type": "str"},
        "early_stopping": {"key": "earlyStopping", "type": "str"},
        "early_stopping_delay": {"key": "earlyStoppingDelay", "type": "str"},
        "early_stopping_patience": {"key": "earlyStoppingPatience", "type": "str"},
        "enable_onnx_normalization": {"key": "enableOnnxNormalization", "type": "str"},
        "evaluation_frequency": {"key": "evaluationFrequency", "type": "str"},
        "gradient_accumulation_step": {"key": "gradientAccumulationStep", "type": "str"},
        "layers_to_freeze": {"key": "layersToFreeze", "type": "str"},
        "learning_rate": {"key": "learningRate", "type": "str"},
        "learning_rate_scheduler": {"key": "learningRateScheduler", "type": "str"},
        "model_name": {"key": "modelName", "type": "str"},
        "momentum": {"key": "momentum", "type": "str"},
        "nesterov": {"key": "nesterov", "type": "str"},
        "number_of_epochs": {"key": "numberOfEpochs", "type": "str"},
        "number_of_workers": {"key": "numberOfWorkers", "type": "str"},
        "optimizer": {"key": "optimizer", "type": "str"},
        "random_seed": {"key": "randomSeed", "type": "str"},
        "step_lr_gamma": {"key": "stepLRGamma", "type": "str"},
        "step_lr_step_size": {"key": "stepLRStepSize", "type": "str"},
        "training_batch_size": {"key": "trainingBatchSize", "type": "str"},
        "validation_batch_size": {"key": "validationBatchSize", "type": "str"},
        "warmup_cosine_lr_cycles": {"key": "warmupCosineLRCycles", "type": "str"},
        "warmup_cosine_lr_warmup_epochs": {"key": "warmupCosineLRWarmupEpochs", "type": "str"},
        "weight_decay": {"key": "weightDecay", "type": "str"},
        "training_crop_size": {"key": "trainingCropSize", "type": "str"},
        "validation_crop_size": {"key": "validationCropSize", "type": "str"},
        "validation_resize_size": {"key": "validationResizeSize", "type": "str"},
        "weighted_loss": {"key": "weightedLoss", "type": "str"},
    }

    def __init__(  # pylint: disable=too-many-locals
        self,
        *,
        ams_gradient: Optional[str] = None,
        augmentations: Optional[str] = None,
        beta1: Optional[str] = None,
        beta2: Optional[str] = None,
        distributed: Optional[str] = None,
        early_stopping: Optional[str] = None,
        early_stopping_delay: Optional[str] = None,
        early_stopping_patience: Optional[str] = None,
        enable_onnx_normalization: Optional[str] = None,
        evaluation_frequency: Optional[str] = None,
        gradient_accumulation_step: Optional[str] = None,
        layers_to_freeze: Optional[str] = None,
        learning_rate: Optional[str] = None,
        learning_rate_scheduler: Optional[str] = None,
        model_name: Optional[str] = None,
        momentum: Optional[str] = None,
        nesterov: Optional[str] = None,
        number_of_epochs: Optional[str] = None,
        number_of_workers: Optional[str] = None,
        optimizer: Optional[str] = None,
        random_seed: Optional[str] = None,
        step_lr_gamma: Optional[str] = None,
        step_lr_step_size: Optional[str] = None,
        training_batch_size: Optional[str] = None,
        validation_batch_size: Optional[str] = None,
        warmup_cosine_lr_cycles: Optional[str] = None,
        warmup_cosine_lr_warmup_epochs: Optional[str] = None,
        weight_decay: Optional[str] = None,
        training_crop_size: Optional[str] = None,
        validation_crop_size: Optional[str] = None,
        validation_resize_size: Optional[str] = None,
        weighted_loss: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'.
        :paramtype ams_gradient: str
        :keyword augmentations: Settings for using Augmentations.
        :paramtype augmentations: str
        :keyword beta1: Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the
         range [0, 1].
        :paramtype beta1: str
        :keyword beta2: Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the
         range [0, 1].
        :paramtype beta2: str
        :keyword distributed: Whether to use distributer training.
        :paramtype distributed: str
        :keyword early_stopping: Enable early stopping logic during training.
        :paramtype early_stopping: str
        :keyword early_stopping_delay: Minimum number of epochs or validation evaluations to wait
         before primary metric improvement
         is tracked for early stopping. Must be a positive integer.
        :paramtype early_stopping_delay: str
        :keyword early_stopping_patience: Minimum number of epochs or validation evaluations with no
         primary metric improvement before
         the run is stopped. Must be a positive integer.
        :paramtype early_stopping_patience: str
        :keyword enable_onnx_normalization: Enable normalization when exporting ONNX model.
        :paramtype enable_onnx_normalization: str
        :keyword evaluation_frequency: Frequency to evaluate validation dataset to get metric scores.
         Must be a positive integer.
        :paramtype evaluation_frequency: str
        :keyword gradient_accumulation_step: Gradient accumulation means running a configured number of
         "GradAccumulationStep" steps without
         updating the model weights while accumulating the gradients of those steps, and then using
         the accumulated gradients to compute the weight updates. Must be a positive integer.
        :paramtype gradient_accumulation_step: str
        :keyword layers_to_freeze: Number of layers to freeze for the model. Must be a positive
         integer.
         For instance, passing 2 as value for 'seresnext' means
         freezing layer0 and layer1. For a full list of models supported and details on layer freeze,
         please
         see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
        :paramtype layers_to_freeze: str
        :keyword learning_rate: Initial learning rate. Must be a float in the range [0, 1].
        :paramtype learning_rate: str
        :keyword learning_rate_scheduler: Type of learning rate scheduler. Must be 'warmup_cosine' or
         'step'.
        :paramtype learning_rate_scheduler: str
        :keyword model_name: Name of the model to use for training.
         For more information on the available models please visit the official documentation:
         https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
        :paramtype model_name: str
        :keyword momentum: Value of momentum when optimizer is 'sgd'. Must be a float in the range [0,
         1].
        :paramtype momentum: str
        :keyword nesterov: Enable nesterov when optimizer is 'sgd'.
        :paramtype nesterov: str
        :keyword number_of_epochs: Number of training epochs. Must be a positive integer.
        :paramtype number_of_epochs: str
        :keyword number_of_workers: Number of data loader workers. Must be a non-negative integer.
        :paramtype number_of_workers: str
        :keyword optimizer: Type of optimizer. Must be either 'sgd', 'adam', or 'adamw'.
        :paramtype optimizer: str
        :keyword random_seed: Random seed to be used when using deterministic training.
        :paramtype random_seed: str
        :keyword step_lr_gamma: Value of gamma when learning rate scheduler is 'step'. Must be a float
         in the range [0, 1].
        :paramtype step_lr_gamma: str
        :keyword step_lr_step_size: Value of step size when learning rate scheduler is 'step'. Must be
         a positive integer.
        :paramtype step_lr_step_size: str
        :keyword training_batch_size: Training batch size. Must be a positive integer.
        :paramtype training_batch_size: str
        :keyword validation_batch_size: Validation batch size. Must be a positive integer.
        :paramtype validation_batch_size: str
        :keyword warmup_cosine_lr_cycles: Value of cosine cycle when learning rate scheduler is
         'warmup_cosine'. Must be a float in the range [0, 1].
        :paramtype warmup_cosine_lr_cycles: str
        :keyword warmup_cosine_lr_warmup_epochs: Value of warmup epochs when learning rate scheduler is
         'warmup_cosine'. Must be a positive integer.
        :paramtype warmup_cosine_lr_warmup_epochs: str
        :keyword weight_decay: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must
         be a float in the range[0, 1].
        :paramtype weight_decay: str
        :keyword training_crop_size: Image crop size that is input to the neural network for the
         training dataset. Must be a positive integer.
        :paramtype training_crop_size: str
        :keyword validation_crop_size: Image crop size that is input to the neural network for the
         validation dataset. Must be a positive integer.
        :paramtype validation_crop_size: str
        :keyword validation_resize_size: Image size to which to resize before cropping for validation
         dataset. Must be a positive integer.
        :paramtype validation_resize_size: str
        :keyword weighted_loss: Weighted loss. The accepted values are 0 for no weighted loss.
         1 for weighted loss with sqrt.(class_weights). 2 for weighted loss with class_weights. Must be
         0 or 1 or 2.
        :paramtype weighted_loss: str
        """
        super().__init__(
            ams_gradient=ams_gradient,
            augmentations=augmentations,
            beta1=beta1,
            beta2=beta2,
            distributed=distributed,
            early_stopping=early_stopping,
            early_stopping_delay=early_stopping_delay,
            early_stopping_patience=early_stopping_patience,
            enable_onnx_normalization=enable_onnx_normalization,
            evaluation_frequency=evaluation_frequency,
            gradient_accumulation_step=gradient_accumulation_step,
            layers_to_freeze=layers_to_freeze,
            learning_rate=learning_rate,
            learning_rate_scheduler=learning_rate_scheduler,
            model_name=model_name,
            momentum=momentum,
            nesterov=nesterov,
            number_of_epochs=number_of_epochs,
            number_of_workers=number_of_workers,
            optimizer=optimizer,
            random_seed=random_seed,
            step_lr_gamma=step_lr_gamma,
            step_lr_step_size=step_lr_step_size,
            training_batch_size=training_batch_size,
            validation_batch_size=validation_batch_size,
            warmup_cosine_lr_cycles=warmup_cosine_lr_cycles,
            warmup_cosine_lr_warmup_epochs=warmup_cosine_lr_warmup_epochs,
            weight_decay=weight_decay,
            **kwargs
        )
        self.training_crop_size = training_crop_size
        self.validation_crop_size = validation_crop_size
        self.validation_resize_size = validation_resize_size
        self.weighted_loss = weighted_loss


class ImageModelDistributionSettingsObjectDetection(
    ImageModelDistributionSettings
):  # pylint: disable=too-many-instance-attributes
    """Distribution expressions to sweep over values of model settings.

    :code:`<example>
    Some examples are:
    ```
    ModelName = "choice('seresnext', 'resnest50')";
    LearningRate = "uniform(0.001, 0.01)";
    LayersToFreeze = "choice(0, 2)";
    ```</example>`
    For more details on how to compose distribution expressions please check the documentation:
    https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters
    For more information on the available settings please visit the official documentation:
    https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.

    :ivar ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'.
    :vartype ams_gradient: str
    :ivar augmentations: Settings for using Augmentations.
    :vartype augmentations: str
    :ivar beta1: Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range
     [0, 1].
    :vartype beta1: str
    :ivar beta2: Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range
     [0, 1].
    :vartype beta2: str
    :ivar distributed: Whether to use distributer training.
    :vartype distributed: str
    :ivar early_stopping: Enable early stopping logic during training.
    :vartype early_stopping: str
    :ivar early_stopping_delay: Minimum number of epochs or validation evaluations to wait before
     primary metric improvement
     is tracked for early stopping. Must be a positive integer.
    :vartype early_stopping_delay: str
    :ivar early_stopping_patience: Minimum number of epochs or validation evaluations with no
     primary metric improvement before
     the run is stopped. Must be a positive integer.
    :vartype early_stopping_patience: str
    :ivar enable_onnx_normalization: Enable normalization when exporting ONNX model.
    :vartype enable_onnx_normalization: str
    :ivar evaluation_frequency: Frequency to evaluate validation dataset to get metric scores. Must
     be a positive integer.
    :vartype evaluation_frequency: str
    :ivar gradient_accumulation_step: Gradient accumulation means running a configured number of
     "GradAccumulationStep" steps without
     updating the model weights while accumulating the gradients of those steps, and then using
     the accumulated gradients to compute the weight updates. Must be a positive integer.
    :vartype gradient_accumulation_step: str
    :ivar layers_to_freeze: Number of layers to freeze for the model. Must be a positive integer.
     For instance, passing 2 as value for 'seresnext' means
     freezing layer0 and layer1. For a full list of models supported and details on layer freeze,
     please
     see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
    :vartype layers_to_freeze: str
    :ivar learning_rate: Initial learning rate. Must be a float in the range [0, 1].
    :vartype learning_rate: str
    :ivar learning_rate_scheduler: Type of learning rate scheduler. Must be 'warmup_cosine' or
     'step'.
    :vartype learning_rate_scheduler: str
    :ivar model_name: Name of the model to use for training.
     For more information on the available models please visit the official documentation:
     https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
    :vartype model_name: str
    :ivar momentum: Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1].
    :vartype momentum: str
    :ivar nesterov: Enable nesterov when optimizer is 'sgd'.
    :vartype nesterov: str
    :ivar number_of_epochs: Number of training epochs. Must be a positive integer.
    :vartype number_of_epochs: str
    :ivar number_of_workers: Number of data loader workers. Must be a non-negative integer.
    :vartype number_of_workers: str
    :ivar optimizer: Type of optimizer. Must be either 'sgd', 'adam', or 'adamw'.
    :vartype optimizer: str
    :ivar random_seed: Random seed to be used when using deterministic training.
    :vartype random_seed: str
    :ivar step_lr_gamma: Value of gamma when learning rate scheduler is 'step'. Must be a float in
     the range [0, 1].
    :vartype step_lr_gamma: str
    :ivar step_lr_step_size: Value of step size when learning rate scheduler is 'step'. Must be a
     positive integer.
    :vartype step_lr_step_size: str
    :ivar training_batch_size: Training batch size. Must be a positive integer.
    :vartype training_batch_size: str
    :ivar validation_batch_size: Validation batch size. Must be a positive integer.
    :vartype validation_batch_size: str
    :ivar warmup_cosine_lr_cycles: Value of cosine cycle when learning rate scheduler is
     'warmup_cosine'. Must be a float in the range [0, 1].
    :vartype warmup_cosine_lr_cycles: str
    :ivar warmup_cosine_lr_warmup_epochs: Value of warmup epochs when learning rate scheduler is
     'warmup_cosine'. Must be a positive integer.
    :vartype warmup_cosine_lr_warmup_epochs: str
    :ivar weight_decay: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be
     a float in the range[0, 1].
    :vartype weight_decay: str
    :ivar box_detections_per_image: Maximum number of detections per image, for all classes. Must
     be a positive integer.
     Note: This settings is not supported for the 'yolov5' algorithm.
    :vartype box_detections_per_image: str
    :ivar box_score_threshold: During inference, only return proposals with a classification score
     greater than
     BoxScoreThreshold. Must be a float in the range[0, 1].
    :vartype box_score_threshold: str
    :ivar image_size: Image size for train and validation. Must be a positive integer.
     Note: The training run may get into CUDA OOM if the size is too big.
     Note: This settings is only supported for the 'yolov5' algorithm.
    :vartype image_size: str
    :ivar max_size: Maximum size of the image to be rescaled before feeding it to the backbone.
     Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big.
     Note: This settings is not supported for the 'yolov5' algorithm.
    :vartype max_size: str
    :ivar min_size: Minimum size of the image to be rescaled before feeding it to the backbone.
     Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big.
     Note: This settings is not supported for the 'yolov5' algorithm.
    :vartype min_size: str
    :ivar model_size: Model size. Must be 'small', 'medium', 'large', or 'xlarge'.
     Note: training run may get into CUDA OOM if the model size is too big.
     Note: This settings is only supported for the 'yolov5' algorithm.
    :vartype model_size: str
    :ivar multi_scale: Enable multi-scale image by varying image size by +/- 50%.
     Note: training run may get into CUDA OOM if no sufficient GPU memory.
     Note: This settings is only supported for the 'yolov5' algorithm.
    :vartype multi_scale: str
    :ivar nms_iou_threshold: IOU threshold used during inference in NMS post processing. Must be
     float in the range [0, 1].
    :vartype nms_iou_threshold: str
    :ivar tile_grid_size: The grid size to use for tiling each image. Note: TileGridSize must not
     be
     None to enable small object detection logic. A string containing two integers in mxn format.
     Note: This settings is not supported for the 'yolov5' algorithm.
    :vartype tile_grid_size: str
    :ivar tile_overlap_ratio: Overlap ratio between adjacent tiles in each dimension. Must be float
     in the range [0, 1).
     Note: This settings is not supported for the 'yolov5' algorithm.
    :vartype tile_overlap_ratio: str
    :ivar tile_predictions_nms_threshold: The IOU threshold to use to perform NMS while merging
     predictions from tiles and image.
     Used in validation/ inference. Must be float in the range [0, 1].
     Note: This settings is not supported for the 'yolov5' algorithm.
     NMS: Non-maximum suppression.
    :vartype tile_predictions_nms_threshold: str
    :ivar validation_iou_threshold: IOU threshold to use when computing validation metric. Must be
     float in the range [0, 1].
    :vartype validation_iou_threshold: str
    :ivar validation_metric_type: Metric computation method to use for validation metrics. Must be
     'none', 'coco', 'voc', or 'coco_voc'.
    :vartype validation_metric_type: str
    """

    _attribute_map = {
        "ams_gradient": {"key": "amsGradient", "type": "str"},
        "augmentations": {"key": "augmentations", "type": "str"},
        "beta1": {"key": "beta1", "type": "str"},
        "beta2": {"key": "beta2", "type": "str"},
        "distributed": {"key": "distributed", "type": "str"},
        "early_stopping": {"key": "earlyStopping", "type": "str"},
        "early_stopping_delay": {"key": "earlyStoppingDelay", "type": "str"},
        "early_stopping_patience": {"key": "earlyStoppingPatience", "type": "str"},
        "enable_onnx_normalization": {"key": "enableOnnxNormalization", "type": "str"},
        "evaluation_frequency": {"key": "evaluationFrequency", "type": "str"},
        "gradient_accumulation_step": {"key": "gradientAccumulationStep", "type": "str"},
        "layers_to_freeze": {"key": "layersToFreeze", "type": "str"},
        "learning_rate": {"key": "learningRate", "type": "str"},
        "learning_rate_scheduler": {"key": "learningRateScheduler", "type": "str"},
        "model_name": {"key": "modelName", "type": "str"},
        "momentum": {"key": "momentum", "type": "str"},
        "nesterov": {"key": "nesterov", "type": "str"},
        "number_of_epochs": {"key": "numberOfEpochs", "type": "str"},
        "number_of_workers": {"key": "numberOfWorkers", "type": "str"},
        "optimizer": {"key": "optimizer", "type": "str"},
        "random_seed": {"key": "randomSeed", "type": "str"},
        "step_lr_gamma": {"key": "stepLRGamma", "type": "str"},
        "step_lr_step_size": {"key": "stepLRStepSize", "type": "str"},
        "training_batch_size": {"key": "trainingBatchSize", "type": "str"},
        "validation_batch_size": {"key": "validationBatchSize", "type": "str"},
        "warmup_cosine_lr_cycles": {"key": "warmupCosineLRCycles", "type": "str"},
        "warmup_cosine_lr_warmup_epochs": {"key": "warmupCosineLRWarmupEpochs", "type": "str"},
        "weight_decay": {"key": "weightDecay", "type": "str"},
        "box_detections_per_image": {"key": "boxDetectionsPerImage", "type": "str"},
        "box_score_threshold": {"key": "boxScoreThreshold", "type": "str"},
        "image_size": {"key": "imageSize", "type": "str"},
        "max_size": {"key": "maxSize", "type": "str"},
        "min_size": {"key": "minSize", "type": "str"},
        "model_size": {"key": "modelSize", "type": "str"},
        "multi_scale": {"key": "multiScale", "type": "str"},
        "nms_iou_threshold": {"key": "nmsIouThreshold", "type": "str"},
        "tile_grid_size": {"key": "tileGridSize", "type": "str"},
        "tile_overlap_ratio": {"key": "tileOverlapRatio", "type": "str"},
        "tile_predictions_nms_threshold": {"key": "tilePredictionsNmsThreshold", "type": "str"},
        "validation_iou_threshold": {"key": "validationIouThreshold", "type": "str"},
        "validation_metric_type": {"key": "validationMetricType", "type": "str"},
    }

    def __init__(  # pylint: disable=too-many-locals
        self,
        *,
        ams_gradient: Optional[str] = None,
        augmentations: Optional[str] = None,
        beta1: Optional[str] = None,
        beta2: Optional[str] = None,
        distributed: Optional[str] = None,
        early_stopping: Optional[str] = None,
        early_stopping_delay: Optional[str] = None,
        early_stopping_patience: Optional[str] = None,
        enable_onnx_normalization: Optional[str] = None,
        evaluation_frequency: Optional[str] = None,
        gradient_accumulation_step: Optional[str] = None,
        layers_to_freeze: Optional[str] = None,
        learning_rate: Optional[str] = None,
        learning_rate_scheduler: Optional[str] = None,
        model_name: Optional[str] = None,
        momentum: Optional[str] = None,
        nesterov: Optional[str] = None,
        number_of_epochs: Optional[str] = None,
        number_of_workers: Optional[str] = None,
        optimizer: Optional[str] = None,
        random_seed: Optional[str] = None,
        step_lr_gamma: Optional[str] = None,
        step_lr_step_size: Optional[str] = None,
        training_batch_size: Optional[str] = None,
        validation_batch_size: Optional[str] = None,
        warmup_cosine_lr_cycles: Optional[str] = None,
        warmup_cosine_lr_warmup_epochs: Optional[str] = None,
        weight_decay: Optional[str] = None,
        box_detections_per_image: Optional[str] = None,
        box_score_threshold: Optional[str] = None,
        image_size: Optional[str] = None,
        max_size: Optional[str] = None,
        min_size: Optional[str] = None,
        model_size: Optional[str] = None,
        multi_scale: Optional[str] = None,
        nms_iou_threshold: Optional[str] = None,
        tile_grid_size: Optional[str] = None,
        tile_overlap_ratio: Optional[str] = None,
        tile_predictions_nms_threshold: Optional[str] = None,
        validation_iou_threshold: Optional[str] = None,
        validation_metric_type: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'.
        :paramtype ams_gradient: str
        :keyword augmentations: Settings for using Augmentations.
        :paramtype augmentations: str
        :keyword beta1: Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the
         range [0, 1].
        :paramtype beta1: str
        :keyword beta2: Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the
         range [0, 1].
        :paramtype beta2: str
        :keyword distributed: Whether to use distributer training.
        :paramtype distributed: str
        :keyword early_stopping: Enable early stopping logic during training.
        :paramtype early_stopping: str
        :keyword early_stopping_delay: Minimum number of epochs or validation evaluations to wait
         before primary metric improvement
         is tracked for early stopping. Must be a positive integer.
        :paramtype early_stopping_delay: str
        :keyword early_stopping_patience: Minimum number of epochs or validation evaluations with no
         primary metric improvement before
         the run is stopped. Must be a positive integer.
        :paramtype early_stopping_patience: str
        :keyword enable_onnx_normalization: Enable normalization when exporting ONNX model.
        :paramtype enable_onnx_normalization: str
        :keyword evaluation_frequency: Frequency to evaluate validation dataset to get metric scores.
         Must be a positive integer.
        :paramtype evaluation_frequency: str
        :keyword gradient_accumulation_step: Gradient accumulation means running a configured number of
         "GradAccumulationStep" steps without
         updating the model weights while accumulating the gradients of those steps, and then using
         the accumulated gradients to compute the weight updates. Must be a positive integer.
        :paramtype gradient_accumulation_step: str
        :keyword layers_to_freeze: Number of layers to freeze for the model. Must be a positive
         integer.
         For instance, passing 2 as value for 'seresnext' means
         freezing layer0 and layer1. For a full list of models supported and details on layer freeze,
         please
         see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
        :paramtype layers_to_freeze: str
        :keyword learning_rate: Initial learning rate. Must be a float in the range [0, 1].
        :paramtype learning_rate: str
        :keyword learning_rate_scheduler: Type of learning rate scheduler. Must be 'warmup_cosine' or
         'step'.
        :paramtype learning_rate_scheduler: str
        :keyword model_name: Name of the model to use for training.
         For more information on the available models please visit the official documentation:
         https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
        :paramtype model_name: str
        :keyword momentum: Value of momentum when optimizer is 'sgd'. Must be a float in the range [0,
         1].
        :paramtype momentum: str
        :keyword nesterov: Enable nesterov when optimizer is 'sgd'.
        :paramtype nesterov: str
        :keyword number_of_epochs: Number of training epochs. Must be a positive integer.
        :paramtype number_of_epochs: str
        :keyword number_of_workers: Number of data loader workers. Must be a non-negative integer.
        :paramtype number_of_workers: str
        :keyword optimizer: Type of optimizer. Must be either 'sgd', 'adam', or 'adamw'.
        :paramtype optimizer: str
        :keyword random_seed: Random seed to be used when using deterministic training.
        :paramtype random_seed: str
        :keyword step_lr_gamma: Value of gamma when learning rate scheduler is 'step'. Must be a float
         in the range [0, 1].
        :paramtype step_lr_gamma: str
        :keyword step_lr_step_size: Value of step size when learning rate scheduler is 'step'. Must be
         a positive integer.
        :paramtype step_lr_step_size: str
        :keyword training_batch_size: Training batch size. Must be a positive integer.
        :paramtype training_batch_size: str
        :keyword validation_batch_size: Validation batch size. Must be a positive integer.
        :paramtype validation_batch_size: str
        :keyword warmup_cosine_lr_cycles: Value of cosine cycle when learning rate scheduler is
         'warmup_cosine'. Must be a float in the range [0, 1].
        :paramtype warmup_cosine_lr_cycles: str
        :keyword warmup_cosine_lr_warmup_epochs: Value of warmup epochs when learning rate scheduler is
         'warmup_cosine'. Must be a positive integer.
        :paramtype warmup_cosine_lr_warmup_epochs: str
        :keyword weight_decay: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must
         be a float in the range[0, 1].
        :paramtype weight_decay: str
        :keyword box_detections_per_image: Maximum number of detections per image, for all classes.
         Must be a positive integer.
         Note: This settings is not supported for the 'yolov5' algorithm.
        :paramtype box_detections_per_image: str
        :keyword box_score_threshold: During inference, only return proposals with a classification
         score greater than
         BoxScoreThreshold. Must be a float in the range[0, 1].
        :paramtype box_score_threshold: str
        :keyword image_size: Image size for train and validation. Must be a positive integer.
         Note: The training run may get into CUDA OOM if the size is too big.
         Note: This settings is only supported for the 'yolov5' algorithm.
        :paramtype image_size: str
        :keyword max_size: Maximum size of the image to be rescaled before feeding it to the backbone.
         Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big.
         Note: This settings is not supported for the 'yolov5' algorithm.
        :paramtype max_size: str
        :keyword min_size: Minimum size of the image to be rescaled before feeding it to the backbone.
         Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big.
         Note: This settings is not supported for the 'yolov5' algorithm.
        :paramtype min_size: str
        :keyword model_size: Model size. Must be 'small', 'medium', 'large', or 'xlarge'.
         Note: training run may get into CUDA OOM if the model size is too big.
         Note: This settings is only supported for the 'yolov5' algorithm.
        :paramtype model_size: str
        :keyword multi_scale: Enable multi-scale image by varying image size by +/- 50%.
         Note: training run may get into CUDA OOM if no sufficient GPU memory.
         Note: This settings is only supported for the 'yolov5' algorithm.
        :paramtype multi_scale: str
        :keyword nms_iou_threshold: IOU threshold used during inference in NMS post processing. Must be
         float in the range [0, 1].
        :paramtype nms_iou_threshold: str
        :keyword tile_grid_size: The grid size to use for tiling each image. Note: TileGridSize must
         not be
         None to enable small object detection logic. A string containing two integers in mxn format.
         Note: This settings is not supported for the 'yolov5' algorithm.
        :paramtype tile_grid_size: str
        :keyword tile_overlap_ratio: Overlap ratio between adjacent tiles in each dimension. Must be
         float in the range [0, 1).
         Note: This settings is not supported for the 'yolov5' algorithm.
        :paramtype tile_overlap_ratio: str
        :keyword tile_predictions_nms_threshold: The IOU threshold to use to perform NMS while merging
         predictions from tiles and image.
         Used in validation/ inference. Must be float in the range [0, 1].
         Note: This settings is not supported for the 'yolov5' algorithm.
         NMS: Non-maximum suppression.
        :paramtype tile_predictions_nms_threshold: str
        :keyword validation_iou_threshold: IOU threshold to use when computing validation metric. Must
         be float in the range [0, 1].
        :paramtype validation_iou_threshold: str
        :keyword validation_metric_type: Metric computation method to use for validation metrics. Must
         be 'none', 'coco', 'voc', or 'coco_voc'.
        :paramtype validation_metric_type: str
        """
        super().__init__(
            ams_gradient=ams_gradient,
            augmentations=augmentations,
            beta1=beta1,
            beta2=beta2,
            distributed=distributed,
            early_stopping=early_stopping,
            early_stopping_delay=early_stopping_delay,
            early_stopping_patience=early_stopping_patience,
            enable_onnx_normalization=enable_onnx_normalization,
            evaluation_frequency=evaluation_frequency,
            gradient_accumulation_step=gradient_accumulation_step,
            layers_to_freeze=layers_to_freeze,
            learning_rate=learning_rate,
            learning_rate_scheduler=learning_rate_scheduler,
            model_name=model_name,
            momentum=momentum,
            nesterov=nesterov,
            number_of_epochs=number_of_epochs,
            number_of_workers=number_of_workers,
            optimizer=optimizer,
            random_seed=random_seed,
            step_lr_gamma=step_lr_gamma,
            step_lr_step_size=step_lr_step_size,
            training_batch_size=training_batch_size,
            validation_batch_size=validation_batch_size,
            warmup_cosine_lr_cycles=warmup_cosine_lr_cycles,
            warmup_cosine_lr_warmup_epochs=warmup_cosine_lr_warmup_epochs,
            weight_decay=weight_decay,
            **kwargs
        )
        self.box_detections_per_image = box_detections_per_image
        self.box_score_threshold = box_score_threshold
        self.image_size = image_size
        self.max_size = max_size
        self.min_size = min_size
        self.model_size = model_size
        self.multi_scale = multi_scale
        self.nms_iou_threshold = nms_iou_threshold
        self.tile_grid_size = tile_grid_size
        self.tile_overlap_ratio = tile_overlap_ratio
        self.tile_predictions_nms_threshold = tile_predictions_nms_threshold
        self.validation_iou_threshold = validation_iou_threshold
        self.validation_metric_type = validation_metric_type


class ImageModelSettings(_serialization.Model):  # pylint: disable=too-many-instance-attributes
    """Settings used for training the model.
    For more information on the available settings please visit the official documentation:
    https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.

    :ivar advanced_settings: Settings for advanced scenarios.
    :vartype advanced_settings: str
    :ivar ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'.
    :vartype ams_gradient: bool
    :ivar augmentations: Settings for using Augmentations.
    :vartype augmentations: str
    :ivar beta1: Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range
     [0, 1].
    :vartype beta1: float
    :ivar beta2: Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range
     [0, 1].
    :vartype beta2: float
    :ivar checkpoint_frequency: Frequency to store model checkpoints. Must be a positive integer.
    :vartype checkpoint_frequency: int
    :ivar checkpoint_model: The pretrained checkpoint model for incremental training.
    :vartype checkpoint_model: ~azure.mgmt.machinelearningservices.models.MLFlowModelJobInput
    :ivar checkpoint_run_id: The id of a previous run that has a pretrained checkpoint for
     incremental training.
    :vartype checkpoint_run_id: str
    :ivar distributed: Whether to use distributed training.
    :vartype distributed: bool
    :ivar early_stopping: Enable early stopping logic during training.
    :vartype early_stopping: bool
    :ivar early_stopping_delay: Minimum number of epochs or validation evaluations to wait before
     primary metric improvement
     is tracked for early stopping. Must be a positive integer.
    :vartype early_stopping_delay: int
    :ivar early_stopping_patience: Minimum number of epochs or validation evaluations with no
     primary metric improvement before
     the run is stopped. Must be a positive integer.
    :vartype early_stopping_patience: int
    :ivar enable_onnx_normalization: Enable normalization when exporting ONNX model.
    :vartype enable_onnx_normalization: bool
    :ivar evaluation_frequency: Frequency to evaluate validation dataset to get metric scores. Must
     be a positive integer.
    :vartype evaluation_frequency: int
    :ivar gradient_accumulation_step: Gradient accumulation means running a configured number of
     "GradAccumulationStep" steps without
     updating the model weights while accumulating the gradients of those steps, and then using
     the accumulated gradients to compute the weight updates. Must be a positive integer.
    :vartype gradient_accumulation_step: int
    :ivar layers_to_freeze: Number of layers to freeze for the model. Must be a positive integer.
     For instance, passing 2 as value for 'seresnext' means
     freezing layer0 and layer1. For a full list of models supported and details on layer freeze,
     please
     see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
    :vartype layers_to_freeze: int
    :ivar learning_rate: Initial learning rate. Must be a float in the range [0, 1].
    :vartype learning_rate: float
    :ivar learning_rate_scheduler: Type of learning rate scheduler. Must be 'warmup_cosine' or
     'step'. Known values are: "None", "WarmupCosine", and "Step".
    :vartype learning_rate_scheduler: str or
     ~azure.mgmt.machinelearningservices.models.LearningRateScheduler
    :ivar model_name: Name of the model to use for training.
     For more information on the available models please visit the official documentation:
     https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
    :vartype model_name: str
    :ivar momentum: Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1].
    :vartype momentum: float
    :ivar nesterov: Enable nesterov when optimizer is 'sgd'.
    :vartype nesterov: bool
    :ivar number_of_epochs: Number of training epochs. Must be a positive integer.
    :vartype number_of_epochs: int
    :ivar number_of_workers: Number of data loader workers. Must be a non-negative integer.
    :vartype number_of_workers: int
    :ivar optimizer: Type of optimizer. Known values are: "None", "Sgd", "Adam", and "Adamw".
    :vartype optimizer: str or ~azure.mgmt.machinelearningservices.models.StochasticOptimizer
    :ivar random_seed: Random seed to be used when using deterministic training.
    :vartype random_seed: int
    :ivar step_lr_gamma: Value of gamma when learning rate scheduler is 'step'. Must be a float in
     the range [0, 1].
    :vartype step_lr_gamma: float
    :ivar step_lr_step_size: Value of step size when learning rate scheduler is 'step'. Must be a
     positive integer.
    :vartype step_lr_step_size: int
    :ivar training_batch_size: Training batch size. Must be a positive integer.
    :vartype training_batch_size: int
    :ivar validation_batch_size: Validation batch size. Must be a positive integer.
    :vartype validation_batch_size: int
    :ivar warmup_cosine_lr_cycles: Value of cosine cycle when learning rate scheduler is
     'warmup_cosine'. Must be a float in the range [0, 1].
    :vartype warmup_cosine_lr_cycles: float
    :ivar warmup_cosine_lr_warmup_epochs: Value of warmup epochs when learning rate scheduler is
     'warmup_cosine'. Must be a positive integer.
    :vartype warmup_cosine_lr_warmup_epochs: int
    :ivar weight_decay: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be
     a float in the range[0, 1].
    :vartype weight_decay: float
    """

    _attribute_map = {
        "advanced_settings": {"key": "advancedSettings", "type": "str"},
        "ams_gradient": {"key": "amsGradient", "type": "bool"},
        "augmentations": {"key": "augmentations", "type": "str"},
        "beta1": {"key": "beta1", "type": "float"},
        "beta2": {"key": "beta2", "type": "float"},
        "checkpoint_frequency": {"key": "checkpointFrequency", "type": "int"},
        "checkpoint_model": {"key": "checkpointModel", "type": "MLFlowModelJobInput"},
        "checkpoint_run_id": {"key": "checkpointRunId", "type": "str"},
        "distributed": {"key": "distributed", "type": "bool"},
        "early_stopping": {"key": "earlyStopping", "type": "bool"},
        "early_stopping_delay": {"key": "earlyStoppingDelay", "type": "int"},
        "early_stopping_patience": {"key": "earlyStoppingPatience", "type": "int"},
        "enable_onnx_normalization": {"key": "enableOnnxNormalization", "type": "bool"},
        "evaluation_frequency": {"key": "evaluationFrequency", "type": "int"},
        "gradient_accumulation_step": {"key": "gradientAccumulationStep", "type": "int"},
        "layers_to_freeze": {"key": "layersToFreeze", "type": "int"},
        "learning_rate": {"key": "learningRate", "type": "float"},
        "learning_rate_scheduler": {"key": "learningRateScheduler", "type": "str"},
        "model_name": {"key": "modelName", "type": "str"},
        "momentum": {"key": "momentum", "type": "float"},
        "nesterov": {"key": "nesterov", "type": "bool"},
        "number_of_epochs": {"key": "numberOfEpochs", "type": "int"},
        "number_of_workers": {"key": "numberOfWorkers", "type": "int"},
        "optimizer": {"key": "optimizer", "type": "str"},
        "random_seed": {"key": "randomSeed", "type": "int"},
        "step_lr_gamma": {"key": "stepLRGamma", "type": "float"},
        "step_lr_step_size": {"key": "stepLRStepSize", "type": "int"},
        "training_batch_size": {"key": "trainingBatchSize", "type": "int"},
        "validation_batch_size": {"key": "validationBatchSize", "type": "int"},
        "warmup_cosine_lr_cycles": {"key": "warmupCosineLRCycles", "type": "float"},
        "warmup_cosine_lr_warmup_epochs": {"key": "warmupCosineLRWarmupEpochs", "type": "int"},
        "weight_decay": {"key": "weightDecay", "type": "float"},
    }

    def __init__(  # pylint: disable=too-many-locals
        self,
        *,
        advanced_settings: Optional[str] = None,
        ams_gradient: Optional[bool] = None,
        augmentations: Optional[str] = None,
        beta1: Optional[float] = None,
        beta2: Optional[float] = None,
        checkpoint_frequency: Optional[int] = None,
        checkpoint_model: Optional["_models.MLFlowModelJobInput"] = None,
        checkpoint_run_id: Optional[str] = None,
        distributed: Optional[bool] = None,
        early_stopping: Optional[bool] = None,
        early_stopping_delay: Optional[int] = None,
        early_stopping_patience: Optional[int] = None,
        enable_onnx_normalization: Optional[bool] = None,
        evaluation_frequency: Optional[int] = None,
        gradient_accumulation_step: Optional[int] = None,
        layers_to_freeze: Optional[int] = None,
        learning_rate: Optional[float] = None,
        learning_rate_scheduler: Optional[Union[str, "_models.LearningRateScheduler"]] = None,
        model_name: Optional[str] = None,
        momentum: Optional[float] = None,
        nesterov: Optional[bool] = None,
        number_of_epochs: Optional[int] = None,
        number_of_workers: Optional[int] = None,
        optimizer: Optional[Union[str, "_models.StochasticOptimizer"]] = None,
        random_seed: Optional[int] = None,
        step_lr_gamma: Optional[float] = None,
        step_lr_step_size: Optional[int] = None,
        training_batch_size: Optional[int] = None,
        validation_batch_size: Optional[int] = None,
        warmup_cosine_lr_cycles: Optional[float] = None,
        warmup_cosine_lr_warmup_epochs: Optional[int] = None,
        weight_decay: Optional[float] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword advanced_settings: Settings for advanced scenarios.
        :paramtype advanced_settings: str
        :keyword ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'.
        :paramtype ams_gradient: bool
        :keyword augmentations: Settings for using Augmentations.
        :paramtype augmentations: str
        :keyword beta1: Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the
         range [0, 1].
        :paramtype beta1: float
        :keyword beta2: Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the
         range [0, 1].
        :paramtype beta2: float
        :keyword checkpoint_frequency: Frequency to store model checkpoints. Must be a positive
         integer.
        :paramtype checkpoint_frequency: int
        :keyword checkpoint_model: The pretrained checkpoint model for incremental training.
        :paramtype checkpoint_model: ~azure.mgmt.machinelearningservices.models.MLFlowModelJobInput
        :keyword checkpoint_run_id: The id of a previous run that has a pretrained checkpoint for
         incremental training.
        :paramtype checkpoint_run_id: str
        :keyword distributed: Whether to use distributed training.
        :paramtype distributed: bool
        :keyword early_stopping: Enable early stopping logic during training.
        :paramtype early_stopping: bool
        :keyword early_stopping_delay: Minimum number of epochs or validation evaluations to wait
         before primary metric improvement
         is tracked for early stopping. Must be a positive integer.
        :paramtype early_stopping_delay: int
        :keyword early_stopping_patience: Minimum number of epochs or validation evaluations with no
         primary metric improvement before
         the run is stopped. Must be a positive integer.
        :paramtype early_stopping_patience: int
        :keyword enable_onnx_normalization: Enable normalization when exporting ONNX model.
        :paramtype enable_onnx_normalization: bool
        :keyword evaluation_frequency: Frequency to evaluate validation dataset to get metric scores.
         Must be a positive integer.
        :paramtype evaluation_frequency: int
        :keyword gradient_accumulation_step: Gradient accumulation means running a configured number of
         "GradAccumulationStep" steps without
         updating the model weights while accumulating the gradients of those steps, and then using
         the accumulated gradients to compute the weight updates. Must be a positive integer.
        :paramtype gradient_accumulation_step: int
        :keyword layers_to_freeze: Number of layers to freeze for the model. Must be a positive
         integer.
         For instance, passing 2 as value for 'seresnext' means
         freezing layer0 and layer1. For a full list of models supported and details on layer freeze,
         please
         see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
        :paramtype layers_to_freeze: int
        :keyword learning_rate: Initial learning rate. Must be a float in the range [0, 1].
        :paramtype learning_rate: float
        :keyword learning_rate_scheduler: Type of learning rate scheduler. Must be 'warmup_cosine' or
         'step'. Known values are: "None", "WarmupCosine", and "Step".
        :paramtype learning_rate_scheduler: str or
         ~azure.mgmt.machinelearningservices.models.LearningRateScheduler
        :keyword model_name: Name of the model to use for training.
         For more information on the available models please visit the official documentation:
         https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
        :paramtype model_name: str
        :keyword momentum: Value of momentum when optimizer is 'sgd'. Must be a float in the range [0,
         1].
        :paramtype momentum: float
        :keyword nesterov: Enable nesterov when optimizer is 'sgd'.
        :paramtype nesterov: bool
        :keyword number_of_epochs: Number of training epochs. Must be a positive integer.
        :paramtype number_of_epochs: int
        :keyword number_of_workers: Number of data loader workers. Must be a non-negative integer.
        :paramtype number_of_workers: int
        :keyword optimizer: Type of optimizer. Known values are: "None", "Sgd", "Adam", and "Adamw".
        :paramtype optimizer: str or ~azure.mgmt.machinelearningservices.models.StochasticOptimizer
        :keyword random_seed: Random seed to be used when using deterministic training.
        :paramtype random_seed: int
        :keyword step_lr_gamma: Value of gamma when learning rate scheduler is 'step'. Must be a float
         in the range [0, 1].
        :paramtype step_lr_gamma: float
        :keyword step_lr_step_size: Value of step size when learning rate scheduler is 'step'. Must be
         a positive integer.
        :paramtype step_lr_step_size: int
        :keyword training_batch_size: Training batch size. Must be a positive integer.
        :paramtype training_batch_size: int
        :keyword validation_batch_size: Validation batch size. Must be a positive integer.
        :paramtype validation_batch_size: int
        :keyword warmup_cosine_lr_cycles: Value of cosine cycle when learning rate scheduler is
         'warmup_cosine'. Must be a float in the range [0, 1].
        :paramtype warmup_cosine_lr_cycles: float
        :keyword warmup_cosine_lr_warmup_epochs: Value of warmup epochs when learning rate scheduler is
         'warmup_cosine'. Must be a positive integer.
        :paramtype warmup_cosine_lr_warmup_epochs: int
        :keyword weight_decay: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must
         be a float in the range[0, 1].
        :paramtype weight_decay: float
        """
        super().__init__(**kwargs)
        self.advanced_settings = advanced_settings
        self.ams_gradient = ams_gradient
        self.augmentations = augmentations
        self.beta1 = beta1
        self.beta2 = beta2
        self.checkpoint_frequency = checkpoint_frequency
        self.checkpoint_model = checkpoint_model
        self.checkpoint_run_id = checkpoint_run_id
        self.distributed = distributed
        self.early_stopping = early_stopping
        self.early_stopping_delay = early_stopping_delay
        self.early_stopping_patience = early_stopping_patience
        self.enable_onnx_normalization = enable_onnx_normalization
        self.evaluation_frequency = evaluation_frequency
        self.gradient_accumulation_step = gradient_accumulation_step
        self.layers_to_freeze = layers_to_freeze
        self.learning_rate = learning_rate
        self.learning_rate_scheduler = learning_rate_scheduler
        self.model_name = model_name
        self.momentum = momentum
        self.nesterov = nesterov
        self.number_of_epochs = number_of_epochs
        self.number_of_workers = number_of_workers
        self.optimizer = optimizer
        self.random_seed = random_seed
        self.step_lr_gamma = step_lr_gamma
        self.step_lr_step_size = step_lr_step_size
        self.training_batch_size = training_batch_size
        self.validation_batch_size = validation_batch_size
        self.warmup_cosine_lr_cycles = warmup_cosine_lr_cycles
        self.warmup_cosine_lr_warmup_epochs = warmup_cosine_lr_warmup_epochs
        self.weight_decay = weight_decay


class ImageModelSettingsClassification(ImageModelSettings):  # pylint: disable=too-many-instance-attributes
    """Settings used for training the model.
    For more information on the available settings please visit the official documentation:
    https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.

    :ivar advanced_settings: Settings for advanced scenarios.
    :vartype advanced_settings: str
    :ivar ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'.
    :vartype ams_gradient: bool
    :ivar augmentations: Settings for using Augmentations.
    :vartype augmentations: str
    :ivar beta1: Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range
     [0, 1].
    :vartype beta1: float
    :ivar beta2: Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range
     [0, 1].
    :vartype beta2: float
    :ivar checkpoint_frequency: Frequency to store model checkpoints. Must be a positive integer.
    :vartype checkpoint_frequency: int
    :ivar checkpoint_model: The pretrained checkpoint model for incremental training.
    :vartype checkpoint_model: ~azure.mgmt.machinelearningservices.models.MLFlowModelJobInput
    :ivar checkpoint_run_id: The id of a previous run that has a pretrained checkpoint for
     incremental training.
    :vartype checkpoint_run_id: str
    :ivar distributed: Whether to use distributed training.
    :vartype distributed: bool
    :ivar early_stopping: Enable early stopping logic during training.
    :vartype early_stopping: bool
    :ivar early_stopping_delay: Minimum number of epochs or validation evaluations to wait before
     primary metric improvement
     is tracked for early stopping. Must be a positive integer.
    :vartype early_stopping_delay: int
    :ivar early_stopping_patience: Minimum number of epochs or validation evaluations with no
     primary metric improvement before
     the run is stopped. Must be a positive integer.
    :vartype early_stopping_patience: int
    :ivar enable_onnx_normalization: Enable normalization when exporting ONNX model.
    :vartype enable_onnx_normalization: bool
    :ivar evaluation_frequency: Frequency to evaluate validation dataset to get metric scores. Must
     be a positive integer.
    :vartype evaluation_frequency: int
    :ivar gradient_accumulation_step: Gradient accumulation means running a configured number of
     "GradAccumulationStep" steps without
     updating the model weights while accumulating the gradients of those steps, and then using
     the accumulated gradients to compute the weight updates. Must be a positive integer.
    :vartype gradient_accumulation_step: int
    :ivar layers_to_freeze: Number of layers to freeze for the model. Must be a positive integer.
     For instance, passing 2 as value for 'seresnext' means
     freezing layer0 and layer1. For a full list of models supported and details on layer freeze,
     please
     see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
    :vartype layers_to_freeze: int
    :ivar learning_rate: Initial learning rate. Must be a float in the range [0, 1].
    :vartype learning_rate: float
    :ivar learning_rate_scheduler: Type of learning rate scheduler. Must be 'warmup_cosine' or
     'step'. Known values are: "None", "WarmupCosine", and "Step".
    :vartype learning_rate_scheduler: str or
     ~azure.mgmt.machinelearningservices.models.LearningRateScheduler
    :ivar model_name: Name of the model to use for training.
     For more information on the available models please visit the official documentation:
     https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
    :vartype model_name: str
    :ivar momentum: Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1].
    :vartype momentum: float
    :ivar nesterov: Enable nesterov when optimizer is 'sgd'.
    :vartype nesterov: bool
    :ivar number_of_epochs: Number of training epochs. Must be a positive integer.
    :vartype number_of_epochs: int
    :ivar number_of_workers: Number of data loader workers. Must be a non-negative integer.
    :vartype number_of_workers: int
    :ivar optimizer: Type of optimizer. Known values are: "None", "Sgd", "Adam", and "Adamw".
    :vartype optimizer: str or ~azure.mgmt.machinelearningservices.models.StochasticOptimizer
    :ivar random_seed: Random seed to be used when using deterministic training.
    :vartype random_seed: int
    :ivar step_lr_gamma: Value of gamma when learning rate scheduler is 'step'. Must be a float in
     the range [0, 1].
    :vartype step_lr_gamma: float
    :ivar step_lr_step_size: Value of step size when learning rate scheduler is 'step'. Must be a
     positive integer.
    :vartype step_lr_step_size: int
    :ivar training_batch_size: Training batch size. Must be a positive integer.
    :vartype training_batch_size: int
    :ivar validation_batch_size: Validation batch size. Must be a positive integer.
    :vartype validation_batch_size: int
    :ivar warmup_cosine_lr_cycles: Value of cosine cycle when learning rate scheduler is
     'warmup_cosine'. Must be a float in the range [0, 1].
    :vartype warmup_cosine_lr_cycles: float
    :ivar warmup_cosine_lr_warmup_epochs: Value of warmup epochs when learning rate scheduler is
     'warmup_cosine'. Must be a positive integer.
    :vartype warmup_cosine_lr_warmup_epochs: int
    :ivar weight_decay: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be
     a float in the range[0, 1].
    :vartype weight_decay: float
    :ivar training_crop_size: Image crop size that is input to the neural network for the training
     dataset. Must be a positive integer.
    :vartype training_crop_size: int
    :ivar validation_crop_size: Image crop size that is input to the neural network for the
     validation dataset. Must be a positive integer.
    :vartype validation_crop_size: int
    :ivar validation_resize_size: Image size to which to resize before cropping for validation
     dataset. Must be a positive integer.
    :vartype validation_resize_size: int
    :ivar weighted_loss: Weighted loss. The accepted values are 0 for no weighted loss.
     1 for weighted loss with sqrt.(class_weights). 2 for weighted loss with class_weights. Must be
     0 or 1 or 2.
    :vartype weighted_loss: int
    """

    _attribute_map = {
        "advanced_settings": {"key": "advancedSettings", "type": "str"},
        "ams_gradient": {"key": "amsGradient", "type": "bool"},
        "augmentations": {"key": "augmentations", "type": "str"},
        "beta1": {"key": "beta1", "type": "float"},
        "beta2": {"key": "beta2", "type": "float"},
        "checkpoint_frequency": {"key": "checkpointFrequency", "type": "int"},
        "checkpoint_model": {"key": "checkpointModel", "type": "MLFlowModelJobInput"},
        "checkpoint_run_id": {"key": "checkpointRunId", "type": "str"},
        "distributed": {"key": "distributed", "type": "bool"},
        "early_stopping": {"key": "earlyStopping", "type": "bool"},
        "early_stopping_delay": {"key": "earlyStoppingDelay", "type": "int"},
        "early_stopping_patience": {"key": "earlyStoppingPatience", "type": "int"},
        "enable_onnx_normalization": {"key": "enableOnnxNormalization", "type": "bool"},
        "evaluation_frequency": {"key": "evaluationFrequency", "type": "int"},
        "gradient_accumulation_step": {"key": "gradientAccumulationStep", "type": "int"},
        "layers_to_freeze": {"key": "layersToFreeze", "type": "int"},
        "learning_rate": {"key": "learningRate", "type": "float"},
        "learning_rate_scheduler": {"key": "learningRateScheduler", "type": "str"},
        "model_name": {"key": "modelName", "type": "str"},
        "momentum": {"key": "momentum", "type": "float"},
        "nesterov": {"key": "nesterov", "type": "bool"},
        "number_of_epochs": {"key": "numberOfEpochs", "type": "int"},
        "number_of_workers": {"key": "numberOfWorkers", "type": "int"},
        "optimizer": {"key": "optimizer", "type": "str"},
        "random_seed": {"key": "randomSeed", "type": "int"},
        "step_lr_gamma": {"key": "stepLRGamma", "type": "float"},
        "step_lr_step_size": {"key": "stepLRStepSize", "type": "int"},
        "training_batch_size": {"key": "trainingBatchSize", "type": "int"},
        "validation_batch_size": {"key": "validationBatchSize", "type": "int"},
        "warmup_cosine_lr_cycles": {"key": "warmupCosineLRCycles", "type": "float"},
        "warmup_cosine_lr_warmup_epochs": {"key": "warmupCosineLRWarmupEpochs", "type": "int"},
        "weight_decay": {"key": "weightDecay", "type": "float"},
        "training_crop_size": {"key": "trainingCropSize", "type": "int"},
        "validation_crop_size": {"key": "validationCropSize", "type": "int"},
        "validation_resize_size": {"key": "validationResizeSize", "type": "int"},
        "weighted_loss": {"key": "weightedLoss", "type": "int"},
    }

    def __init__(  # pylint: disable=too-many-locals
        self,
        *,
        advanced_settings: Optional[str] = None,
        ams_gradient: Optional[bool] = None,
        augmentations: Optional[str] = None,
        beta1: Optional[float] = None,
        beta2: Optional[float] = None,
        checkpoint_frequency: Optional[int] = None,
        checkpoint_model: Optional["_models.MLFlowModelJobInput"] = None,
        checkpoint_run_id: Optional[str] = None,
        distributed: Optional[bool] = None,
        early_stopping: Optional[bool] = None,
        early_stopping_delay: Optional[int] = None,
        early_stopping_patience: Optional[int] = None,
        enable_onnx_normalization: Optional[bool] = None,
        evaluation_frequency: Optional[int] = None,
        gradient_accumulation_step: Optional[int] = None,
        layers_to_freeze: Optional[int] = None,
        learning_rate: Optional[float] = None,
        learning_rate_scheduler: Optional[Union[str, "_models.LearningRateScheduler"]] = None,
        model_name: Optional[str] = None,
        momentum: Optional[float] = None,
        nesterov: Optional[bool] = None,
        number_of_epochs: Optional[int] = None,
        number_of_workers: Optional[int] = None,
        optimizer: Optional[Union[str, "_models.StochasticOptimizer"]] = None,
        random_seed: Optional[int] = None,
        step_lr_gamma: Optional[float] = None,
        step_lr_step_size: Optional[int] = None,
        training_batch_size: Optional[int] = None,
        validation_batch_size: Optional[int] = None,
        warmup_cosine_lr_cycles: Optional[float] = None,
        warmup_cosine_lr_warmup_epochs: Optional[int] = None,
        weight_decay: Optional[float] = None,
        training_crop_size: Optional[int] = None,
        validation_crop_size: Optional[int] = None,
        validation_resize_size: Optional[int] = None,
        weighted_loss: Optional[int] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword advanced_settings: Settings for advanced scenarios.
        :paramtype advanced_settings: str
        :keyword ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'.
        :paramtype ams_gradient: bool
        :keyword augmentations: Settings for using Augmentations.
        :paramtype augmentations: str
        :keyword beta1: Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the
         range [0, 1].
        :paramtype beta1: float
        :keyword beta2: Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the
         range [0, 1].
        :paramtype beta2: float
        :keyword checkpoint_frequency: Frequency to store model checkpoints. Must be a positive
         integer.
        :paramtype checkpoint_frequency: int
        :keyword checkpoint_model: The pretrained checkpoint model for incremental training.
        :paramtype checkpoint_model: ~azure.mgmt.machinelearningservices.models.MLFlowModelJobInput
        :keyword checkpoint_run_id: The id of a previous run that has a pretrained checkpoint for
         incremental training.
        :paramtype checkpoint_run_id: str
        :keyword distributed: Whether to use distributed training.
        :paramtype distributed: bool
        :keyword early_stopping: Enable early stopping logic during training.
        :paramtype early_stopping: bool
        :keyword early_stopping_delay: Minimum number of epochs or validation evaluations to wait
         before primary metric improvement
         is tracked for early stopping. Must be a positive integer.
        :paramtype early_stopping_delay: int
        :keyword early_stopping_patience: Minimum number of epochs or validation evaluations with no
         primary metric improvement before
         the run is stopped. Must be a positive integer.
        :paramtype early_stopping_patience: int
        :keyword enable_onnx_normalization: Enable normalization when exporting ONNX model.
        :paramtype enable_onnx_normalization: bool
        :keyword evaluation_frequency: Frequency to evaluate validation dataset to get metric scores.
         Must be a positive integer.
        :paramtype evaluation_frequency: int
        :keyword gradient_accumulation_step: Gradient accumulation means running a configured number of
         "GradAccumulationStep" steps without
         updating the model weights while accumulating the gradients of those steps, and then using
         the accumulated gradients to compute the weight updates. Must be a positive integer.
        :paramtype gradient_accumulation_step: int
        :keyword layers_to_freeze: Number of layers to freeze for the model. Must be a positive
         integer.
         For instance, passing 2 as value for 'seresnext' means
         freezing layer0 and layer1. For a full list of models supported and details on layer freeze,
         please
         see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
        :paramtype layers_to_freeze: int
        :keyword learning_rate: Initial learning rate. Must be a float in the range [0, 1].
        :paramtype learning_rate: float
        :keyword learning_rate_scheduler: Type of learning rate scheduler. Must be 'warmup_cosine' or
         'step'. Known values are: "None", "WarmupCosine", and "Step".
        :paramtype learning_rate_scheduler: str or
         ~azure.mgmt.machinelearningservices.models.LearningRateScheduler
        :keyword model_name: Name of the model to use for training.
         For more information on the available models please visit the official documentation:
         https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
        :paramtype model_name: str
        :keyword momentum: Value of momentum when optimizer is 'sgd'. Must be a float in the range [0,
         1].
        :paramtype momentum: float
        :keyword nesterov: Enable nesterov when optimizer is 'sgd'.
        :paramtype nesterov: bool
        :keyword number_of_epochs: Number of training epochs. Must be a positive integer.
        :paramtype number_of_epochs: int
        :keyword number_of_workers: Number of data loader workers. Must be a non-negative integer.
        :paramtype number_of_workers: int
        :keyword optimizer: Type of optimizer. Known values are: "None", "Sgd", "Adam", and "Adamw".
        :paramtype optimizer: str or ~azure.mgmt.machinelearningservices.models.StochasticOptimizer
        :keyword random_seed: Random seed to be used when using deterministic training.
        :paramtype random_seed: int
        :keyword step_lr_gamma: Value of gamma when learning rate scheduler is 'step'. Must be a float
         in the range [0, 1].
        :paramtype step_lr_gamma: float
        :keyword step_lr_step_size: Value of step size when learning rate scheduler is 'step'. Must be
         a positive integer.
        :paramtype step_lr_step_size: int
        :keyword training_batch_size: Training batch size. Must be a positive integer.
        :paramtype training_batch_size: int
        :keyword validation_batch_size: Validation batch size. Must be a positive integer.
        :paramtype validation_batch_size: int
        :keyword warmup_cosine_lr_cycles: Value of cosine cycle when learning rate scheduler is
         'warmup_cosine'. Must be a float in the range [0, 1].
        :paramtype warmup_cosine_lr_cycles: float
        :keyword warmup_cosine_lr_warmup_epochs: Value of warmup epochs when learning rate scheduler is
         'warmup_cosine'. Must be a positive integer.
        :paramtype warmup_cosine_lr_warmup_epochs: int
        :keyword weight_decay: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must
         be a float in the range[0, 1].
        :paramtype weight_decay: float
        :keyword training_crop_size: Image crop size that is input to the neural network for the
         training dataset. Must be a positive integer.
        :paramtype training_crop_size: int
        :keyword validation_crop_size: Image crop size that is input to the neural network for the
         validation dataset. Must be a positive integer.
        :paramtype validation_crop_size: int
        :keyword validation_resize_size: Image size to which to resize before cropping for validation
         dataset. Must be a positive integer.
        :paramtype validation_resize_size: int
        :keyword weighted_loss: Weighted loss. The accepted values are 0 for no weighted loss.
         1 for weighted loss with sqrt.(class_weights). 2 for weighted loss with class_weights. Must be
         0 or 1 or 2.
        :paramtype weighted_loss: int
        """
        super().__init__(
            advanced_settings=advanced_settings,
            ams_gradient=ams_gradient,
            augmentations=augmentations,
            beta1=beta1,
            beta2=beta2,
            checkpoint_frequency=checkpoint_frequency,
            checkpoint_model=checkpoint_model,
            checkpoint_run_id=checkpoint_run_id,
            distributed=distributed,
            early_stopping=early_stopping,
            early_stopping_delay=early_stopping_delay,
            early_stopping_patience=early_stopping_patience,
            enable_onnx_normalization=enable_onnx_normalization,
            evaluation_frequency=evaluation_frequency,
            gradient_accumulation_step=gradient_accumulation_step,
            layers_to_freeze=layers_to_freeze,
            learning_rate=learning_rate,
            learning_rate_scheduler=learning_rate_scheduler,
            model_name=model_name,
            momentum=momentum,
            nesterov=nesterov,
            number_of_epochs=number_of_epochs,
            number_of_workers=number_of_workers,
            optimizer=optimizer,
            random_seed=random_seed,
            step_lr_gamma=step_lr_gamma,
            step_lr_step_size=step_lr_step_size,
            training_batch_size=training_batch_size,
            validation_batch_size=validation_batch_size,
            warmup_cosine_lr_cycles=warmup_cosine_lr_cycles,
            warmup_cosine_lr_warmup_epochs=warmup_cosine_lr_warmup_epochs,
            weight_decay=weight_decay,
            **kwargs
        )
        self.training_crop_size = training_crop_size
        self.validation_crop_size = validation_crop_size
        self.validation_resize_size = validation_resize_size
        self.weighted_loss = weighted_loss


class ImageModelSettingsObjectDetection(ImageModelSettings):  # pylint: disable=too-many-instance-attributes
    """Settings used for training the model.
    For more information on the available settings please visit the official documentation:
    https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.

    :ivar advanced_settings: Settings for advanced scenarios.
    :vartype advanced_settings: str
    :ivar ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'.
    :vartype ams_gradient: bool
    :ivar augmentations: Settings for using Augmentations.
    :vartype augmentations: str
    :ivar beta1: Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range
     [0, 1].
    :vartype beta1: float
    :ivar beta2: Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range
     [0, 1].
    :vartype beta2: float
    :ivar checkpoint_frequency: Frequency to store model checkpoints. Must be a positive integer.
    :vartype checkpoint_frequency: int
    :ivar checkpoint_model: The pretrained checkpoint model for incremental training.
    :vartype checkpoint_model: ~azure.mgmt.machinelearningservices.models.MLFlowModelJobInput
    :ivar checkpoint_run_id: The id of a previous run that has a pretrained checkpoint for
     incremental training.
    :vartype checkpoint_run_id: str
    :ivar distributed: Whether to use distributed training.
    :vartype distributed: bool
    :ivar early_stopping: Enable early stopping logic during training.
    :vartype early_stopping: bool
    :ivar early_stopping_delay: Minimum number of epochs or validation evaluations to wait before
     primary metric improvement
     is tracked for early stopping. Must be a positive integer.
    :vartype early_stopping_delay: int
    :ivar early_stopping_patience: Minimum number of epochs or validation evaluations with no
     primary metric improvement before
     the run is stopped. Must be a positive integer.
    :vartype early_stopping_patience: int
    :ivar enable_onnx_normalization: Enable normalization when exporting ONNX model.
    :vartype enable_onnx_normalization: bool
    :ivar evaluation_frequency: Frequency to evaluate validation dataset to get metric scores. Must
     be a positive integer.
    :vartype evaluation_frequency: int
    :ivar gradient_accumulation_step: Gradient accumulation means running a configured number of
     "GradAccumulationStep" steps without
     updating the model weights while accumulating the gradients of those steps, and then using
     the accumulated gradients to compute the weight updates. Must be a positive integer.
    :vartype gradient_accumulation_step: int
    :ivar layers_to_freeze: Number of layers to freeze for the model. Must be a positive integer.
     For instance, passing 2 as value for 'seresnext' means
     freezing layer0 and layer1. For a full list of models supported and details on layer freeze,
     please
     see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
    :vartype layers_to_freeze: int
    :ivar learning_rate: Initial learning rate. Must be a float in the range [0, 1].
    :vartype learning_rate: float
    :ivar learning_rate_scheduler: Type of learning rate scheduler. Must be 'warmup_cosine' or
     'step'. Known values are: "None", "WarmupCosine", and "Step".
    :vartype learning_rate_scheduler: str or
     ~azure.mgmt.machinelearningservices.models.LearningRateScheduler
    :ivar model_name: Name of the model to use for training.
     For more information on the available models please visit the official documentation:
     https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
    :vartype model_name: str
    :ivar momentum: Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1].
    :vartype momentum: float
    :ivar nesterov: Enable nesterov when optimizer is 'sgd'.
    :vartype nesterov: bool
    :ivar number_of_epochs: Number of training epochs. Must be a positive integer.
    :vartype number_of_epochs: int
    :ivar number_of_workers: Number of data loader workers. Must be a non-negative integer.
    :vartype number_of_workers: int
    :ivar optimizer: Type of optimizer. Known values are: "None", "Sgd", "Adam", and "Adamw".
    :vartype optimizer: str or ~azure.mgmt.machinelearningservices.models.StochasticOptimizer
    :ivar random_seed: Random seed to be used when using deterministic training.
    :vartype random_seed: int
    :ivar step_lr_gamma: Value of gamma when learning rate scheduler is 'step'. Must be a float in
     the range [0, 1].
    :vartype step_lr_gamma: float
    :ivar step_lr_step_size: Value of step size when learning rate scheduler is 'step'. Must be a
     positive integer.
    :vartype step_lr_step_size: int
    :ivar training_batch_size: Training batch size. Must be a positive integer.
    :vartype training_batch_size: int
    :ivar validation_batch_size: Validation batch size. Must be a positive integer.
    :vartype validation_batch_size: int
    :ivar warmup_cosine_lr_cycles: Value of cosine cycle when learning rate scheduler is
     'warmup_cosine'. Must be a float in the range [0, 1].
    :vartype warmup_cosine_lr_cycles: float
    :ivar warmup_cosine_lr_warmup_epochs: Value of warmup epochs when learning rate scheduler is
     'warmup_cosine'. Must be a positive integer.
    :vartype warmup_cosine_lr_warmup_epochs: int
    :ivar weight_decay: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be
     a float in the range[0, 1].
    :vartype weight_decay: float
    :ivar box_detections_per_image: Maximum number of detections per image, for all classes. Must
     be a positive integer.
     Note: This settings is not supported for the 'yolov5' algorithm.
    :vartype box_detections_per_image: int
    :ivar box_score_threshold: During inference, only return proposals with a classification score
     greater than
     BoxScoreThreshold. Must be a float in the range[0, 1].
    :vartype box_score_threshold: float
    :ivar image_size: Image size for train and validation. Must be a positive integer.
     Note: The training run may get into CUDA OOM if the size is too big.
     Note: This settings is only supported for the 'yolov5' algorithm.
    :vartype image_size: int
    :ivar max_size: Maximum size of the image to be rescaled before feeding it to the backbone.
     Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big.
     Note: This settings is not supported for the 'yolov5' algorithm.
    :vartype max_size: int
    :ivar min_size: Minimum size of the image to be rescaled before feeding it to the backbone.
     Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big.
     Note: This settings is not supported for the 'yolov5' algorithm.
    :vartype min_size: int
    :ivar model_size: Model size. Must be 'small', 'medium', 'large', or 'xlarge'.
     Note: training run may get into CUDA OOM if the model size is too big.
     Note: This settings is only supported for the 'yolov5' algorithm. Known values are: "None",
     "Small", "Medium", "Large", and "ExtraLarge".
    :vartype model_size: str or ~azure.mgmt.machinelearningservices.models.ModelSize
    :ivar multi_scale: Enable multi-scale image by varying image size by +/- 50%.
     Note: training run may get into CUDA OOM if no sufficient GPU memory.
     Note: This settings is only supported for the 'yolov5' algorithm.
    :vartype multi_scale: bool
    :ivar nms_iou_threshold: IOU threshold used during inference in NMS post processing. Must be a
     float in the range [0, 1].
    :vartype nms_iou_threshold: float
    :ivar tile_grid_size: The grid size to use for tiling each image. Note: TileGridSize must not
     be
     None to enable small object detection logic. A string containing two integers in mxn format.
     Note: This settings is not supported for the 'yolov5' algorithm.
    :vartype tile_grid_size: str
    :ivar tile_overlap_ratio: Overlap ratio between adjacent tiles in each dimension. Must be float
     in the range [0, 1).
     Note: This settings is not supported for the 'yolov5' algorithm.
    :vartype tile_overlap_ratio: float
    :ivar tile_predictions_nms_threshold: The IOU threshold to use to perform NMS while merging
     predictions from tiles and image.
     Used in validation/ inference. Must be float in the range [0, 1].
     Note: This settings is not supported for the 'yolov5' algorithm.
    :vartype tile_predictions_nms_threshold: float
    :ivar validation_iou_threshold: IOU threshold to use when computing validation metric. Must be
     float in the range [0, 1].
    :vartype validation_iou_threshold: float
    :ivar validation_metric_type: Metric computation method to use for validation metrics. Known
     values are: "None", "Coco", "Voc", and "CocoVoc".
    :vartype validation_metric_type: str or
     ~azure.mgmt.machinelearningservices.models.ValidationMetricType
    """

    _attribute_map = {
        "advanced_settings": {"key": "advancedSettings", "type": "str"},
        "ams_gradient": {"key": "amsGradient", "type": "bool"},
        "augmentations": {"key": "augmentations", "type": "str"},
        "beta1": {"key": "beta1", "type": "float"},
        "beta2": {"key": "beta2", "type": "float"},
        "checkpoint_frequency": {"key": "checkpointFrequency", "type": "int"},
        "checkpoint_model": {"key": "checkpointModel", "type": "MLFlowModelJobInput"},
        "checkpoint_run_id": {"key": "checkpointRunId", "type": "str"},
        "distributed": {"key": "distributed", "type": "bool"},
        "early_stopping": {"key": "earlyStopping", "type": "bool"},
        "early_stopping_delay": {"key": "earlyStoppingDelay", "type": "int"},
        "early_stopping_patience": {"key": "earlyStoppingPatience", "type": "int"},
        "enable_onnx_normalization": {"key": "enableOnnxNormalization", "type": "bool"},
        "evaluation_frequency": {"key": "evaluationFrequency", "type": "int"},
        "gradient_accumulation_step": {"key": "gradientAccumulationStep", "type": "int"},
        "layers_to_freeze": {"key": "layersToFreeze", "type": "int"},
        "learning_rate": {"key": "learningRate", "type": "float"},
        "learning_rate_scheduler": {"key": "learningRateScheduler", "type": "str"},
        "model_name": {"key": "modelName", "type": "str"},
        "momentum": {"key": "momentum", "type": "float"},
        "nesterov": {"key": "nesterov", "type": "bool"},
        "number_of_epochs": {"key": "numberOfEpochs", "type": "int"},
        "number_of_workers": {"key": "numberOfWorkers", "type": "int"},
        "optimizer": {"key": "optimizer", "type": "str"},
        "random_seed": {"key": "randomSeed", "type": "int"},
        "step_lr_gamma": {"key": "stepLRGamma", "type": "float"},
        "step_lr_step_size": {"key": "stepLRStepSize", "type": "int"},
        "training_batch_size": {"key": "trainingBatchSize", "type": "int"},
        "validation_batch_size": {"key": "validationBatchSize", "type": "int"},
        "warmup_cosine_lr_cycles": {"key": "warmupCosineLRCycles", "type": "float"},
        "warmup_cosine_lr_warmup_epochs": {"key": "warmupCosineLRWarmupEpochs", "type": "int"},
        "weight_decay": {"key": "weightDecay", "type": "float"},
        "box_detections_per_image": {"key": "boxDetectionsPerImage", "type": "int"},
        "box_score_threshold": {"key": "boxScoreThreshold", "type": "float"},
        "image_size": {"key": "imageSize", "type": "int"},
        "max_size": {"key": "maxSize", "type": "int"},
        "min_size": {"key": "minSize", "type": "int"},
        "model_size": {"key": "modelSize", "type": "str"},
        "multi_scale": {"key": "multiScale", "type": "bool"},
        "nms_iou_threshold": {"key": "nmsIouThreshold", "type": "float"},
        "tile_grid_size": {"key": "tileGridSize", "type": "str"},
        "tile_overlap_ratio": {"key": "tileOverlapRatio", "type": "float"},
        "tile_predictions_nms_threshold": {"key": "tilePredictionsNmsThreshold", "type": "float"},
        "validation_iou_threshold": {"key": "validationIouThreshold", "type": "float"},
        "validation_metric_type": {"key": "validationMetricType", "type": "str"},
    }

    def __init__(  # pylint: disable=too-many-locals
        self,
        *,
        advanced_settings: Optional[str] = None,
        ams_gradient: Optional[bool] = None,
        augmentations: Optional[str] = None,
        beta1: Optional[float] = None,
        beta2: Optional[float] = None,
        checkpoint_frequency: Optional[int] = None,
        checkpoint_model: Optional["_models.MLFlowModelJobInput"] = None,
        checkpoint_run_id: Optional[str] = None,
        distributed: Optional[bool] = None,
        early_stopping: Optional[bool] = None,
        early_stopping_delay: Optional[int] = None,
        early_stopping_patience: Optional[int] = None,
        enable_onnx_normalization: Optional[bool] = None,
        evaluation_frequency: Optional[int] = None,
        gradient_accumulation_step: Optional[int] = None,
        layers_to_freeze: Optional[int] = None,
        learning_rate: Optional[float] = None,
        learning_rate_scheduler: Optional[Union[str, "_models.LearningRateScheduler"]] = None,
        model_name: Optional[str] = None,
        momentum: Optional[float] = None,
        nesterov: Optional[bool] = None,
        number_of_epochs: Optional[int] = None,
        number_of_workers: Optional[int] = None,
        optimizer: Optional[Union[str, "_models.StochasticOptimizer"]] = None,
        random_seed: Optional[int] = None,
        step_lr_gamma: Optional[float] = None,
        step_lr_step_size: Optional[int] = None,
        training_batch_size: Optional[int] = None,
        validation_batch_size: Optional[int] = None,
        warmup_cosine_lr_cycles: Optional[float] = None,
        warmup_cosine_lr_warmup_epochs: Optional[int] = None,
        weight_decay: Optional[float] = None,
        box_detections_per_image: Optional[int] = None,
        box_score_threshold: Optional[float] = None,
        image_size: Optional[int] = None,
        max_size: Optional[int] = None,
        min_size: Optional[int] = None,
        model_size: Optional[Union[str, "_models.ModelSize"]] = None,
        multi_scale: Optional[bool] = None,
        nms_iou_threshold: Optional[float] = None,
        tile_grid_size: Optional[str] = None,
        tile_overlap_ratio: Optional[float] = None,
        tile_predictions_nms_threshold: Optional[float] = None,
        validation_iou_threshold: Optional[float] = None,
        validation_metric_type: Optional[Union[str, "_models.ValidationMetricType"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword advanced_settings: Settings for advanced scenarios.
        :paramtype advanced_settings: str
        :keyword ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'.
        :paramtype ams_gradient: bool
        :keyword augmentations: Settings for using Augmentations.
        :paramtype augmentations: str
        :keyword beta1: Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the
         range [0, 1].
        :paramtype beta1: float
        :keyword beta2: Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the
         range [0, 1].
        :paramtype beta2: float
        :keyword checkpoint_frequency: Frequency to store model checkpoints. Must be a positive
         integer.
        :paramtype checkpoint_frequency: int
        :keyword checkpoint_model: The pretrained checkpoint model for incremental training.
        :paramtype checkpoint_model: ~azure.mgmt.machinelearningservices.models.MLFlowModelJobInput
        :keyword checkpoint_run_id: The id of a previous run that has a pretrained checkpoint for
         incremental training.
        :paramtype checkpoint_run_id: str
        :keyword distributed: Whether to use distributed training.
        :paramtype distributed: bool
        :keyword early_stopping: Enable early stopping logic during training.
        :paramtype early_stopping: bool
        :keyword early_stopping_delay: Minimum number of epochs or validation evaluations to wait
         before primary metric improvement
         is tracked for early stopping. Must be a positive integer.
        :paramtype early_stopping_delay: int
        :keyword early_stopping_patience: Minimum number of epochs or validation evaluations with no
         primary metric improvement before
         the run is stopped. Must be a positive integer.
        :paramtype early_stopping_patience: int
        :keyword enable_onnx_normalization: Enable normalization when exporting ONNX model.
        :paramtype enable_onnx_normalization: bool
        :keyword evaluation_frequency: Frequency to evaluate validation dataset to get metric scores.
         Must be a positive integer.
        :paramtype evaluation_frequency: int
        :keyword gradient_accumulation_step: Gradient accumulation means running a configured number of
         "GradAccumulationStep" steps without
         updating the model weights while accumulating the gradients of those steps, and then using
         the accumulated gradients to compute the weight updates. Must be a positive integer.
        :paramtype gradient_accumulation_step: int
        :keyword layers_to_freeze: Number of layers to freeze for the model. Must be a positive
         integer.
         For instance, passing 2 as value for 'seresnext' means
         freezing layer0 and layer1. For a full list of models supported and details on layer freeze,
         please
         see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
        :paramtype layers_to_freeze: int
        :keyword learning_rate: Initial learning rate. Must be a float in the range [0, 1].
        :paramtype learning_rate: float
        :keyword learning_rate_scheduler: Type of learning rate scheduler. Must be 'warmup_cosine' or
         'step'. Known values are: "None", "WarmupCosine", and "Step".
        :paramtype learning_rate_scheduler: str or
         ~azure.mgmt.machinelearningservices.models.LearningRateScheduler
        :keyword model_name: Name of the model to use for training.
         For more information on the available models please visit the official documentation:
         https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
        :paramtype model_name: str
        :keyword momentum: Value of momentum when optimizer is 'sgd'. Must be a float in the range [0,
         1].
        :paramtype momentum: float
        :keyword nesterov: Enable nesterov when optimizer is 'sgd'.
        :paramtype nesterov: bool
        :keyword number_of_epochs: Number of training epochs. Must be a positive integer.
        :paramtype number_of_epochs: int
        :keyword number_of_workers: Number of data loader workers. Must be a non-negative integer.
        :paramtype number_of_workers: int
        :keyword optimizer: Type of optimizer. Known values are: "None", "Sgd", "Adam", and "Adamw".
        :paramtype optimizer: str or ~azure.mgmt.machinelearningservices.models.StochasticOptimizer
        :keyword random_seed: Random seed to be used when using deterministic training.
        :paramtype random_seed: int
        :keyword step_lr_gamma: Value of gamma when learning rate scheduler is 'step'. Must be a float
         in the range [0, 1].
        :paramtype step_lr_gamma: float
        :keyword step_lr_step_size: Value of step size when learning rate scheduler is 'step'. Must be
         a positive integer.
        :paramtype step_lr_step_size: int
        :keyword training_batch_size: Training batch size. Must be a positive integer.
        :paramtype training_batch_size: int
        :keyword validation_batch_size: Validation batch size. Must be a positive integer.
        :paramtype validation_batch_size: int
        :keyword warmup_cosine_lr_cycles: Value of cosine cycle when learning rate scheduler is
         'warmup_cosine'. Must be a float in the range [0, 1].
        :paramtype warmup_cosine_lr_cycles: float
        :keyword warmup_cosine_lr_warmup_epochs: Value of warmup epochs when learning rate scheduler is
         'warmup_cosine'. Must be a positive integer.
        :paramtype warmup_cosine_lr_warmup_epochs: int
        :keyword weight_decay: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must
         be a float in the range[0, 1].
        :paramtype weight_decay: float
        :keyword box_detections_per_image: Maximum number of detections per image, for all classes.
         Must be a positive integer.
         Note: This settings is not supported for the 'yolov5' algorithm.
        :paramtype box_detections_per_image: int
        :keyword box_score_threshold: During inference, only return proposals with a classification
         score greater than
         BoxScoreThreshold. Must be a float in the range[0, 1].
        :paramtype box_score_threshold: float
        :keyword image_size: Image size for train and validation. Must be a positive integer.
         Note: The training run may get into CUDA OOM if the size is too big.
         Note: This settings is only supported for the 'yolov5' algorithm.
        :paramtype image_size: int
        :keyword max_size: Maximum size of the image to be rescaled before feeding it to the backbone.
         Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big.
         Note: This settings is not supported for the 'yolov5' algorithm.
        :paramtype max_size: int
        :keyword min_size: Minimum size of the image to be rescaled before feeding it to the backbone.
         Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big.
         Note: This settings is not supported for the 'yolov5' algorithm.
        :paramtype min_size: int
        :keyword model_size: Model size. Must be 'small', 'medium', 'large', or 'xlarge'.
         Note: training run may get into CUDA OOM if the model size is too big.
         Note: This settings is only supported for the 'yolov5' algorithm. Known values are: "None",
         "Small", "Medium", "Large", and "ExtraLarge".
        :paramtype model_size: str or ~azure.mgmt.machinelearningservices.models.ModelSize
        :keyword multi_scale: Enable multi-scale image by varying image size by +/- 50%.
         Note: training run may get into CUDA OOM if no sufficient GPU memory.
         Note: This settings is only supported for the 'yolov5' algorithm.
        :paramtype multi_scale: bool
        :keyword nms_iou_threshold: IOU threshold used during inference in NMS post processing. Must be
         a float in the range [0, 1].
        :paramtype nms_iou_threshold: float
        :keyword tile_grid_size: The grid size to use for tiling each image. Note: TileGridSize must
         not be
         None to enable small object detection logic. A string containing two integers in mxn format.
         Note: This settings is not supported for the 'yolov5' algorithm.
        :paramtype tile_grid_size: str
        :keyword tile_overlap_ratio: Overlap ratio between adjacent tiles in each dimension. Must be
         float in the range [0, 1).
         Note: This settings is not supported for the 'yolov5' algorithm.
        :paramtype tile_overlap_ratio: float
        :keyword tile_predictions_nms_threshold: The IOU threshold to use to perform NMS while merging
         predictions from tiles and image.
         Used in validation/ inference. Must be float in the range [0, 1].
         Note: This settings is not supported for the 'yolov5' algorithm.
        :paramtype tile_predictions_nms_threshold: float
        :keyword validation_iou_threshold: IOU threshold to use when computing validation metric. Must
         be float in the range [0, 1].
        :paramtype validation_iou_threshold: float
        :keyword validation_metric_type: Metric computation method to use for validation metrics. Known
         values are: "None", "Coco", "Voc", and "CocoVoc".
        :paramtype validation_metric_type: str or
         ~azure.mgmt.machinelearningservices.models.ValidationMetricType
        """
        super().__init__(
            advanced_settings=advanced_settings,
            ams_gradient=ams_gradient,
            augmentations=augmentations,
            beta1=beta1,
            beta2=beta2,
            checkpoint_frequency=checkpoint_frequency,
            checkpoint_model=checkpoint_model,
            checkpoint_run_id=checkpoint_run_id,
            distributed=distributed,
            early_stopping=early_stopping,
            early_stopping_delay=early_stopping_delay,
            early_stopping_patience=early_stopping_patience,
            enable_onnx_normalization=enable_onnx_normalization,
            evaluation_frequency=evaluation_frequency,
            gradient_accumulation_step=gradient_accumulation_step,
            layers_to_freeze=layers_to_freeze,
            learning_rate=learning_rate,
            learning_rate_scheduler=learning_rate_scheduler,
            model_name=model_name,
            momentum=momentum,
            nesterov=nesterov,
            number_of_epochs=number_of_epochs,
            number_of_workers=number_of_workers,
            optimizer=optimizer,
            random_seed=random_seed,
            step_lr_gamma=step_lr_gamma,
            step_lr_step_size=step_lr_step_size,
            training_batch_size=training_batch_size,
            validation_batch_size=validation_batch_size,
            warmup_cosine_lr_cycles=warmup_cosine_lr_cycles,
            warmup_cosine_lr_warmup_epochs=warmup_cosine_lr_warmup_epochs,
            weight_decay=weight_decay,
            **kwargs
        )
        self.box_detections_per_image = box_detections_per_image
        self.box_score_threshold = box_score_threshold
        self.image_size = image_size
        self.max_size = max_size
        self.min_size = min_size
        self.model_size = model_size
        self.multi_scale = multi_scale
        self.nms_iou_threshold = nms_iou_threshold
        self.tile_grid_size = tile_grid_size
        self.tile_overlap_ratio = tile_overlap_ratio
        self.tile_predictions_nms_threshold = tile_predictions_nms_threshold
        self.validation_iou_threshold = validation_iou_threshold
        self.validation_metric_type = validation_metric_type


class ImageObjectDetection(ImageObjectDetectionBase, AutoMLVertical):  # pylint: disable=too-many-instance-attributes
    """Image Object Detection. Object detection is used to identify objects in an image and locate
    each object with a
    bounding box e.g. locate all dogs and cats in an image and draw a bounding box around each.

    All required parameters must be populated in order to send to Azure.

    :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info",
     "Warning", "Error", and "Critical".
    :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity
    :ivar target_column_name: Target column name: This is prediction values column.
     Also known as label column name in context of classification tasks.
    :vartype target_column_name: str
    :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are:
     "Classification", "Regression", "Forecasting", "ImageClassification",
     "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation",
     "TextClassification", "TextClassificationMultilabel", and "TextNER".
    :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType
    :ivar training_data: [Required] Training data input. Required.
    :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
    :ivar limit_settings: [Required] Limit settings for the AutoML job. Required.
    :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings
    :ivar sweep_settings: Model sweeping and hyperparameter sweeping related settings.
    :vartype sweep_settings: ~azure.mgmt.machinelearningservices.models.ImageSweepSettings
    :ivar validation_data: Validation data inputs.
    :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
    :ivar validation_data_size: The fraction of training dataset that needs to be set aside for
     validation purpose.
     Values between (0.0 , 1.0)
     Applied when validation dataset is not provided.
    :vartype validation_data_size: float
    :ivar model_settings: Settings used for training the model.
    :vartype model_settings:
     ~azure.mgmt.machinelearningservices.models.ImageModelSettingsObjectDetection
    :ivar search_space: Search space for sampling different combinations of models and their
     hyperparameters.
    :vartype search_space:
     list[~azure.mgmt.machinelearningservices.models.ImageModelDistributionSettingsObjectDetection]
    :ivar primary_metric: Primary metric to optimize for this task. "MeanAveragePrecision"
    :vartype primary_metric: str or
     ~azure.mgmt.machinelearningservices.models.ObjectDetectionPrimaryMetrics
    """

    _validation = {
        "task_type": {"required": True},
        "training_data": {"required": True},
        "limit_settings": {"required": True},
    }

    _attribute_map = {
        "log_verbosity": {"key": "logVerbosity", "type": "str"},
        "target_column_name": {"key": "targetColumnName", "type": "str"},
        "task_type": {"key": "taskType", "type": "str"},
        "training_data": {"key": "trainingData", "type": "MLTableJobInput"},
        "limit_settings": {"key": "limitSettings", "type": "ImageLimitSettings"},
        "sweep_settings": {"key": "sweepSettings", "type": "ImageSweepSettings"},
        "validation_data": {"key": "validationData", "type": "MLTableJobInput"},
        "validation_data_size": {"key": "validationDataSize", "type": "float"},
        "model_settings": {"key": "modelSettings", "type": "ImageModelSettingsObjectDetection"},
        "search_space": {"key": "searchSpace", "type": "[ImageModelDistributionSettingsObjectDetection]"},
        "primary_metric": {"key": "primaryMetric", "type": "str"},
    }

    def __init__(
        self,
        *,
        training_data: "_models.MLTableJobInput",
        limit_settings: "_models.ImageLimitSettings",
        log_verbosity: Optional[Union[str, "_models.LogVerbosity"]] = None,
        target_column_name: Optional[str] = None,
        sweep_settings: Optional["_models.ImageSweepSettings"] = None,
        validation_data: Optional["_models.MLTableJobInput"] = None,
        validation_data_size: Optional[float] = None,
        model_settings: Optional["_models.ImageModelSettingsObjectDetection"] = None,
        search_space: Optional[List["_models.ImageModelDistributionSettingsObjectDetection"]] = None,
        primary_metric: Optional[Union[str, "_models.ObjectDetectionPrimaryMetrics"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info",
         "Warning", "Error", and "Critical".
        :paramtype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity
        :keyword target_column_name: Target column name: This is prediction values column.
         Also known as label column name in context of classification tasks.
        :paramtype target_column_name: str
        :keyword training_data: [Required] Training data input. Required.
        :paramtype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
        :keyword limit_settings: [Required] Limit settings for the AutoML job. Required.
        :paramtype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings
        :keyword sweep_settings: Model sweeping and hyperparameter sweeping related settings.
        :paramtype sweep_settings: ~azure.mgmt.machinelearningservices.models.ImageSweepSettings
        :keyword validation_data: Validation data inputs.
        :paramtype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
        :keyword validation_data_size: The fraction of training dataset that needs to be set aside for
         validation purpose.
         Values between (0.0 , 1.0)
         Applied when validation dataset is not provided.
        :paramtype validation_data_size: float
        :keyword model_settings: Settings used for training the model.
        :paramtype model_settings:
         ~azure.mgmt.machinelearningservices.models.ImageModelSettingsObjectDetection
        :keyword search_space: Search space for sampling different combinations of models and their
         hyperparameters.
        :paramtype search_space:
         list[~azure.mgmt.machinelearningservices.models.ImageModelDistributionSettingsObjectDetection]
        :keyword primary_metric: Primary metric to optimize for this task. "MeanAveragePrecision"
        :paramtype primary_metric: str or
         ~azure.mgmt.machinelearningservices.models.ObjectDetectionPrimaryMetrics
        """
        super().__init__(
            limit_settings=limit_settings,
            sweep_settings=sweep_settings,
            validation_data=validation_data,
            validation_data_size=validation_data_size,
            model_settings=model_settings,
            search_space=search_space,
            log_verbosity=log_verbosity,
            target_column_name=target_column_name,
            training_data=training_data,
            **kwargs
        )
        self.log_verbosity = log_verbosity
        self.target_column_name = target_column_name
        self.task_type: str = "ImageObjectDetection"
        self.training_data = training_data
        self.primary_metric = primary_metric
        self.limit_settings = limit_settings
        self.sweep_settings = sweep_settings
        self.validation_data = validation_data
        self.validation_data_size = validation_data_size
        self.model_settings = model_settings
        self.search_space = search_space


class ImageSweepSettings(_serialization.Model):
    """Model sweeping and hyperparameter sweeping related settings.

    All required parameters must be populated in order to send to Azure.

    :ivar early_termination: Type of early termination policy.
    :vartype early_termination: ~azure.mgmt.machinelearningservices.models.EarlyTerminationPolicy
    :ivar sampling_algorithm: [Required] Type of the hyperparameter sampling algorithms. Required.
     Known values are: "Grid", "Random", and "Bayesian".
    :vartype sampling_algorithm: str or
     ~azure.mgmt.machinelearningservices.models.SamplingAlgorithmType
    """

    _validation = {
        "sampling_algorithm": {"required": True},
    }

    _attribute_map = {
        "early_termination": {"key": "earlyTermination", "type": "EarlyTerminationPolicy"},
        "sampling_algorithm": {"key": "samplingAlgorithm", "type": "str"},
    }

    def __init__(
        self,
        *,
        sampling_algorithm: Union[str, "_models.SamplingAlgorithmType"],
        early_termination: Optional["_models.EarlyTerminationPolicy"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword early_termination: Type of early termination policy.
        :paramtype early_termination: ~azure.mgmt.machinelearningservices.models.EarlyTerminationPolicy
        :keyword sampling_algorithm: [Required] Type of the hyperparameter sampling algorithms.
         Required. Known values are: "Grid", "Random", and "Bayesian".
        :paramtype sampling_algorithm: str or
         ~azure.mgmt.machinelearningservices.models.SamplingAlgorithmType
        """
        super().__init__(**kwargs)
        self.early_termination = early_termination
        self.sampling_algorithm = sampling_algorithm


class InferenceContainerProperties(_serialization.Model):
    """InferenceContainerProperties.

    :ivar liveness_route: The route to check the liveness of the inference server container.
    :vartype liveness_route: ~azure.mgmt.machinelearningservices.models.Route
    :ivar readiness_route: The route to check the readiness of the inference server container.
    :vartype readiness_route: ~azure.mgmt.machinelearningservices.models.Route
    :ivar scoring_route: The port to send the scoring requests to, within the inference server
     container.
    :vartype scoring_route: ~azure.mgmt.machinelearningservices.models.Route
    """

    _attribute_map = {
        "liveness_route": {"key": "livenessRoute", "type": "Route"},
        "readiness_route": {"key": "readinessRoute", "type": "Route"},
        "scoring_route": {"key": "scoringRoute", "type": "Route"},
    }

    def __init__(
        self,
        *,
        liveness_route: Optional["_models.Route"] = None,
        readiness_route: Optional["_models.Route"] = None,
        scoring_route: Optional["_models.Route"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword liveness_route: The route to check the liveness of the inference server container.
        :paramtype liveness_route: ~azure.mgmt.machinelearningservices.models.Route
        :keyword readiness_route: The route to check the readiness of the inference server container.
        :paramtype readiness_route: ~azure.mgmt.machinelearningservices.models.Route
        :keyword scoring_route: The port to send the scoring requests to, within the inference server
         container.
        :paramtype scoring_route: ~azure.mgmt.machinelearningservices.models.Route
        """
        super().__init__(**kwargs)
        self.liveness_route = liveness_route
        self.readiness_route = readiness_route
        self.scoring_route = scoring_route


class InstanceTypeSchema(_serialization.Model):
    """Instance type schema.

    :ivar node_selector: Node Selector.
    :vartype node_selector: dict[str, str]
    :ivar resources: Resource requests/limits for this instance type.
    :vartype resources: ~azure.mgmt.machinelearningservices.models.InstanceTypeSchemaResources
    """

    _attribute_map = {
        "node_selector": {"key": "nodeSelector", "type": "{str}"},
        "resources": {"key": "resources", "type": "InstanceTypeSchemaResources"},
    }

    def __init__(
        self,
        *,
        node_selector: Optional[Dict[str, str]] = None,
        resources: Optional["_models.InstanceTypeSchemaResources"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword node_selector: Node Selector.
        :paramtype node_selector: dict[str, str]
        :keyword resources: Resource requests/limits for this instance type.
        :paramtype resources: ~azure.mgmt.machinelearningservices.models.InstanceTypeSchemaResources
        """
        super().__init__(**kwargs)
        self.node_selector = node_selector
        self.resources = resources


class InstanceTypeSchemaResources(_serialization.Model):
    """Resource requests/limits for this instance type.

    :ivar requests: Resource requests for this instance type.
    :vartype requests: dict[str, str]
    :ivar limits: Resource limits for this instance type.
    :vartype limits: dict[str, str]
    """

    _attribute_map = {
        "requests": {"key": "requests", "type": "{str}"},
        "limits": {"key": "limits", "type": "{str}"},
    }

    def __init__(
        self, *, requests: Optional[Dict[str, str]] = None, limits: Optional[Dict[str, str]] = None, **kwargs: Any
    ) -> None:
        """
        :keyword requests: Resource requests for this instance type.
        :paramtype requests: dict[str, str]
        :keyword limits: Resource limits for this instance type.
        :paramtype limits: dict[str, str]
        """
        super().__init__(**kwargs)
        self.requests = requests
        self.limits = limits


class JobBase(Resource):
    """Azure Resource Manager resource envelope.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar id: Fully qualified resource ID for the resource. Ex -
     /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}.
    :vartype id: str
    :ivar name: The name of the resource.
    :vartype name: str
    :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or
     "Microsoft.Storage/storageAccounts".
    :vartype type: str
    :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy
     information.
    :vartype system_data: ~azure.mgmt.machinelearningservices.models.SystemData
    :ivar properties: [Required] Additional attributes of the entity. Required.
    :vartype properties: ~azure.mgmt.machinelearningservices.models.JobBaseProperties
    """

    _validation = {
        "id": {"readonly": True},
        "name": {"readonly": True},
        "type": {"readonly": True},
        "system_data": {"readonly": True},
        "properties": {"required": True},
    }

    _attribute_map = {
        "id": {"key": "id", "type": "str"},
        "name": {"key": "name", "type": "str"},
        "type": {"key": "type", "type": "str"},
        "system_data": {"key": "systemData", "type": "SystemData"},
        "properties": {"key": "properties", "type": "JobBaseProperties"},
    }

    def __init__(self, *, properties: "_models.JobBaseProperties", **kwargs: Any) -> None:
        """
        :keyword properties: [Required] Additional attributes of the entity. Required.
        :paramtype properties: ~azure.mgmt.machinelearningservices.models.JobBaseProperties
        """
        super().__init__(**kwargs)
        self.properties = properties


class JobBaseResourceArmPaginatedResult(_serialization.Model):
    """A paginated list of JobBase entities.

    :ivar next_link: The link to the next page of JobBase objects. If null, there are no additional
     pages.
    :vartype next_link: str
    :ivar value: An array of objects of type JobBase.
    :vartype value: list[~azure.mgmt.machinelearningservices.models.JobBase]
    """

    _attribute_map = {
        "next_link": {"key": "nextLink", "type": "str"},
        "value": {"key": "value", "type": "[JobBase]"},
    }

    def __init__(
        self, *, next_link: Optional[str] = None, value: Optional[List["_models.JobBase"]] = None, **kwargs: Any
    ) -> None:
        """
        :keyword next_link: The link to the next page of JobBase objects. If null, there are no
         additional pages.
        :paramtype next_link: str
        :keyword value: An array of objects of type JobBase.
        :paramtype value: list[~azure.mgmt.machinelearningservices.models.JobBase]
        """
        super().__init__(**kwargs)
        self.next_link = next_link
        self.value = value


class JobResourceConfiguration(ResourceConfiguration):
    """JobResourceConfiguration.

    :ivar instance_count: Optional number of instances or nodes used by the compute target.
    :vartype instance_count: int
    :ivar instance_type: Optional type of VM used as supported by the compute target.
    :vartype instance_type: str
    :ivar properties: Additional properties bag.
    :vartype properties: dict[str, JSON]
    :ivar docker_args: Extra arguments to pass to the Docker run command. This would override any
     parameters that have already been set by the system, or in this section. This parameter is only
     supported for Azure ML compute types.
    :vartype docker_args: str
    :ivar shm_size: Size of the docker container's shared memory block. This should be in the
     format of (number)(unit) where number as to be greater than 0 and the unit can be one of
     b(bytes), k(kilobytes), m(megabytes), or g(gigabytes).
    :vartype shm_size: str
    """

    _validation = {
        "shm_size": {"pattern": r"\d+[bBkKmMgG]"},
    }

    _attribute_map = {
        "instance_count": {"key": "instanceCount", "type": "int"},
        "instance_type": {"key": "instanceType", "type": "str"},
        "properties": {"key": "properties", "type": "{object}"},
        "docker_args": {"key": "dockerArgs", "type": "str"},
        "shm_size": {"key": "shmSize", "type": "str"},
    }

    def __init__(
        self,
        *,
        instance_count: int = 1,
        instance_type: Optional[str] = None,
        properties: Optional[Dict[str, JSON]] = None,
        docker_args: Optional[str] = None,
        shm_size: str = "2g",
        **kwargs: Any
    ) -> None:
        """
        :keyword instance_count: Optional number of instances or nodes used by the compute target.
        :paramtype instance_count: int
        :keyword instance_type: Optional type of VM used as supported by the compute target.
        :paramtype instance_type: str
        :keyword properties: Additional properties bag.
        :paramtype properties: dict[str, JSON]
        :keyword docker_args: Extra arguments to pass to the Docker run command. This would override
         any parameters that have already been set by the system, or in this section. This parameter is
         only supported for Azure ML compute types.
        :paramtype docker_args: str
        :keyword shm_size: Size of the docker container's shared memory block. This should be in the
         format of (number)(unit) where number as to be greater than 0 and the unit can be one of
         b(bytes), k(kilobytes), m(megabytes), or g(gigabytes).
        :paramtype shm_size: str
        """
        super().__init__(instance_count=instance_count, instance_type=instance_type, properties=properties, **kwargs)
        self.docker_args = docker_args
        self.shm_size = shm_size


class JobScheduleAction(ScheduleActionBase):
    """JobScheduleAction.

    All required parameters must be populated in order to send to Azure.

    :ivar action_type: [Required] Specifies the action type of the schedule. Required. Known values
     are: "CreateJob" and "InvokeBatchEndpoint".
    :vartype action_type: str or ~azure.mgmt.machinelearningservices.models.ScheduleActionType
    :ivar job_definition: [Required] Defines Schedule action definition details. Required.
    :vartype job_definition: ~azure.mgmt.machinelearningservices.models.JobBaseProperties
    """

    _validation = {
        "action_type": {"required": True},
        "job_definition": {"required": True},
    }

    _attribute_map = {
        "action_type": {"key": "actionType", "type": "str"},
        "job_definition": {"key": "jobDefinition", "type": "JobBaseProperties"},
    }

    def __init__(self, *, job_definition: "_models.JobBaseProperties", **kwargs: Any) -> None:
        """
        :keyword job_definition: [Required] Defines Schedule action definition details. Required.
        :paramtype job_definition: ~azure.mgmt.machinelearningservices.models.JobBaseProperties
        """
        super().__init__(**kwargs)
        self.action_type: str = "CreateJob"
        self.job_definition = job_definition


class JobService(_serialization.Model):
    """Job endpoint definition.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar endpoint: Url for endpoint.
    :vartype endpoint: str
    :ivar error_message: Any error in the service.
    :vartype error_message: str
    :ivar job_service_type: Endpoint type.
    :vartype job_service_type: str
    :ivar nodes: Nodes that user would like to start the service on.
     If Nodes is not set or set to null, the service will only be started on leader node.
    :vartype nodes: ~azure.mgmt.machinelearningservices.models.Nodes
    :ivar port: Port for endpoint.
    :vartype port: int
    :ivar properties: Additional properties to set on the endpoint.
    :vartype properties: dict[str, str]
    :ivar status: Status of endpoint.
    :vartype status: str
    """

    _validation = {
        "error_message": {"readonly": True},
        "status": {"readonly": True},
    }

    _attribute_map = {
        "endpoint": {"key": "endpoint", "type": "str"},
        "error_message": {"key": "errorMessage", "type": "str"},
        "job_service_type": {"key": "jobServiceType", "type": "str"},
        "nodes": {"key": "nodes", "type": "Nodes"},
        "port": {"key": "port", "type": "int"},
        "properties": {"key": "properties", "type": "{str}"},
        "status": {"key": "status", "type": "str"},
    }

    def __init__(
        self,
        *,
        endpoint: Optional[str] = None,
        job_service_type: Optional[str] = None,
        nodes: Optional["_models.Nodes"] = None,
        port: Optional[int] = None,
        properties: Optional[Dict[str, str]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword endpoint: Url for endpoint.
        :paramtype endpoint: str
        :keyword job_service_type: Endpoint type.
        :paramtype job_service_type: str
        :keyword nodes: Nodes that user would like to start the service on.
         If Nodes is not set or set to null, the service will only be started on leader node.
        :paramtype nodes: ~azure.mgmt.machinelearningservices.models.Nodes
        :keyword port: Port for endpoint.
        :paramtype port: int
        :keyword properties: Additional properties to set on the endpoint.
        :paramtype properties: dict[str, str]
        """
        super().__init__(**kwargs)
        self.endpoint = endpoint
        self.error_message = None
        self.job_service_type = job_service_type
        self.nodes = nodes
        self.port = port
        self.properties = properties
        self.status = None


class KubernetesSchema(_serialization.Model):
    """Kubernetes Compute Schema.

    :ivar properties: Properties of Kubernetes.
    :vartype properties: ~azure.mgmt.machinelearningservices.models.KubernetesProperties
    """

    _attribute_map = {
        "properties": {"key": "properties", "type": "KubernetesProperties"},
    }

    def __init__(self, *, properties: Optional["_models.KubernetesProperties"] = None, **kwargs: Any) -> None:
        """
        :keyword properties: Properties of Kubernetes.
        :paramtype properties: ~azure.mgmt.machinelearningservices.models.KubernetesProperties
        """
        super().__init__(**kwargs)
        self.properties = properties


class Kubernetes(Compute, KubernetesSchema):  # pylint: disable=too-many-instance-attributes
    """A Machine Learning compute based on Kubernetes Compute.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar properties: Properties of Kubernetes.
    :vartype properties: ~azure.mgmt.machinelearningservices.models.KubernetesProperties
    :ivar compute_type: The type of compute. Required. Known values are: "AKS", "Kubernetes",
     "AmlCompute", "ComputeInstance", "DataFactory", "VirtualMachine", "HDInsight", "Databricks",
     "DataLakeAnalytics", and "SynapseSpark".
    :vartype compute_type: str or ~azure.mgmt.machinelearningservices.models.ComputeType
    :ivar compute_location: Location for the underlying compute.
    :vartype compute_location: str
    :ivar provisioning_state: The provision state of the cluster. Valid values are Unknown,
     Updating, Provisioning, Succeeded, and Failed. Known values are: "Unknown", "Updating",
     "Creating", "Deleting", "Succeeded", "Failed", and "Canceled".
    :vartype provisioning_state: str or
     ~azure.mgmt.machinelearningservices.models.ProvisioningState
    :ivar description: The description of the Machine Learning compute.
    :vartype description: str
    :ivar created_on: The time at which the compute was created.
    :vartype created_on: ~datetime.datetime
    :ivar modified_on: The time at which the compute was last modified.
    :vartype modified_on: ~datetime.datetime
    :ivar resource_id: ARM resource id of the underlying compute.
    :vartype resource_id: str
    :ivar provisioning_errors: Errors during provisioning.
    :vartype provisioning_errors: list[~azure.mgmt.machinelearningservices.models.ErrorResponse]
    :ivar is_attached_compute: Indicating whether the compute was provisioned by user and brought
     from outside if true, or machine learning service provisioned it if false.
    :vartype is_attached_compute: bool
    :ivar disable_local_auth: Opt-out of local authentication and ensure customers can use only MSI
     and AAD exclusively for authentication.
    :vartype disable_local_auth: bool
    """

    _validation = {
        "compute_type": {"required": True},
        "provisioning_state": {"readonly": True},
        "created_on": {"readonly": True},
        "modified_on": {"readonly": True},
        "provisioning_errors": {"readonly": True},
        "is_attached_compute": {"readonly": True},
    }

    _attribute_map = {
        "properties": {"key": "properties", "type": "KubernetesProperties"},
        "compute_type": {"key": "computeType", "type": "str"},
        "compute_location": {"key": "computeLocation", "type": "str"},
        "provisioning_state": {"key": "provisioningState", "type": "str"},
        "description": {"key": "description", "type": "str"},
        "created_on": {"key": "createdOn", "type": "iso-8601"},
        "modified_on": {"key": "modifiedOn", "type": "iso-8601"},
        "resource_id": {"key": "resourceId", "type": "str"},
        "provisioning_errors": {"key": "provisioningErrors", "type": "[ErrorResponse]"},
        "is_attached_compute": {"key": "isAttachedCompute", "type": "bool"},
        "disable_local_auth": {"key": "disableLocalAuth", "type": "bool"},
    }

    def __init__(
        self,
        *,
        properties: Optional["_models.KubernetesProperties"] = None,
        compute_location: Optional[str] = None,
        description: Optional[str] = None,
        resource_id: Optional[str] = None,
        disable_local_auth: Optional[bool] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword properties: Properties of Kubernetes.
        :paramtype properties: ~azure.mgmt.machinelearningservices.models.KubernetesProperties
        :keyword compute_location: Location for the underlying compute.
        :paramtype compute_location: str
        :keyword description: The description of the Machine Learning compute.
        :paramtype description: str
        :keyword resource_id: ARM resource id of the underlying compute.
        :paramtype resource_id: str
        :keyword disable_local_auth: Opt-out of local authentication and ensure customers can use only
         MSI and AAD exclusively for authentication.
        :paramtype disable_local_auth: bool
        """
        super().__init__(
            compute_location=compute_location,
            description=description,
            resource_id=resource_id,
            disable_local_auth=disable_local_auth,
            properties=properties,
            **kwargs
        )
        self.properties = properties
        self.compute_type: str = "Kubernetes"
        self.compute_location = compute_location
        self.provisioning_state = None
        self.description = description
        self.created_on = None
        self.modified_on = None
        self.resource_id = resource_id
        self.provisioning_errors = None
        self.is_attached_compute = None
        self.disable_local_auth = disable_local_auth


class OnlineDeploymentProperties(EndpointDeploymentPropertiesBase):  # pylint: disable=too-many-instance-attributes
    """OnlineDeploymentProperties.

    You probably want to use the sub-classes and not this class directly. Known sub-classes are:
    KubernetesOnlineDeployment, ManagedOnlineDeployment

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar code_configuration: Code configuration for the endpoint deployment.
    :vartype code_configuration: ~azure.mgmt.machinelearningservices.models.CodeConfiguration
    :ivar description: Description of the endpoint deployment.
    :vartype description: str
    :ivar environment_id: ARM resource ID or AssetId of the environment specification for the
     endpoint deployment.
    :vartype environment_id: str
    :ivar environment_variables: Environment variables configuration for the deployment.
    :vartype environment_variables: dict[str, str]
    :ivar properties: Property dictionary. Properties can be added, but not removed or altered.
    :vartype properties: dict[str, str]
    :ivar app_insights_enabled: If true, enables Application Insights logging.
    :vartype app_insights_enabled: bool
    :ivar egress_public_network_access: If Enabled, allow egress public network access. If
     Disabled, this will create secure egress. Default: Enabled. Known values are: "Enabled" and
     "Disabled".
    :vartype egress_public_network_access: str or
     ~azure.mgmt.machinelearningservices.models.EgressPublicNetworkAccessType
    :ivar endpoint_compute_type: [Required] The compute type of the endpoint. Required. Known
     values are: "Managed", "Kubernetes", and "AzureMLCompute".
    :vartype endpoint_compute_type: str or
     ~azure.mgmt.machinelearningservices.models.EndpointComputeType
    :ivar instance_type: Compute instance type.
    :vartype instance_type: str
    :ivar liveness_probe: Liveness probe monitors the health of the container regularly.
    :vartype liveness_probe: ~azure.mgmt.machinelearningservices.models.ProbeSettings
    :ivar model: The URI path to the model.
    :vartype model: str
    :ivar model_mount_path: The path to mount the model in custom container.
    :vartype model_mount_path: str
    :ivar provisioning_state: Provisioning state for the endpoint deployment. Known values are:
     "Creating", "Deleting", "Scaling", "Updating", "Succeeded", "Failed", and "Canceled".
    :vartype provisioning_state: str or
     ~azure.mgmt.machinelearningservices.models.DeploymentProvisioningState
    :ivar readiness_probe: Readiness probe validates if the container is ready to serve traffic.
     The properties and defaults are the same as liveness probe.
    :vartype readiness_probe: ~azure.mgmt.machinelearningservices.models.ProbeSettings
    :ivar request_settings: Request settings for the deployment.
    :vartype request_settings: ~azure.mgmt.machinelearningservices.models.OnlineRequestSettings
    :ivar scale_settings: Scale settings for the deployment.
     If it is null or not provided,
     it defaults to TargetUtilizationScaleSettings for KubernetesOnlineDeployment
     and to DefaultScaleSettings for ManagedOnlineDeployment.
    :vartype scale_settings: ~azure.mgmt.machinelearningservices.models.OnlineScaleSettings
    """

    _validation = {
        "endpoint_compute_type": {"required": True},
        "provisioning_state": {"readonly": True},
    }

    _attribute_map = {
        "code_configuration": {"key": "codeConfiguration", "type": "CodeConfiguration"},
        "description": {"key": "description", "type": "str"},
        "environment_id": {"key": "environmentId", "type": "str"},
        "environment_variables": {"key": "environmentVariables", "type": "{str}"},
        "properties": {"key": "properties", "type": "{str}"},
        "app_insights_enabled": {"key": "appInsightsEnabled", "type": "bool"},
        "egress_public_network_access": {"key": "egressPublicNetworkAccess", "type": "str"},
        "endpoint_compute_type": {"key": "endpointComputeType", "type": "str"},
        "instance_type": {"key": "instanceType", "type": "str"},
        "liveness_probe": {"key": "livenessProbe", "type": "ProbeSettings"},
        "model": {"key": "model", "type": "str"},
        "model_mount_path": {"key": "modelMountPath", "type": "str"},
        "provisioning_state": {"key": "provisioningState", "type": "str"},
        "readiness_probe": {"key": "readinessProbe", "type": "ProbeSettings"},
        "request_settings": {"key": "requestSettings", "type": "OnlineRequestSettings"},
        "scale_settings": {"key": "scaleSettings", "type": "OnlineScaleSettings"},
    }

    _subtype_map = {
        "endpoint_compute_type": {"Kubernetes": "KubernetesOnlineDeployment", "Managed": "ManagedOnlineDeployment"}
    }

    def __init__(
        self,
        *,
        code_configuration: Optional["_models.CodeConfiguration"] = None,
        description: Optional[str] = None,
        environment_id: Optional[str] = None,
        environment_variables: Optional[Dict[str, str]] = None,
        properties: Optional[Dict[str, str]] = None,
        app_insights_enabled: bool = False,
        egress_public_network_access: Optional[Union[str, "_models.EgressPublicNetworkAccessType"]] = None,
        instance_type: Optional[str] = None,
        liveness_probe: Optional["_models.ProbeSettings"] = None,
        model: Optional[str] = None,
        model_mount_path: Optional[str] = None,
        readiness_probe: Optional["_models.ProbeSettings"] = None,
        request_settings: Optional["_models.OnlineRequestSettings"] = None,
        scale_settings: Optional["_models.OnlineScaleSettings"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword code_configuration: Code configuration for the endpoint deployment.
        :paramtype code_configuration: ~azure.mgmt.machinelearningservices.models.CodeConfiguration
        :keyword description: Description of the endpoint deployment.
        :paramtype description: str
        :keyword environment_id: ARM resource ID or AssetId of the environment specification for the
         endpoint deployment.
        :paramtype environment_id: str
        :keyword environment_variables: Environment variables configuration for the deployment.
        :paramtype environment_variables: dict[str, str]
        :keyword properties: Property dictionary. Properties can be added, but not removed or altered.
        :paramtype properties: dict[str, str]
        :keyword app_insights_enabled: If true, enables Application Insights logging.
        :paramtype app_insights_enabled: bool
        :keyword egress_public_network_access: If Enabled, allow egress public network access. If
         Disabled, this will create secure egress. Default: Enabled. Known values are: "Enabled" and
         "Disabled".
        :paramtype egress_public_network_access: str or
         ~azure.mgmt.machinelearningservices.models.EgressPublicNetworkAccessType
        :keyword instance_type: Compute instance type.
        :paramtype instance_type: str
        :keyword liveness_probe: Liveness probe monitors the health of the container regularly.
        :paramtype liveness_probe: ~azure.mgmt.machinelearningservices.models.ProbeSettings
        :keyword model: The URI path to the model.
        :paramtype model: str
        :keyword model_mount_path: The path to mount the model in custom container.
        :paramtype model_mount_path: str
        :keyword readiness_probe: Readiness probe validates if the container is ready to serve traffic.
         The properties and defaults are the same as liveness probe.
        :paramtype readiness_probe: ~azure.mgmt.machinelearningservices.models.ProbeSettings
        :keyword request_settings: Request settings for the deployment.
        :paramtype request_settings: ~azure.mgmt.machinelearningservices.models.OnlineRequestSettings
        :keyword scale_settings: Scale settings for the deployment.
         If it is null or not provided,
         it defaults to TargetUtilizationScaleSettings for KubernetesOnlineDeployment
         and to DefaultScaleSettings for ManagedOnlineDeployment.
        :paramtype scale_settings: ~azure.mgmt.machinelearningservices.models.OnlineScaleSettings
        """
        super().__init__(
            code_configuration=code_configuration,
            description=description,
            environment_id=environment_id,
            environment_variables=environment_variables,
            properties=properties,
            **kwargs
        )
        self.app_insights_enabled = app_insights_enabled
        self.egress_public_network_access = egress_public_network_access
        self.endpoint_compute_type: Optional[str] = None
        self.instance_type = instance_type
        self.liveness_probe = liveness_probe
        self.model = model
        self.model_mount_path = model_mount_path
        self.provisioning_state = None
        self.readiness_probe = readiness_probe
        self.request_settings = request_settings
        self.scale_settings = scale_settings


class KubernetesOnlineDeployment(OnlineDeploymentProperties):  # pylint: disable=too-many-instance-attributes
    """Properties specific to a KubernetesOnlineDeployment.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar code_configuration: Code configuration for the endpoint deployment.
    :vartype code_configuration: ~azure.mgmt.machinelearningservices.models.CodeConfiguration
    :ivar description: Description of the endpoint deployment.
    :vartype description: str
    :ivar environment_id: ARM resource ID or AssetId of the environment specification for the
     endpoint deployment.
    :vartype environment_id: str
    :ivar environment_variables: Environment variables configuration for the deployment.
    :vartype environment_variables: dict[str, str]
    :ivar properties: Property dictionary. Properties can be added, but not removed or altered.
    :vartype properties: dict[str, str]
    :ivar app_insights_enabled: If true, enables Application Insights logging.
    :vartype app_insights_enabled: bool
    :ivar egress_public_network_access: If Enabled, allow egress public network access. If
     Disabled, this will create secure egress. Default: Enabled. Known values are: "Enabled" and
     "Disabled".
    :vartype egress_public_network_access: str or
     ~azure.mgmt.machinelearningservices.models.EgressPublicNetworkAccessType
    :ivar endpoint_compute_type: [Required] The compute type of the endpoint. Required. Known
     values are: "Managed", "Kubernetes", and "AzureMLCompute".
    :vartype endpoint_compute_type: str or
     ~azure.mgmt.machinelearningservices.models.EndpointComputeType
    :ivar instance_type: Compute instance type.
    :vartype instance_type: str
    :ivar liveness_probe: Liveness probe monitors the health of the container regularly.
    :vartype liveness_probe: ~azure.mgmt.machinelearningservices.models.ProbeSettings
    :ivar model: The URI path to the model.
    :vartype model: str
    :ivar model_mount_path: The path to mount the model in custom container.
    :vartype model_mount_path: str
    :ivar provisioning_state: Provisioning state for the endpoint deployment. Known values are:
     "Creating", "Deleting", "Scaling", "Updating", "Succeeded", "Failed", and "Canceled".
    :vartype provisioning_state: str or
     ~azure.mgmt.machinelearningservices.models.DeploymentProvisioningState
    :ivar readiness_probe: Readiness probe validates if the container is ready to serve traffic.
     The properties and defaults are the same as liveness probe.
    :vartype readiness_probe: ~azure.mgmt.machinelearningservices.models.ProbeSettings
    :ivar request_settings: Request settings for the deployment.
    :vartype request_settings: ~azure.mgmt.machinelearningservices.models.OnlineRequestSettings
    :ivar scale_settings: Scale settings for the deployment.
     If it is null or not provided,
     it defaults to TargetUtilizationScaleSettings for KubernetesOnlineDeployment
     and to DefaultScaleSettings for ManagedOnlineDeployment.
    :vartype scale_settings: ~azure.mgmt.machinelearningservices.models.OnlineScaleSettings
    :ivar container_resource_requirements: The resource requirements for the container (cpu and
     memory).
    :vartype container_resource_requirements:
     ~azure.mgmt.machinelearningservices.models.ContainerResourceRequirements
    """

    _validation = {
        "endpoint_compute_type": {"required": True},
        "provisioning_state": {"readonly": True},
    }

    _attribute_map = {
        "code_configuration": {"key": "codeConfiguration", "type": "CodeConfiguration"},
        "description": {"key": "description", "type": "str"},
        "environment_id": {"key": "environmentId", "type": "str"},
        "environment_variables": {"key": "environmentVariables", "type": "{str}"},
        "properties": {"key": "properties", "type": "{str}"},
        "app_insights_enabled": {"key": "appInsightsEnabled", "type": "bool"},
        "egress_public_network_access": {"key": "egressPublicNetworkAccess", "type": "str"},
        "endpoint_compute_type": {"key": "endpointComputeType", "type": "str"},
        "instance_type": {"key": "instanceType", "type": "str"},
        "liveness_probe": {"key": "livenessProbe", "type": "ProbeSettings"},
        "model": {"key": "model", "type": "str"},
        "model_mount_path": {"key": "modelMountPath", "type": "str"},
        "provisioning_state": {"key": "provisioningState", "type": "str"},
        "readiness_probe": {"key": "readinessProbe", "type": "ProbeSettings"},
        "request_settings": {"key": "requestSettings", "type": "OnlineRequestSettings"},
        "scale_settings": {"key": "scaleSettings", "type": "OnlineScaleSettings"},
        "container_resource_requirements": {
            "key": "containerResourceRequirements",
            "type": "ContainerResourceRequirements",
        },
    }

    def __init__(
        self,
        *,
        code_configuration: Optional["_models.CodeConfiguration"] = None,
        description: Optional[str] = None,
        environment_id: Optional[str] = None,
        environment_variables: Optional[Dict[str, str]] = None,
        properties: Optional[Dict[str, str]] = None,
        app_insights_enabled: bool = False,
        egress_public_network_access: Optional[Union[str, "_models.EgressPublicNetworkAccessType"]] = None,
        instance_type: Optional[str] = None,
        liveness_probe: Optional["_models.ProbeSettings"] = None,
        model: Optional[str] = None,
        model_mount_path: Optional[str] = None,
        readiness_probe: Optional["_models.ProbeSettings"] = None,
        request_settings: Optional["_models.OnlineRequestSettings"] = None,
        scale_settings: Optional["_models.OnlineScaleSettings"] = None,
        container_resource_requirements: Optional["_models.ContainerResourceRequirements"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword code_configuration: Code configuration for the endpoint deployment.
        :paramtype code_configuration: ~azure.mgmt.machinelearningservices.models.CodeConfiguration
        :keyword description: Description of the endpoint deployment.
        :paramtype description: str
        :keyword environment_id: ARM resource ID or AssetId of the environment specification for the
         endpoint deployment.
        :paramtype environment_id: str
        :keyword environment_variables: Environment variables configuration for the deployment.
        :paramtype environment_variables: dict[str, str]
        :keyword properties: Property dictionary. Properties can be added, but not removed or altered.
        :paramtype properties: dict[str, str]
        :keyword app_insights_enabled: If true, enables Application Insights logging.
        :paramtype app_insights_enabled: bool
        :keyword egress_public_network_access: If Enabled, allow egress public network access. If
         Disabled, this will create secure egress. Default: Enabled. Known values are: "Enabled" and
         "Disabled".
        :paramtype egress_public_network_access: str or
         ~azure.mgmt.machinelearningservices.models.EgressPublicNetworkAccessType
        :keyword instance_type: Compute instance type.
        :paramtype instance_type: str
        :keyword liveness_probe: Liveness probe monitors the health of the container regularly.
        :paramtype liveness_probe: ~azure.mgmt.machinelearningservices.models.ProbeSettings
        :keyword model: The URI path to the model.
        :paramtype model: str
        :keyword model_mount_path: The path to mount the model in custom container.
        :paramtype model_mount_path: str
        :keyword readiness_probe: Readiness probe validates if the container is ready to serve traffic.
         The properties and defaults are the same as liveness probe.
        :paramtype readiness_probe: ~azure.mgmt.machinelearningservices.models.ProbeSettings
        :keyword request_settings: Request settings for the deployment.
        :paramtype request_settings: ~azure.mgmt.machinelearningservices.models.OnlineRequestSettings
        :keyword scale_settings: Scale settings for the deployment.
         If it is null or not provided,
         it defaults to TargetUtilizationScaleSettings for KubernetesOnlineDeployment
         and to DefaultScaleSettings for ManagedOnlineDeployment.
        :paramtype scale_settings: ~azure.mgmt.machinelearningservices.models.OnlineScaleSettings
        :keyword container_resource_requirements: The resource requirements for the container (cpu and
         memory).
        :paramtype container_resource_requirements:
         ~azure.mgmt.machinelearningservices.models.ContainerResourceRequirements
        """
        super().__init__(
            code_configuration=code_configuration,
            description=description,
            environment_id=environment_id,
            environment_variables=environment_variables,
            properties=properties,
            app_insights_enabled=app_insights_enabled,
            egress_public_network_access=egress_public_network_access,
            instance_type=instance_type,
            liveness_probe=liveness_probe,
            model=model,
            model_mount_path=model_mount_path,
            readiness_probe=readiness_probe,
            request_settings=request_settings,
            scale_settings=scale_settings,
            **kwargs
        )
        self.endpoint_compute_type: str = "Kubernetes"
        self.container_resource_requirements = container_resource_requirements


class KubernetesProperties(_serialization.Model):
    """Kubernetes properties.

    :ivar relay_connection_string: Relay connection string.
    :vartype relay_connection_string: str
    :ivar service_bus_connection_string: ServiceBus connection string.
    :vartype service_bus_connection_string: str
    :ivar extension_principal_id: Extension principal-id.
    :vartype extension_principal_id: str
    :ivar extension_instance_release_train: Extension instance release train.
    :vartype extension_instance_release_train: str
    :ivar vc_name: VC name.
    :vartype vc_name: str
    :ivar namespace: Compute namespace.
    :vartype namespace: str
    :ivar default_instance_type: Default instance type.
    :vartype default_instance_type: str
    :ivar instance_types: Instance Type Schema.
    :vartype instance_types: dict[str,
     ~azure.mgmt.machinelearningservices.models.InstanceTypeSchema]
    """

    _attribute_map = {
        "relay_connection_string": {"key": "relayConnectionString", "type": "str"},
        "service_bus_connection_string": {"key": "serviceBusConnectionString", "type": "str"},
        "extension_principal_id": {"key": "extensionPrincipalId", "type": "str"},
        "extension_instance_release_train": {"key": "extensionInstanceReleaseTrain", "type": "str"},
        "vc_name": {"key": "vcName", "type": "str"},
        "namespace": {"key": "namespace", "type": "str"},
        "default_instance_type": {"key": "defaultInstanceType", "type": "str"},
        "instance_types": {"key": "instanceTypes", "type": "{InstanceTypeSchema}"},
    }

    def __init__(
        self,
        *,
        relay_connection_string: Optional[str] = None,
        service_bus_connection_string: Optional[str] = None,
        extension_principal_id: Optional[str] = None,
        extension_instance_release_train: Optional[str] = None,
        vc_name: Optional[str] = None,
        namespace: str = "default",
        default_instance_type: Optional[str] = None,
        instance_types: Optional[Dict[str, "_models.InstanceTypeSchema"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword relay_connection_string: Relay connection string.
        :paramtype relay_connection_string: str
        :keyword service_bus_connection_string: ServiceBus connection string.
        :paramtype service_bus_connection_string: str
        :keyword extension_principal_id: Extension principal-id.
        :paramtype extension_principal_id: str
        :keyword extension_instance_release_train: Extension instance release train.
        :paramtype extension_instance_release_train: str
        :keyword vc_name: VC name.
        :paramtype vc_name: str
        :keyword namespace: Compute namespace.
        :paramtype namespace: str
        :keyword default_instance_type: Default instance type.
        :paramtype default_instance_type: str
        :keyword instance_types: Instance Type Schema.
        :paramtype instance_types: dict[str,
         ~azure.mgmt.machinelearningservices.models.InstanceTypeSchema]
        """
        super().__init__(**kwargs)
        self.relay_connection_string = relay_connection_string
        self.service_bus_connection_string = service_bus_connection_string
        self.extension_principal_id = extension_principal_id
        self.extension_instance_release_train = extension_instance_release_train
        self.vc_name = vc_name
        self.namespace = namespace
        self.default_instance_type = default_instance_type
        self.instance_types = instance_types


class ListAmlUserFeatureResult(_serialization.Model):
    """The List Aml user feature operation response.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar value: The list of AML user facing features.
    :vartype value: list[~azure.mgmt.machinelearningservices.models.AmlUserFeature]
    :ivar next_link: The URI to fetch the next page of AML user features information. Call
     ListNext() with this to fetch the next page of AML user features information.
    :vartype next_link: str
    """

    _validation = {
        "value": {"readonly": True},
        "next_link": {"readonly": True},
    }

    _attribute_map = {
        "value": {"key": "value", "type": "[AmlUserFeature]"},
        "next_link": {"key": "nextLink", "type": "str"},
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.value = None
        self.next_link = None


class ListNotebookKeysResult(_serialization.Model):
    """ListNotebookKeysResult.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar primary_access_key:
    :vartype primary_access_key: str
    :ivar secondary_access_key:
    :vartype secondary_access_key: str
    """

    _validation = {
        "primary_access_key": {"readonly": True},
        "secondary_access_key": {"readonly": True},
    }

    _attribute_map = {
        "primary_access_key": {"key": "primaryAccessKey", "type": "str"},
        "secondary_access_key": {"key": "secondaryAccessKey", "type": "str"},
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.primary_access_key = None
        self.secondary_access_key = None


class ListStorageAccountKeysResult(_serialization.Model):
    """ListStorageAccountKeysResult.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar user_storage_key:
    :vartype user_storage_key: str
    """

    _validation = {
        "user_storage_key": {"readonly": True},
    }

    _attribute_map = {
        "user_storage_key": {"key": "userStorageKey", "type": "str"},
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.user_storage_key = None


class ListUsagesResult(_serialization.Model):
    """The List Usages operation response.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar value: The list of AML resource usages.
    :vartype value: list[~azure.mgmt.machinelearningservices.models.Usage]
    :ivar next_link: The URI to fetch the next page of AML resource usage information. Call
     ListNext() with this to fetch the next page of AML resource usage information.
    :vartype next_link: str
    """

    _validation = {
        "value": {"readonly": True},
        "next_link": {"readonly": True},
    }

    _attribute_map = {
        "value": {"key": "value", "type": "[Usage]"},
        "next_link": {"key": "nextLink", "type": "str"},
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.value = None
        self.next_link = None


class ListWorkspaceKeysResult(_serialization.Model):
    """ListWorkspaceKeysResult.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar user_storage_key:
    :vartype user_storage_key: str
    :ivar user_storage_resource_id:
    :vartype user_storage_resource_id: str
    :ivar app_insights_instrumentation_key:
    :vartype app_insights_instrumentation_key: str
    :ivar container_registry_credentials:
    :vartype container_registry_credentials:
     ~azure.mgmt.machinelearningservices.models.RegistryListCredentialsResult
    :ivar notebook_access_keys:
    :vartype notebook_access_keys:
     ~azure.mgmt.machinelearningservices.models.ListNotebookKeysResult
    """

    _validation = {
        "user_storage_key": {"readonly": True},
        "user_storage_resource_id": {"readonly": True},
        "app_insights_instrumentation_key": {"readonly": True},
        "container_registry_credentials": {"readonly": True},
        "notebook_access_keys": {"readonly": True},
    }

    _attribute_map = {
        "user_storage_key": {"key": "userStorageKey", "type": "str"},
        "user_storage_resource_id": {"key": "userStorageResourceId", "type": "str"},
        "app_insights_instrumentation_key": {"key": "appInsightsInstrumentationKey", "type": "str"},
        "container_registry_credentials": {
            "key": "containerRegistryCredentials",
            "type": "RegistryListCredentialsResult",
        },
        "notebook_access_keys": {"key": "notebookAccessKeys", "type": "ListNotebookKeysResult"},
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.user_storage_key = None
        self.user_storage_resource_id = None
        self.app_insights_instrumentation_key = None
        self.container_registry_credentials = None
        self.notebook_access_keys = None


class ListWorkspaceQuotas(_serialization.Model):
    """The List WorkspaceQuotasByVMFamily operation response.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar value: The list of Workspace Quotas by VM Family.
    :vartype value: list[~azure.mgmt.machinelearningservices.models.ResourceQuota]
    :ivar next_link: The URI to fetch the next page of workspace quota information by VM Family.
     Call ListNext() with this to fetch the next page of Workspace Quota information.
    :vartype next_link: str
    """

    _validation = {
        "value": {"readonly": True},
        "next_link": {"readonly": True},
    }

    _attribute_map = {
        "value": {"key": "value", "type": "[ResourceQuota]"},
        "next_link": {"key": "nextLink", "type": "str"},
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.value = None
        self.next_link = None


class LiteralJobInput(JobInput):
    """Literal input type.

    All required parameters must be populated in order to send to Azure.

    :ivar description: Description for the input.
    :vartype description: str
    :ivar job_input_type: [Required] Specifies the type of job. Required. Known values are:
     "literal", "uri_file", "uri_folder", "mltable", "custom_model", "mlflow_model", and
     "triton_model".
    :vartype job_input_type: str or ~azure.mgmt.machinelearningservices.models.JobInputType
    :ivar value: [Required] Literal value for the input. Required.
    :vartype value: str
    """

    _validation = {
        "job_input_type": {"required": True},
        "value": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "job_input_type": {"key": "jobInputType", "type": "str"},
        "value": {"key": "value", "type": "str"},
    }

    def __init__(self, *, value: str, description: Optional[str] = None, **kwargs: Any) -> None:
        """
        :keyword description: Description for the input.
        :paramtype description: str
        :keyword value: [Required] Literal value for the input. Required.
        :paramtype value: str
        """
        super().__init__(description=description, **kwargs)
        self.job_input_type: str = "literal"
        self.value = value


class ManagedIdentity(IdentityConfiguration):
    """Managed identity configuration.

    All required parameters must be populated in order to send to Azure.

    :ivar identity_type: [Required] Specifies the type of identity framework. Required. Known
     values are: "Managed", "AMLToken", and "UserIdentity".
    :vartype identity_type: str or
     ~azure.mgmt.machinelearningservices.models.IdentityConfigurationType
    :ivar client_id: Specifies a user-assigned identity by client ID. For system-assigned, do not
     set this field.
    :vartype client_id: str
    :ivar object_id: Specifies a user-assigned identity by object ID. For system-assigned, do not
     set this field.
    :vartype object_id: str
    :ivar resource_id: Specifies a user-assigned identity by ARM resource ID. For system-assigned,
     do not set this field.
    :vartype resource_id: str
    """

    _validation = {
        "identity_type": {"required": True},
    }

    _attribute_map = {
        "identity_type": {"key": "identityType", "type": "str"},
        "client_id": {"key": "clientId", "type": "str"},
        "object_id": {"key": "objectId", "type": "str"},
        "resource_id": {"key": "resourceId", "type": "str"},
    }

    def __init__(
        self,
        *,
        client_id: Optional[str] = None,
        object_id: Optional[str] = None,
        resource_id: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword client_id: Specifies a user-assigned identity by client ID. For system-assigned, do
         not set this field.
        :paramtype client_id: str
        :keyword object_id: Specifies a user-assigned identity by object ID. For system-assigned, do
         not set this field.
        :paramtype object_id: str
        :keyword resource_id: Specifies a user-assigned identity by ARM resource ID. For
         system-assigned, do not set this field.
        :paramtype resource_id: str
        """
        super().__init__(**kwargs)
        self.identity_type: str = "Managed"
        self.client_id = client_id
        self.object_id = object_id
        self.resource_id = resource_id


class WorkspaceConnectionPropertiesV2(_serialization.Model):
    """WorkspaceConnectionPropertiesV2.

    You probably want to use the sub-classes and not this class directly. Known sub-classes are:
    ManagedIdentityAuthTypeWorkspaceConnectionProperties,
    NoneAuthTypeWorkspaceConnectionProperties, PATAuthTypeWorkspaceConnectionProperties,
    SASAuthTypeWorkspaceConnectionProperties, UsernamePasswordAuthTypeWorkspaceConnectionProperties

    All required parameters must be populated in order to send to Azure.

    :ivar auth_type: Authentication type of the connection target. Required. Known values are:
     "PAT", "ManagedIdentity", "UsernamePassword", "None", and "SAS".
    :vartype auth_type: str or ~azure.mgmt.machinelearningservices.models.ConnectionAuthType
    :ivar category: Category of the connection. Known values are: "PythonFeed",
     "ContainerRegistry", and "Git".
    :vartype category: str or ~azure.mgmt.machinelearningservices.models.ConnectionCategory
    :ivar target:
    :vartype target: str
    :ivar value: Value details of the workspace connection.
    :vartype value: str
    :ivar value_format: format for the workspace connection value. "JSON"
    :vartype value_format: str or ~azure.mgmt.machinelearningservices.models.ValueFormat
    """

    _validation = {
        "auth_type": {"required": True},
    }

    _attribute_map = {
        "auth_type": {"key": "authType", "type": "str"},
        "category": {"key": "category", "type": "str"},
        "target": {"key": "target", "type": "str"},
        "value": {"key": "value", "type": "str"},
        "value_format": {"key": "valueFormat", "type": "str"},
    }

    _subtype_map = {
        "auth_type": {
            "ManagedIdentity": "ManagedIdentityAuthTypeWorkspaceConnectionProperties",
            "None": "NoneAuthTypeWorkspaceConnectionProperties",
            "PAT": "PATAuthTypeWorkspaceConnectionProperties",
            "SAS": "SASAuthTypeWorkspaceConnectionProperties",
            "UsernamePassword": "UsernamePasswordAuthTypeWorkspaceConnectionProperties",
        }
    }

    def __init__(
        self,
        *,
        category: Optional[Union[str, "_models.ConnectionCategory"]] = None,
        target: Optional[str] = None,
        value: Optional[str] = None,
        value_format: Optional[Union[str, "_models.ValueFormat"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword category: Category of the connection. Known values are: "PythonFeed",
         "ContainerRegistry", and "Git".
        :paramtype category: str or ~azure.mgmt.machinelearningservices.models.ConnectionCategory
        :keyword target:
        :paramtype target: str
        :keyword value: Value details of the workspace connection.
        :paramtype value: str
        :keyword value_format: format for the workspace connection value. "JSON"
        :paramtype value_format: str or ~azure.mgmt.machinelearningservices.models.ValueFormat
        """
        super().__init__(**kwargs)
        self.auth_type: Optional[str] = None
        self.category = category
        self.target = target
        self.value = value
        self.value_format = value_format


class ManagedIdentityAuthTypeWorkspaceConnectionProperties(WorkspaceConnectionPropertiesV2):
    """ManagedIdentityAuthTypeWorkspaceConnectionProperties.

    All required parameters must be populated in order to send to Azure.

    :ivar auth_type: Authentication type of the connection target. Required. Known values are:
     "PAT", "ManagedIdentity", "UsernamePassword", "None", and "SAS".
    :vartype auth_type: str or ~azure.mgmt.machinelearningservices.models.ConnectionAuthType
    :ivar category: Category of the connection. Known values are: "PythonFeed",
     "ContainerRegistry", and "Git".
    :vartype category: str or ~azure.mgmt.machinelearningservices.models.ConnectionCategory
    :ivar target:
    :vartype target: str
    :ivar value: Value details of the workspace connection.
    :vartype value: str
    :ivar value_format: format for the workspace connection value. "JSON"
    :vartype value_format: str or ~azure.mgmt.machinelearningservices.models.ValueFormat
    :ivar credentials:
    :vartype credentials:
     ~azure.mgmt.machinelearningservices.models.WorkspaceConnectionManagedIdentity
    """

    _validation = {
        "auth_type": {"required": True},
    }

    _attribute_map = {
        "auth_type": {"key": "authType", "type": "str"},
        "category": {"key": "category", "type": "str"},
        "target": {"key": "target", "type": "str"},
        "value": {"key": "value", "type": "str"},
        "value_format": {"key": "valueFormat", "type": "str"},
        "credentials": {"key": "credentials", "type": "WorkspaceConnectionManagedIdentity"},
    }

    def __init__(
        self,
        *,
        category: Optional[Union[str, "_models.ConnectionCategory"]] = None,
        target: Optional[str] = None,
        value: Optional[str] = None,
        value_format: Optional[Union[str, "_models.ValueFormat"]] = None,
        credentials: Optional["_models.WorkspaceConnectionManagedIdentity"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword category: Category of the connection. Known values are: "PythonFeed",
         "ContainerRegistry", and "Git".
        :paramtype category: str or ~azure.mgmt.machinelearningservices.models.ConnectionCategory
        :keyword target:
        :paramtype target: str
        :keyword value: Value details of the workspace connection.
        :paramtype value: str
        :keyword value_format: format for the workspace connection value. "JSON"
        :paramtype value_format: str or ~azure.mgmt.machinelearningservices.models.ValueFormat
        :keyword credentials:
        :paramtype credentials:
         ~azure.mgmt.machinelearningservices.models.WorkspaceConnectionManagedIdentity
        """
        super().__init__(category=category, target=target, value=value, value_format=value_format, **kwargs)
        self.auth_type: str = "ManagedIdentity"
        self.credentials = credentials


class ManagedOnlineDeployment(OnlineDeploymentProperties):  # pylint: disable=too-many-instance-attributes
    """Properties specific to a ManagedOnlineDeployment.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar code_configuration: Code configuration for the endpoint deployment.
    :vartype code_configuration: ~azure.mgmt.machinelearningservices.models.CodeConfiguration
    :ivar description: Description of the endpoint deployment.
    :vartype description: str
    :ivar environment_id: ARM resource ID or AssetId of the environment specification for the
     endpoint deployment.
    :vartype environment_id: str
    :ivar environment_variables: Environment variables configuration for the deployment.
    :vartype environment_variables: dict[str, str]
    :ivar properties: Property dictionary. Properties can be added, but not removed or altered.
    :vartype properties: dict[str, str]
    :ivar app_insights_enabled: If true, enables Application Insights logging.
    :vartype app_insights_enabled: bool
    :ivar egress_public_network_access: If Enabled, allow egress public network access. If
     Disabled, this will create secure egress. Default: Enabled. Known values are: "Enabled" and
     "Disabled".
    :vartype egress_public_network_access: str or
     ~azure.mgmt.machinelearningservices.models.EgressPublicNetworkAccessType
    :ivar endpoint_compute_type: [Required] The compute type of the endpoint. Required. Known
     values are: "Managed", "Kubernetes", and "AzureMLCompute".
    :vartype endpoint_compute_type: str or
     ~azure.mgmt.machinelearningservices.models.EndpointComputeType
    :ivar instance_type: Compute instance type.
    :vartype instance_type: str
    :ivar liveness_probe: Liveness probe monitors the health of the container regularly.
    :vartype liveness_probe: ~azure.mgmt.machinelearningservices.models.ProbeSettings
    :ivar model: The URI path to the model.
    :vartype model: str
    :ivar model_mount_path: The path to mount the model in custom container.
    :vartype model_mount_path: str
    :ivar provisioning_state: Provisioning state for the endpoint deployment. Known values are:
     "Creating", "Deleting", "Scaling", "Updating", "Succeeded", "Failed", and "Canceled".
    :vartype provisioning_state: str or
     ~azure.mgmt.machinelearningservices.models.DeploymentProvisioningState
    :ivar readiness_probe: Readiness probe validates if the container is ready to serve traffic.
     The properties and defaults are the same as liveness probe.
    :vartype readiness_probe: ~azure.mgmt.machinelearningservices.models.ProbeSettings
    :ivar request_settings: Request settings for the deployment.
    :vartype request_settings: ~azure.mgmt.machinelearningservices.models.OnlineRequestSettings
    :ivar scale_settings: Scale settings for the deployment.
     If it is null or not provided,
     it defaults to TargetUtilizationScaleSettings for KubernetesOnlineDeployment
     and to DefaultScaleSettings for ManagedOnlineDeployment.
    :vartype scale_settings: ~azure.mgmt.machinelearningservices.models.OnlineScaleSettings
    """

    _validation = {
        "endpoint_compute_type": {"required": True},
        "provisioning_state": {"readonly": True},
    }

    _attribute_map = {
        "code_configuration": {"key": "codeConfiguration", "type": "CodeConfiguration"},
        "description": {"key": "description", "type": "str"},
        "environment_id": {"key": "environmentId", "type": "str"},
        "environment_variables": {"key": "environmentVariables", "type": "{str}"},
        "properties": {"key": "properties", "type": "{str}"},
        "app_insights_enabled": {"key": "appInsightsEnabled", "type": "bool"},
        "egress_public_network_access": {"key": "egressPublicNetworkAccess", "type": "str"},
        "endpoint_compute_type": {"key": "endpointComputeType", "type": "str"},
        "instance_type": {"key": "instanceType", "type": "str"},
        "liveness_probe": {"key": "livenessProbe", "type": "ProbeSettings"},
        "model": {"key": "model", "type": "str"},
        "model_mount_path": {"key": "modelMountPath", "type": "str"},
        "provisioning_state": {"key": "provisioningState", "type": "str"},
        "readiness_probe": {"key": "readinessProbe", "type": "ProbeSettings"},
        "request_settings": {"key": "requestSettings", "type": "OnlineRequestSettings"},
        "scale_settings": {"key": "scaleSettings", "type": "OnlineScaleSettings"},
    }

    def __init__(
        self,
        *,
        code_configuration: Optional["_models.CodeConfiguration"] = None,
        description: Optional[str] = None,
        environment_id: Optional[str] = None,
        environment_variables: Optional[Dict[str, str]] = None,
        properties: Optional[Dict[str, str]] = None,
        app_insights_enabled: bool = False,
        egress_public_network_access: Optional[Union[str, "_models.EgressPublicNetworkAccessType"]] = None,
        instance_type: Optional[str] = None,
        liveness_probe: Optional["_models.ProbeSettings"] = None,
        model: Optional[str] = None,
        model_mount_path: Optional[str] = None,
        readiness_probe: Optional["_models.ProbeSettings"] = None,
        request_settings: Optional["_models.OnlineRequestSettings"] = None,
        scale_settings: Optional["_models.OnlineScaleSettings"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword code_configuration: Code configuration for the endpoint deployment.
        :paramtype code_configuration: ~azure.mgmt.machinelearningservices.models.CodeConfiguration
        :keyword description: Description of the endpoint deployment.
        :paramtype description: str
        :keyword environment_id: ARM resource ID or AssetId of the environment specification for the
         endpoint deployment.
        :paramtype environment_id: str
        :keyword environment_variables: Environment variables configuration for the deployment.
        :paramtype environment_variables: dict[str, str]
        :keyword properties: Property dictionary. Properties can be added, but not removed or altered.
        :paramtype properties: dict[str, str]
        :keyword app_insights_enabled: If true, enables Application Insights logging.
        :paramtype app_insights_enabled: bool
        :keyword egress_public_network_access: If Enabled, allow egress public network access. If
         Disabled, this will create secure egress. Default: Enabled. Known values are: "Enabled" and
         "Disabled".
        :paramtype egress_public_network_access: str or
         ~azure.mgmt.machinelearningservices.models.EgressPublicNetworkAccessType
        :keyword instance_type: Compute instance type.
        :paramtype instance_type: str
        :keyword liveness_probe: Liveness probe monitors the health of the container regularly.
        :paramtype liveness_probe: ~azure.mgmt.machinelearningservices.models.ProbeSettings
        :keyword model: The URI path to the model.
        :paramtype model: str
        :keyword model_mount_path: The path to mount the model in custom container.
        :paramtype model_mount_path: str
        :keyword readiness_probe: Readiness probe validates if the container is ready to serve traffic.
         The properties and defaults are the same as liveness probe.
        :paramtype readiness_probe: ~azure.mgmt.machinelearningservices.models.ProbeSettings
        :keyword request_settings: Request settings for the deployment.
        :paramtype request_settings: ~azure.mgmt.machinelearningservices.models.OnlineRequestSettings
        :keyword scale_settings: Scale settings for the deployment.
         If it is null or not provided,
         it defaults to TargetUtilizationScaleSettings for KubernetesOnlineDeployment
         and to DefaultScaleSettings for ManagedOnlineDeployment.
        :paramtype scale_settings: ~azure.mgmt.machinelearningservices.models.OnlineScaleSettings
        """
        super().__init__(
            code_configuration=code_configuration,
            description=description,
            environment_id=environment_id,
            environment_variables=environment_variables,
            properties=properties,
            app_insights_enabled=app_insights_enabled,
            egress_public_network_access=egress_public_network_access,
            instance_type=instance_type,
            liveness_probe=liveness_probe,
            model=model,
            model_mount_path=model_mount_path,
            readiness_probe=readiness_probe,
            request_settings=request_settings,
            scale_settings=scale_settings,
            **kwargs
        )
        self.endpoint_compute_type: str = "Managed"


class ManagedServiceIdentity(_serialization.Model):
    """Managed service identity (system assigned and/or user assigned identities).

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar principal_id: The service principal ID of the system assigned identity. This property
     will only be provided for a system assigned identity.
    :vartype principal_id: str
    :ivar tenant_id: The tenant ID of the system assigned identity. This property will only be
     provided for a system assigned identity.
    :vartype tenant_id: str
    :ivar type: Type of managed service identity (where both SystemAssigned and UserAssigned types
     are allowed). Required. Known values are: "None", "SystemAssigned", "UserAssigned", and
     "SystemAssigned,UserAssigned".
    :vartype type: str or ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentityType
    :ivar user_assigned_identities: The set of user assigned identities associated with the
     resource. The userAssignedIdentities dictionary keys will be ARM resource ids in the form:
     '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ManagedIdentity/userAssignedIdentities/{identityName}.
     The dictionary values can be empty objects ({}) in requests.
    :vartype user_assigned_identities: dict[str,
     ~azure.mgmt.machinelearningservices.models.UserAssignedIdentity]
    """

    _validation = {
        "principal_id": {"readonly": True},
        "tenant_id": {"readonly": True},
        "type": {"required": True},
    }

    _attribute_map = {
        "principal_id": {"key": "principalId", "type": "str"},
        "tenant_id": {"key": "tenantId", "type": "str"},
        "type": {"key": "type", "type": "str"},
        "user_assigned_identities": {"key": "userAssignedIdentities", "type": "{UserAssignedIdentity}"},
    }

    def __init__(
        self,
        *,
        type: Union[str, "_models.ManagedServiceIdentityType"],
        user_assigned_identities: Optional[Dict[str, "_models.UserAssignedIdentity"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword type: Type of managed service identity (where both SystemAssigned and UserAssigned
         types are allowed). Required. Known values are: "None", "SystemAssigned", "UserAssigned", and
         "SystemAssigned,UserAssigned".
        :paramtype type: str or ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentityType
        :keyword user_assigned_identities: The set of user assigned identities associated with the
         resource. The userAssignedIdentities dictionary keys will be ARM resource ids in the form:
         '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ManagedIdentity/userAssignedIdentities/{identityName}.
         The dictionary values can be empty objects ({}) in requests.
        :paramtype user_assigned_identities: dict[str,
         ~azure.mgmt.machinelearningservices.models.UserAssignedIdentity]
        """
        super().__init__(**kwargs)
        self.principal_id = None
        self.tenant_id = None
        self.type = type
        self.user_assigned_identities = user_assigned_identities


class MedianStoppingPolicy(EarlyTerminationPolicy):
    """Defines an early termination policy based on running averages of the primary metric of all
    runs.

    All required parameters must be populated in order to send to Azure.

    :ivar delay_evaluation: Number of intervals by which to delay the first evaluation.
    :vartype delay_evaluation: int
    :ivar evaluation_interval: Interval (number of runs) between policy evaluations.
    :vartype evaluation_interval: int
    :ivar policy_type: [Required] Name of policy configuration. Required. Known values are:
     "Bandit", "MedianStopping", and "TruncationSelection".
    :vartype policy_type: str or
     ~azure.mgmt.machinelearningservices.models.EarlyTerminationPolicyType
    """

    _validation = {
        "policy_type": {"required": True},
    }

    _attribute_map = {
        "delay_evaluation": {"key": "delayEvaluation", "type": "int"},
        "evaluation_interval": {"key": "evaluationInterval", "type": "int"},
        "policy_type": {"key": "policyType", "type": "str"},
    }

    def __init__(self, *, delay_evaluation: int = 0, evaluation_interval: int = 0, **kwargs: Any) -> None:
        """
        :keyword delay_evaluation: Number of intervals by which to delay the first evaluation.
        :paramtype delay_evaluation: int
        :keyword evaluation_interval: Interval (number of runs) between policy evaluations.
        :paramtype evaluation_interval: int
        """
        super().__init__(delay_evaluation=delay_evaluation, evaluation_interval=evaluation_interval, **kwargs)
        self.policy_type: str = "MedianStopping"


class MLFlowModelJobInput(AssetJobInput, JobInput):
    """MLFlowModelJobInput.

    All required parameters must be populated in order to send to Azure.

    :ivar description: Description for the input.
    :vartype description: str
    :ivar job_input_type: [Required] Specifies the type of job. Required. Known values are:
     "literal", "uri_file", "uri_folder", "mltable", "custom_model", "mlflow_model", and
     "triton_model".
    :vartype job_input_type: str or ~azure.mgmt.machinelearningservices.models.JobInputType
    :ivar mode: Input Asset Delivery Mode. Known values are: "ReadOnlyMount", "ReadWriteMount",
     "Download", "Direct", "EvalMount", and "EvalDownload".
    :vartype mode: str or ~azure.mgmt.machinelearningservices.models.InputDeliveryMode
    :ivar uri: [Required] Input Asset URI. Required.
    :vartype uri: str
    """

    _validation = {
        "job_input_type": {"required": True},
        "uri": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "job_input_type": {"key": "jobInputType", "type": "str"},
        "mode": {"key": "mode", "type": "str"},
        "uri": {"key": "uri", "type": "str"},
    }

    def __init__(
        self,
        *,
        uri: str,
        description: Optional[str] = None,
        mode: Optional[Union[str, "_models.InputDeliveryMode"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword description: Description for the input.
        :paramtype description: str
        :keyword mode: Input Asset Delivery Mode. Known values are: "ReadOnlyMount", "ReadWriteMount",
         "Download", "Direct", "EvalMount", and "EvalDownload".
        :paramtype mode: str or ~azure.mgmt.machinelearningservices.models.InputDeliveryMode
        :keyword uri: [Required] Input Asset URI. Required.
        :paramtype uri: str
        """
        super().__init__(mode=mode, uri=uri, description=description, **kwargs)
        self.description = description
        self.job_input_type: str = "mlflow_model"
        self.mode = mode
        self.uri = uri


class MLFlowModelJobOutput(AssetJobOutput, JobOutput):
    """MLFlowModelJobOutput.

    All required parameters must be populated in order to send to Azure.

    :ivar description: Description for the output.
    :vartype description: str
    :ivar job_output_type: [Required] Specifies the type of job. Required. Known values are:
     "uri_file", "uri_folder", "mltable", "custom_model", "mlflow_model", and "triton_model".
    :vartype job_output_type: str or ~azure.mgmt.machinelearningservices.models.JobOutputType
    :ivar mode: Output Asset Delivery Mode. Known values are: "ReadWriteMount" and "Upload".
    :vartype mode: str or ~azure.mgmt.machinelearningservices.models.OutputDeliveryMode
    :ivar uri: Output Asset URI.
    :vartype uri: str
    """

    _validation = {
        "job_output_type": {"required": True},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "job_output_type": {"key": "jobOutputType", "type": "str"},
        "mode": {"key": "mode", "type": "str"},
        "uri": {"key": "uri", "type": "str"},
    }

    def __init__(
        self,
        *,
        description: Optional[str] = None,
        mode: Optional[Union[str, "_models.OutputDeliveryMode"]] = None,
        uri: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword description: Description for the output.
        :paramtype description: str
        :keyword mode: Output Asset Delivery Mode. Known values are: "ReadWriteMount" and "Upload".
        :paramtype mode: str or ~azure.mgmt.machinelearningservices.models.OutputDeliveryMode
        :keyword uri: Output Asset URI.
        :paramtype uri: str
        """
        super().__init__(mode=mode, uri=uri, description=description, **kwargs)
        self.description = description
        self.job_output_type: str = "mlflow_model"
        self.mode = mode
        self.uri = uri


class MLTableData(DataVersionBaseProperties):
    """MLTable data definition.

    All required parameters must be populated in order to send to Azure.

    :ivar description: The asset description text.
    :vartype description: str
    :ivar properties: The asset property dictionary.
    :vartype properties: dict[str, str]
    :ivar tags: Tag dictionary. Tags can be added, removed, and updated.
    :vartype tags: dict[str, str]
    :ivar is_anonymous: If the name version are system generated (anonymous registration).
    :vartype is_anonymous: bool
    :ivar is_archived: Is the asset archived?.
    :vartype is_archived: bool
    :ivar data_type: [Required] Specifies the type of data. Required. Known values are: "uri_file",
     "uri_folder", and "mltable".
    :vartype data_type: str or ~azure.mgmt.machinelearningservices.models.DataType
    :ivar data_uri: [Required] Uri of the data. Example:
     https://go.microsoft.com/fwlink/?linkid=2202330. Required.
    :vartype data_uri: str
    :ivar referenced_uris: Uris referenced in the MLTable definition (required for lineage).
    :vartype referenced_uris: list[str]
    """

    _validation = {
        "data_type": {"required": True},
        "data_uri": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "properties": {"key": "properties", "type": "{str}"},
        "tags": {"key": "tags", "type": "{str}"},
        "is_anonymous": {"key": "isAnonymous", "type": "bool"},
        "is_archived": {"key": "isArchived", "type": "bool"},
        "data_type": {"key": "dataType", "type": "str"},
        "data_uri": {"key": "dataUri", "type": "str"},
        "referenced_uris": {"key": "referencedUris", "type": "[str]"},
    }

    def __init__(
        self,
        *,
        data_uri: str,
        description: Optional[str] = None,
        properties: Optional[Dict[str, str]] = None,
        tags: Optional[Dict[str, str]] = None,
        is_anonymous: bool = False,
        is_archived: bool = False,
        referenced_uris: Optional[List[str]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword description: The asset description text.
        :paramtype description: str
        :keyword properties: The asset property dictionary.
        :paramtype properties: dict[str, str]
        :keyword tags: Tag dictionary. Tags can be added, removed, and updated.
        :paramtype tags: dict[str, str]
        :keyword is_anonymous: If the name version are system generated (anonymous registration).
        :paramtype is_anonymous: bool
        :keyword is_archived: Is the asset archived?.
        :paramtype is_archived: bool
        :keyword data_uri: [Required] Uri of the data. Example:
         https://go.microsoft.com/fwlink/?linkid=2202330. Required.
        :paramtype data_uri: str
        :keyword referenced_uris: Uris referenced in the MLTable definition (required for lineage).
        :paramtype referenced_uris: list[str]
        """
        super().__init__(
            description=description,
            properties=properties,
            tags=tags,
            is_anonymous=is_anonymous,
            is_archived=is_archived,
            data_uri=data_uri,
            **kwargs
        )
        self.data_type: str = "mltable"
        self.referenced_uris = referenced_uris


class MLTableJobInput(AssetJobInput, JobInput):
    """MLTableJobInput.

    All required parameters must be populated in order to send to Azure.

    :ivar description: Description for the input.
    :vartype description: str
    :ivar job_input_type: [Required] Specifies the type of job. Required. Known values are:
     "literal", "uri_file", "uri_folder", "mltable", "custom_model", "mlflow_model", and
     "triton_model".
    :vartype job_input_type: str or ~azure.mgmt.machinelearningservices.models.JobInputType
    :ivar mode: Input Asset Delivery Mode. Known values are: "ReadOnlyMount", "ReadWriteMount",
     "Download", "Direct", "EvalMount", and "EvalDownload".
    :vartype mode: str or ~azure.mgmt.machinelearningservices.models.InputDeliveryMode
    :ivar uri: [Required] Input Asset URI. Required.
    :vartype uri: str
    """

    _validation = {
        "job_input_type": {"required": True},
        "uri": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "job_input_type": {"key": "jobInputType", "type": "str"},
        "mode": {"key": "mode", "type": "str"},
        "uri": {"key": "uri", "type": "str"},
    }

    def __init__(
        self,
        *,
        uri: str,
        description: Optional[str] = None,
        mode: Optional[Union[str, "_models.InputDeliveryMode"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword description: Description for the input.
        :paramtype description: str
        :keyword mode: Input Asset Delivery Mode. Known values are: "ReadOnlyMount", "ReadWriteMount",
         "Download", "Direct", "EvalMount", and "EvalDownload".
        :paramtype mode: str or ~azure.mgmt.machinelearningservices.models.InputDeliveryMode
        :keyword uri: [Required] Input Asset URI. Required.
        :paramtype uri: str
        """
        super().__init__(mode=mode, uri=uri, description=description, **kwargs)
        self.description = description
        self.job_input_type: str = "mltable"
        self.mode = mode
        self.uri = uri


class MLTableJobOutput(AssetJobOutput, JobOutput):
    """MLTableJobOutput.

    All required parameters must be populated in order to send to Azure.

    :ivar description: Description for the output.
    :vartype description: str
    :ivar job_output_type: [Required] Specifies the type of job. Required. Known values are:
     "uri_file", "uri_folder", "mltable", "custom_model", "mlflow_model", and "triton_model".
    :vartype job_output_type: str or ~azure.mgmt.machinelearningservices.models.JobOutputType
    :ivar mode: Output Asset Delivery Mode. Known values are: "ReadWriteMount" and "Upload".
    :vartype mode: str or ~azure.mgmt.machinelearningservices.models.OutputDeliveryMode
    :ivar uri: Output Asset URI.
    :vartype uri: str
    """

    _validation = {
        "job_output_type": {"required": True},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "job_output_type": {"key": "jobOutputType", "type": "str"},
        "mode": {"key": "mode", "type": "str"},
        "uri": {"key": "uri", "type": "str"},
    }

    def __init__(
        self,
        *,
        description: Optional[str] = None,
        mode: Optional[Union[str, "_models.OutputDeliveryMode"]] = None,
        uri: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword description: Description for the output.
        :paramtype description: str
        :keyword mode: Output Asset Delivery Mode. Known values are: "ReadWriteMount" and "Upload".
        :paramtype mode: str or ~azure.mgmt.machinelearningservices.models.OutputDeliveryMode
        :keyword uri: Output Asset URI.
        :paramtype uri: str
        """
        super().__init__(mode=mode, uri=uri, description=description, **kwargs)
        self.description = description
        self.job_output_type: str = "mltable"
        self.mode = mode
        self.uri = uri


class ModelContainer(Resource):
    """Azure Resource Manager resource envelope.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar id: Fully qualified resource ID for the resource. Ex -
     /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}.
    :vartype id: str
    :ivar name: The name of the resource.
    :vartype name: str
    :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or
     "Microsoft.Storage/storageAccounts".
    :vartype type: str
    :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy
     information.
    :vartype system_data: ~azure.mgmt.machinelearningservices.models.SystemData
    :ivar properties: [Required] Additional attributes of the entity. Required.
    :vartype properties: ~azure.mgmt.machinelearningservices.models.ModelContainerProperties
    """

    _validation = {
        "id": {"readonly": True},
        "name": {"readonly": True},
        "type": {"readonly": True},
        "system_data": {"readonly": True},
        "properties": {"required": True},
    }

    _attribute_map = {
        "id": {"key": "id", "type": "str"},
        "name": {"key": "name", "type": "str"},
        "type": {"key": "type", "type": "str"},
        "system_data": {"key": "systemData", "type": "SystemData"},
        "properties": {"key": "properties", "type": "ModelContainerProperties"},
    }

    def __init__(self, *, properties: "_models.ModelContainerProperties", **kwargs: Any) -> None:
        """
        :keyword properties: [Required] Additional attributes of the entity. Required.
        :paramtype properties: ~azure.mgmt.machinelearningservices.models.ModelContainerProperties
        """
        super().__init__(**kwargs)
        self.properties = properties


class ModelContainerProperties(AssetContainer):
    """ModelContainerProperties.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar description: The asset description text.
    :vartype description: str
    :ivar properties: The asset property dictionary.
    :vartype properties: dict[str, str]
    :ivar tags: Tag dictionary. Tags can be added, removed, and updated.
    :vartype tags: dict[str, str]
    :ivar is_archived: Is the asset archived?.
    :vartype is_archived: bool
    :ivar latest_version: The latest version inside this container.
    :vartype latest_version: str
    :ivar next_version: The next auto incremental version.
    :vartype next_version: str
    :ivar provisioning_state: Provisioning state for the model container. Known values are:
     "Succeeded", "Failed", "Canceled", "Creating", "Updating", and "Deleting".
    :vartype provisioning_state: str or
     ~azure.mgmt.machinelearningservices.models.AssetProvisioningState
    """

    _validation = {
        "latest_version": {"readonly": True},
        "next_version": {"readonly": True},
        "provisioning_state": {"readonly": True},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "properties": {"key": "properties", "type": "{str}"},
        "tags": {"key": "tags", "type": "{str}"},
        "is_archived": {"key": "isArchived", "type": "bool"},
        "latest_version": {"key": "latestVersion", "type": "str"},
        "next_version": {"key": "nextVersion", "type": "str"},
        "provisioning_state": {"key": "provisioningState", "type": "str"},
    }

    def __init__(
        self,
        *,
        description: Optional[str] = None,
        properties: Optional[Dict[str, str]] = None,
        tags: Optional[Dict[str, str]] = None,
        is_archived: bool = False,
        **kwargs: Any
    ) -> None:
        """
        :keyword description: The asset description text.
        :paramtype description: str
        :keyword properties: The asset property dictionary.
        :paramtype properties: dict[str, str]
        :keyword tags: Tag dictionary. Tags can be added, removed, and updated.
        :paramtype tags: dict[str, str]
        :keyword is_archived: Is the asset archived?.
        :paramtype is_archived: bool
        """
        super().__init__(description=description, properties=properties, tags=tags, is_archived=is_archived, **kwargs)
        self.provisioning_state = None


class ModelContainerResourceArmPaginatedResult(_serialization.Model):
    """A paginated list of ModelContainer entities.

    :ivar next_link: The link to the next page of ModelContainer objects. If null, there are no
     additional pages.
    :vartype next_link: str
    :ivar value: An array of objects of type ModelContainer.
    :vartype value: list[~azure.mgmt.machinelearningservices.models.ModelContainer]
    """

    _attribute_map = {
        "next_link": {"key": "nextLink", "type": "str"},
        "value": {"key": "value", "type": "[ModelContainer]"},
    }

    def __init__(
        self, *, next_link: Optional[str] = None, value: Optional[List["_models.ModelContainer"]] = None, **kwargs: Any
    ) -> None:
        """
        :keyword next_link: The link to the next page of ModelContainer objects. If null, there are no
         additional pages.
        :paramtype next_link: str
        :keyword value: An array of objects of type ModelContainer.
        :paramtype value: list[~azure.mgmt.machinelearningservices.models.ModelContainer]
        """
        super().__init__(**kwargs)
        self.next_link = next_link
        self.value = value


class ModelVersion(Resource):
    """Azure Resource Manager resource envelope.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar id: Fully qualified resource ID for the resource. Ex -
     /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}.
    :vartype id: str
    :ivar name: The name of the resource.
    :vartype name: str
    :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or
     "Microsoft.Storage/storageAccounts".
    :vartype type: str
    :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy
     information.
    :vartype system_data: ~azure.mgmt.machinelearningservices.models.SystemData
    :ivar properties: [Required] Additional attributes of the entity. Required.
    :vartype properties: ~azure.mgmt.machinelearningservices.models.ModelVersionProperties
    """

    _validation = {
        "id": {"readonly": True},
        "name": {"readonly": True},
        "type": {"readonly": True},
        "system_data": {"readonly": True},
        "properties": {"required": True},
    }

    _attribute_map = {
        "id": {"key": "id", "type": "str"},
        "name": {"key": "name", "type": "str"},
        "type": {"key": "type", "type": "str"},
        "system_data": {"key": "systemData", "type": "SystemData"},
        "properties": {"key": "properties", "type": "ModelVersionProperties"},
    }

    def __init__(self, *, properties: "_models.ModelVersionProperties", **kwargs: Any) -> None:
        """
        :keyword properties: [Required] Additional attributes of the entity. Required.
        :paramtype properties: ~azure.mgmt.machinelearningservices.models.ModelVersionProperties
        """
        super().__init__(**kwargs)
        self.properties = properties


class ModelVersionProperties(AssetBase):  # pylint: disable=too-many-instance-attributes
    """Model asset version details.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar description: The asset description text.
    :vartype description: str
    :ivar properties: The asset property dictionary.
    :vartype properties: dict[str, str]
    :ivar tags: Tag dictionary. Tags can be added, removed, and updated.
    :vartype tags: dict[str, str]
    :ivar is_anonymous: If the name version are system generated (anonymous registration).
    :vartype is_anonymous: bool
    :ivar is_archived: Is the asset archived?.
    :vartype is_archived: bool
    :ivar flavors: Mapping of model flavors to their properties.
    :vartype flavors: dict[str, ~azure.mgmt.machinelearningservices.models.FlavorData]
    :ivar job_name: Name of the training job which produced this model.
    :vartype job_name: str
    :ivar model_type: The storage format for this entity. Used for NCD.
    :vartype model_type: str
    :ivar model_uri: The URI path to the model contents.
    :vartype model_uri: str
    :ivar provisioning_state: Provisioning state for the model version. Known values are:
     "Succeeded", "Failed", "Canceled", "Creating", "Updating", and "Deleting".
    :vartype provisioning_state: str or
     ~azure.mgmt.machinelearningservices.models.AssetProvisioningState
    :ivar stage: Stage in the model lifecycle assigned to this model.
    :vartype stage: str
    """

    _validation = {
        "provisioning_state": {"readonly": True},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "properties": {"key": "properties", "type": "{str}"},
        "tags": {"key": "tags", "type": "{str}"},
        "is_anonymous": {"key": "isAnonymous", "type": "bool"},
        "is_archived": {"key": "isArchived", "type": "bool"},
        "flavors": {"key": "flavors", "type": "{FlavorData}"},
        "job_name": {"key": "jobName", "type": "str"},
        "model_type": {"key": "modelType", "type": "str"},
        "model_uri": {"key": "modelUri", "type": "str"},
        "provisioning_state": {"key": "provisioningState", "type": "str"},
        "stage": {"key": "stage", "type": "str"},
    }

    def __init__(
        self,
        *,
        description: Optional[str] = None,
        properties: Optional[Dict[str, str]] = None,
        tags: Optional[Dict[str, str]] = None,
        is_anonymous: bool = False,
        is_archived: bool = False,
        flavors: Optional[Dict[str, "_models.FlavorData"]] = None,
        job_name: Optional[str] = None,
        model_type: Optional[str] = None,
        model_uri: Optional[str] = None,
        stage: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword description: The asset description text.
        :paramtype description: str
        :keyword properties: The asset property dictionary.
        :paramtype properties: dict[str, str]
        :keyword tags: Tag dictionary. Tags can be added, removed, and updated.
        :paramtype tags: dict[str, str]
        :keyword is_anonymous: If the name version are system generated (anonymous registration).
        :paramtype is_anonymous: bool
        :keyword is_archived: Is the asset archived?.
        :paramtype is_archived: bool
        :keyword flavors: Mapping of model flavors to their properties.
        :paramtype flavors: dict[str, ~azure.mgmt.machinelearningservices.models.FlavorData]
        :keyword job_name: Name of the training job which produced this model.
        :paramtype job_name: str
        :keyword model_type: The storage format for this entity. Used for NCD.
        :paramtype model_type: str
        :keyword model_uri: The URI path to the model contents.
        :paramtype model_uri: str
        :keyword stage: Stage in the model lifecycle assigned to this model.
        :paramtype stage: str
        """
        super().__init__(
            description=description,
            properties=properties,
            tags=tags,
            is_anonymous=is_anonymous,
            is_archived=is_archived,
            **kwargs
        )
        self.flavors = flavors
        self.job_name = job_name
        self.model_type = model_type
        self.model_uri = model_uri
        self.provisioning_state = None
        self.stage = stage


class ModelVersionResourceArmPaginatedResult(_serialization.Model):
    """A paginated list of ModelVersion entities.

    :ivar next_link: The link to the next page of ModelVersion objects. If null, there are no
     additional pages.
    :vartype next_link: str
    :ivar value: An array of objects of type ModelVersion.
    :vartype value: list[~azure.mgmt.machinelearningservices.models.ModelVersion]
    """

    _attribute_map = {
        "next_link": {"key": "nextLink", "type": "str"},
        "value": {"key": "value", "type": "[ModelVersion]"},
    }

    def __init__(
        self, *, next_link: Optional[str] = None, value: Optional[List["_models.ModelVersion"]] = None, **kwargs: Any
    ) -> None:
        """
        :keyword next_link: The link to the next page of ModelVersion objects. If null, there are no
         additional pages.
        :paramtype next_link: str
        :keyword value: An array of objects of type ModelVersion.
        :paramtype value: list[~azure.mgmt.machinelearningservices.models.ModelVersion]
        """
        super().__init__(**kwargs)
        self.next_link = next_link
        self.value = value


class Mpi(DistributionConfiguration):
    """MPI distribution configuration.

    All required parameters must be populated in order to send to Azure.

    :ivar distribution_type: [Required] Specifies the type of distribution framework. Required.
     Known values are: "PyTorch", "TensorFlow", and "Mpi".
    :vartype distribution_type: str or ~azure.mgmt.machinelearningservices.models.DistributionType
    :ivar process_count_per_instance: Number of processes per MPI node.
    :vartype process_count_per_instance: int
    """

    _validation = {
        "distribution_type": {"required": True},
    }

    _attribute_map = {
        "distribution_type": {"key": "distributionType", "type": "str"},
        "process_count_per_instance": {"key": "processCountPerInstance", "type": "int"},
    }

    def __init__(self, *, process_count_per_instance: Optional[int] = None, **kwargs: Any) -> None:
        """
        :keyword process_count_per_instance: Number of processes per MPI node.
        :paramtype process_count_per_instance: int
        """
        super().__init__(**kwargs)
        self.distribution_type: str = "Mpi"
        self.process_count_per_instance = process_count_per_instance


class NlpVertical(_serialization.Model):
    """Abstract class for NLP related AutoML tasks.
    NLP - Natural Language Processing.

    :ivar featurization_settings: Featurization inputs needed for AutoML job.
    :vartype featurization_settings:
     ~azure.mgmt.machinelearningservices.models.NlpVerticalFeaturizationSettings
    :ivar limit_settings: Execution constraints for AutoMLJob.
    :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.NlpVerticalLimitSettings
    :ivar validation_data: Validation data inputs.
    :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
    """

    _attribute_map = {
        "featurization_settings": {"key": "featurizationSettings", "type": "NlpVerticalFeaturizationSettings"},
        "limit_settings": {"key": "limitSettings", "type": "NlpVerticalLimitSettings"},
        "validation_data": {"key": "validationData", "type": "MLTableJobInput"},
    }

    def __init__(
        self,
        *,
        featurization_settings: Optional["_models.NlpVerticalFeaturizationSettings"] = None,
        limit_settings: Optional["_models.NlpVerticalLimitSettings"] = None,
        validation_data: Optional["_models.MLTableJobInput"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword featurization_settings: Featurization inputs needed for AutoML job.
        :paramtype featurization_settings:
         ~azure.mgmt.machinelearningservices.models.NlpVerticalFeaturizationSettings
        :keyword limit_settings: Execution constraints for AutoMLJob.
        :paramtype limit_settings: ~azure.mgmt.machinelearningservices.models.NlpVerticalLimitSettings
        :keyword validation_data: Validation data inputs.
        :paramtype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
        """
        super().__init__(**kwargs)
        self.featurization_settings = featurization_settings
        self.limit_settings = limit_settings
        self.validation_data = validation_data


class NlpVerticalFeaturizationSettings(FeaturizationSettings):
    """NlpVerticalFeaturizationSettings.

    :ivar dataset_language: Dataset language, useful for the text data.
    :vartype dataset_language: str
    """

    _attribute_map = {
        "dataset_language": {"key": "datasetLanguage", "type": "str"},
    }

    def __init__(self, *, dataset_language: Optional[str] = None, **kwargs: Any) -> None:
        """
        :keyword dataset_language: Dataset language, useful for the text data.
        :paramtype dataset_language: str
        """
        super().__init__(dataset_language=dataset_language, **kwargs)


class NlpVerticalLimitSettings(_serialization.Model):
    """Job execution constraints.

    :ivar max_concurrent_trials: Maximum Concurrent AutoML iterations.
    :vartype max_concurrent_trials: int
    :ivar max_trials: Number of AutoML iterations.
    :vartype max_trials: int
    :ivar timeout: AutoML job timeout.
    :vartype timeout: ~datetime.timedelta
    """

    _attribute_map = {
        "max_concurrent_trials": {"key": "maxConcurrentTrials", "type": "int"},
        "max_trials": {"key": "maxTrials", "type": "int"},
        "timeout": {"key": "timeout", "type": "duration"},
    }

    def __init__(
        self, *, max_concurrent_trials: int = 1, max_trials: int = 1, timeout: datetime.timedelta = "P7D", **kwargs: Any
    ) -> None:
        """
        :keyword max_concurrent_trials: Maximum Concurrent AutoML iterations.
        :paramtype max_concurrent_trials: int
        :keyword max_trials: Number of AutoML iterations.
        :paramtype max_trials: int
        :keyword timeout: AutoML job timeout.
        :paramtype timeout: ~datetime.timedelta
        """
        super().__init__(**kwargs)
        self.max_concurrent_trials = max_concurrent_trials
        self.max_trials = max_trials
        self.timeout = timeout


class NodeStateCounts(_serialization.Model):
    """Counts of various compute node states on the amlCompute.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar idle_node_count: Number of compute nodes in idle state.
    :vartype idle_node_count: int
    :ivar running_node_count: Number of compute nodes which are running jobs.
    :vartype running_node_count: int
    :ivar preparing_node_count: Number of compute nodes which are being prepared.
    :vartype preparing_node_count: int
    :ivar unusable_node_count: Number of compute nodes which are in unusable state.
    :vartype unusable_node_count: int
    :ivar leaving_node_count: Number of compute nodes which are leaving the amlCompute.
    :vartype leaving_node_count: int
    :ivar preempted_node_count: Number of compute nodes which are in preempted state.
    :vartype preempted_node_count: int
    """

    _validation = {
        "idle_node_count": {"readonly": True},
        "running_node_count": {"readonly": True},
        "preparing_node_count": {"readonly": True},
        "unusable_node_count": {"readonly": True},
        "leaving_node_count": {"readonly": True},
        "preempted_node_count": {"readonly": True},
    }

    _attribute_map = {
        "idle_node_count": {"key": "idleNodeCount", "type": "int"},
        "running_node_count": {"key": "runningNodeCount", "type": "int"},
        "preparing_node_count": {"key": "preparingNodeCount", "type": "int"},
        "unusable_node_count": {"key": "unusableNodeCount", "type": "int"},
        "leaving_node_count": {"key": "leavingNodeCount", "type": "int"},
        "preempted_node_count": {"key": "preemptedNodeCount", "type": "int"},
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.idle_node_count = None
        self.running_node_count = None
        self.preparing_node_count = None
        self.unusable_node_count = None
        self.leaving_node_count = None
        self.preempted_node_count = None


class NoneAuthTypeWorkspaceConnectionProperties(WorkspaceConnectionPropertiesV2):
    """NoneAuthTypeWorkspaceConnectionProperties.

    All required parameters must be populated in order to send to Azure.

    :ivar auth_type: Authentication type of the connection target. Required. Known values are:
     "PAT", "ManagedIdentity", "UsernamePassword", "None", and "SAS".
    :vartype auth_type: str or ~azure.mgmt.machinelearningservices.models.ConnectionAuthType
    :ivar category: Category of the connection. Known values are: "PythonFeed",
     "ContainerRegistry", and "Git".
    :vartype category: str or ~azure.mgmt.machinelearningservices.models.ConnectionCategory
    :ivar target:
    :vartype target: str
    :ivar value: Value details of the workspace connection.
    :vartype value: str
    :ivar value_format: format for the workspace connection value. "JSON"
    :vartype value_format: str or ~azure.mgmt.machinelearningservices.models.ValueFormat
    """

    _validation = {
        "auth_type": {"required": True},
    }

    _attribute_map = {
        "auth_type": {"key": "authType", "type": "str"},
        "category": {"key": "category", "type": "str"},
        "target": {"key": "target", "type": "str"},
        "value": {"key": "value", "type": "str"},
        "value_format": {"key": "valueFormat", "type": "str"},
    }

    def __init__(
        self,
        *,
        category: Optional[Union[str, "_models.ConnectionCategory"]] = None,
        target: Optional[str] = None,
        value: Optional[str] = None,
        value_format: Optional[Union[str, "_models.ValueFormat"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword category: Category of the connection. Known values are: "PythonFeed",
         "ContainerRegistry", and "Git".
        :paramtype category: str or ~azure.mgmt.machinelearningservices.models.ConnectionCategory
        :keyword target:
        :paramtype target: str
        :keyword value: Value details of the workspace connection.
        :paramtype value: str
        :keyword value_format: format for the workspace connection value. "JSON"
        :paramtype value_format: str or ~azure.mgmt.machinelearningservices.models.ValueFormat
        """
        super().__init__(category=category, target=target, value=value, value_format=value_format, **kwargs)
        self.auth_type: str = "None"


class NoneDatastoreCredentials(DatastoreCredentials):
    """Empty/none datastore credentials.

    All required parameters must be populated in order to send to Azure.

    :ivar credentials_type: [Required] Credential type used to authentication with storage.
     Required. Known values are: "AccountKey", "Certificate", "None", "Sas", and "ServicePrincipal".
    :vartype credentials_type: str or ~azure.mgmt.machinelearningservices.models.CredentialsType
    """

    _validation = {
        "credentials_type": {"required": True},
    }

    _attribute_map = {
        "credentials_type": {"key": "credentialsType", "type": "str"},
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.credentials_type: str = "None"


class NotebookAccessTokenResult(_serialization.Model):
    """NotebookAccessTokenResult.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar notebook_resource_id:
    :vartype notebook_resource_id: str
    :ivar host_name:
    :vartype host_name: str
    :ivar public_dns:
    :vartype public_dns: str
    :ivar access_token:
    :vartype access_token: str
    :ivar token_type:
    :vartype token_type: str
    :ivar expires_in:
    :vartype expires_in: int
    :ivar refresh_token:
    :vartype refresh_token: str
    :ivar scope:
    :vartype scope: str
    """

    _validation = {
        "notebook_resource_id": {"readonly": True},
        "host_name": {"readonly": True},
        "public_dns": {"readonly": True},
        "access_token": {"readonly": True},
        "token_type": {"readonly": True},
        "expires_in": {"readonly": True},
        "refresh_token": {"readonly": True},
        "scope": {"readonly": True},
    }

    _attribute_map = {
        "notebook_resource_id": {"key": "notebookResourceId", "type": "str"},
        "host_name": {"key": "hostName", "type": "str"},
        "public_dns": {"key": "publicDns", "type": "str"},
        "access_token": {"key": "accessToken", "type": "str"},
        "token_type": {"key": "tokenType", "type": "str"},
        "expires_in": {"key": "expiresIn", "type": "int"},
        "refresh_token": {"key": "refreshToken", "type": "str"},
        "scope": {"key": "scope", "type": "str"},
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.notebook_resource_id = None
        self.host_name = None
        self.public_dns = None
        self.access_token = None
        self.token_type = None
        self.expires_in = None
        self.refresh_token = None
        self.scope = None


class NotebookPreparationError(_serialization.Model):
    """NotebookPreparationError.

    :ivar error_message:
    :vartype error_message: str
    :ivar status_code:
    :vartype status_code: int
    """

    _attribute_map = {
        "error_message": {"key": "errorMessage", "type": "str"},
        "status_code": {"key": "statusCode", "type": "int"},
    }

    def __init__(
        self, *, error_message: Optional[str] = None, status_code: Optional[int] = None, **kwargs: Any
    ) -> None:
        """
        :keyword error_message:
        :paramtype error_message: str
        :keyword status_code:
        :paramtype status_code: int
        """
        super().__init__(**kwargs)
        self.error_message = error_message
        self.status_code = status_code


class NotebookResourceInfo(_serialization.Model):
    """NotebookResourceInfo.

    :ivar fqdn:
    :vartype fqdn: str
    :ivar resource_id: the data plane resourceId that used to initialize notebook component.
    :vartype resource_id: str
    :ivar notebook_preparation_error: The error that occurs when preparing notebook.
    :vartype notebook_preparation_error:
     ~azure.mgmt.machinelearningservices.models.NotebookPreparationError
    """

    _attribute_map = {
        "fqdn": {"key": "fqdn", "type": "str"},
        "resource_id": {"key": "resourceId", "type": "str"},
        "notebook_preparation_error": {"key": "notebookPreparationError", "type": "NotebookPreparationError"},
    }

    def __init__(
        self,
        *,
        fqdn: Optional[str] = None,
        resource_id: Optional[str] = None,
        notebook_preparation_error: Optional["_models.NotebookPreparationError"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword fqdn:
        :paramtype fqdn: str
        :keyword resource_id: the data plane resourceId that used to initialize notebook component.
        :paramtype resource_id: str
        :keyword notebook_preparation_error: The error that occurs when preparing notebook.
        :paramtype notebook_preparation_error:
         ~azure.mgmt.machinelearningservices.models.NotebookPreparationError
        """
        super().__init__(**kwargs)
        self.fqdn = fqdn
        self.resource_id = resource_id
        self.notebook_preparation_error = notebook_preparation_error


class Objective(_serialization.Model):
    """Optimization objective.

    All required parameters must be populated in order to send to Azure.

    :ivar goal: [Required] Defines supported metric goals for hyperparameter tuning. Required.
     Known values are: "Minimize" and "Maximize".
    :vartype goal: str or ~azure.mgmt.machinelearningservices.models.Goal
    :ivar primary_metric: [Required] Name of the metric to optimize. Required.
    :vartype primary_metric: str
    """

    _validation = {
        "goal": {"required": True},
        "primary_metric": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"},
    }

    _attribute_map = {
        "goal": {"key": "goal", "type": "str"},
        "primary_metric": {"key": "primaryMetric", "type": "str"},
    }

    def __init__(self, *, goal: Union[str, "_models.Goal"], primary_metric: str, **kwargs: Any) -> None:
        """
        :keyword goal: [Required] Defines supported metric goals for hyperparameter tuning. Required.
         Known values are: "Minimize" and "Maximize".
        :paramtype goal: str or ~azure.mgmt.machinelearningservices.models.Goal
        :keyword primary_metric: [Required] Name of the metric to optimize. Required.
        :paramtype primary_metric: str
        """
        super().__init__(**kwargs)
        self.goal = goal
        self.primary_metric = primary_metric


class OnlineDeployment(TrackedResource):
    """OnlineDeployment.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar id: Fully qualified resource ID for the resource. Ex -
     /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}.
    :vartype id: str
    :ivar name: The name of the resource.
    :vartype name: str
    :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or
     "Microsoft.Storage/storageAccounts".
    :vartype type: str
    :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy
     information.
    :vartype system_data: ~azure.mgmt.machinelearningservices.models.SystemData
    :ivar tags: Resource tags.
    :vartype tags: dict[str, str]
    :ivar location: The geo-location where the resource lives. Required.
    :vartype location: str
    :ivar identity: Managed service identity (system assigned and/or user assigned identities).
    :vartype identity: ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentity
    :ivar kind: Metadata used by portal/tooling/etc to render different UX experiences for
     resources of the same type.
    :vartype kind: str
    :ivar properties: [Required] Additional attributes of the entity. Required.
    :vartype properties: ~azure.mgmt.machinelearningservices.models.OnlineDeploymentProperties
    :ivar sku: Sku details required for ARM contract for Autoscaling.
    :vartype sku: ~azure.mgmt.machinelearningservices.models.Sku
    """

    _validation = {
        "id": {"readonly": True},
        "name": {"readonly": True},
        "type": {"readonly": True},
        "system_data": {"readonly": True},
        "location": {"required": True},
        "properties": {"required": True},
    }

    _attribute_map = {
        "id": {"key": "id", "type": "str"},
        "name": {"key": "name", "type": "str"},
        "type": {"key": "type", "type": "str"},
        "system_data": {"key": "systemData", "type": "SystemData"},
        "tags": {"key": "tags", "type": "{str}"},
        "location": {"key": "location", "type": "str"},
        "identity": {"key": "identity", "type": "ManagedServiceIdentity"},
        "kind": {"key": "kind", "type": "str"},
        "properties": {"key": "properties", "type": "OnlineDeploymentProperties"},
        "sku": {"key": "sku", "type": "Sku"},
    }

    def __init__(
        self,
        *,
        location: str,
        properties: "_models.OnlineDeploymentProperties",
        tags: Optional[Dict[str, str]] = None,
        identity: Optional["_models.ManagedServiceIdentity"] = None,
        kind: Optional[str] = None,
        sku: Optional["_models.Sku"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword tags: Resource tags.
        :paramtype tags: dict[str, str]
        :keyword location: The geo-location where the resource lives. Required.
        :paramtype location: str
        :keyword identity: Managed service identity (system assigned and/or user assigned identities).
        :paramtype identity: ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentity
        :keyword kind: Metadata used by portal/tooling/etc to render different UX experiences for
         resources of the same type.
        :paramtype kind: str
        :keyword properties: [Required] Additional attributes of the entity. Required.
        :paramtype properties: ~azure.mgmt.machinelearningservices.models.OnlineDeploymentProperties
        :keyword sku: Sku details required for ARM contract for Autoscaling.
        :paramtype sku: ~azure.mgmt.machinelearningservices.models.Sku
        """
        super().__init__(tags=tags, location=location, **kwargs)
        self.identity = identity
        self.kind = kind
        self.properties = properties
        self.sku = sku


class OnlineDeploymentTrackedResourceArmPaginatedResult(_serialization.Model):
    """A paginated list of OnlineDeployment entities.

    :ivar next_link: The link to the next page of OnlineDeployment objects. If null, there are no
     additional pages.
    :vartype next_link: str
    :ivar value: An array of objects of type OnlineDeployment.
    :vartype value: list[~azure.mgmt.machinelearningservices.models.OnlineDeployment]
    """

    _attribute_map = {
        "next_link": {"key": "nextLink", "type": "str"},
        "value": {"key": "value", "type": "[OnlineDeployment]"},
    }

    def __init__(
        self,
        *,
        next_link: Optional[str] = None,
        value: Optional[List["_models.OnlineDeployment"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword next_link: The link to the next page of OnlineDeployment objects. If null, there are
         no additional pages.
        :paramtype next_link: str
        :keyword value: An array of objects of type OnlineDeployment.
        :paramtype value: list[~azure.mgmt.machinelearningservices.models.OnlineDeployment]
        """
        super().__init__(**kwargs)
        self.next_link = next_link
        self.value = value


class OnlineEndpoint(TrackedResource):
    """OnlineEndpoint.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar id: Fully qualified resource ID for the resource. Ex -
     /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}.
    :vartype id: str
    :ivar name: The name of the resource.
    :vartype name: str
    :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or
     "Microsoft.Storage/storageAccounts".
    :vartype type: str
    :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy
     information.
    :vartype system_data: ~azure.mgmt.machinelearningservices.models.SystemData
    :ivar tags: Resource tags.
    :vartype tags: dict[str, str]
    :ivar location: The geo-location where the resource lives. Required.
    :vartype location: str
    :ivar identity: Managed service identity (system assigned and/or user assigned identities).
    :vartype identity: ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentity
    :ivar kind: Metadata used by portal/tooling/etc to render different UX experiences for
     resources of the same type.
    :vartype kind: str
    :ivar properties: [Required] Additional attributes of the entity. Required.
    :vartype properties: ~azure.mgmt.machinelearningservices.models.OnlineEndpointProperties
    :ivar sku: Sku details required for ARM contract for Autoscaling.
    :vartype sku: ~azure.mgmt.machinelearningservices.models.Sku
    """

    _validation = {
        "id": {"readonly": True},
        "name": {"readonly": True},
        "type": {"readonly": True},
        "system_data": {"readonly": True},
        "location": {"required": True},
        "properties": {"required": True},
    }

    _attribute_map = {
        "id": {"key": "id", "type": "str"},
        "name": {"key": "name", "type": "str"},
        "type": {"key": "type", "type": "str"},
        "system_data": {"key": "systemData", "type": "SystemData"},
        "tags": {"key": "tags", "type": "{str}"},
        "location": {"key": "location", "type": "str"},
        "identity": {"key": "identity", "type": "ManagedServiceIdentity"},
        "kind": {"key": "kind", "type": "str"},
        "properties": {"key": "properties", "type": "OnlineEndpointProperties"},
        "sku": {"key": "sku", "type": "Sku"},
    }

    def __init__(
        self,
        *,
        location: str,
        properties: "_models.OnlineEndpointProperties",
        tags: Optional[Dict[str, str]] = None,
        identity: Optional["_models.ManagedServiceIdentity"] = None,
        kind: Optional[str] = None,
        sku: Optional["_models.Sku"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword tags: Resource tags.
        :paramtype tags: dict[str, str]
        :keyword location: The geo-location where the resource lives. Required.
        :paramtype location: str
        :keyword identity: Managed service identity (system assigned and/or user assigned identities).
        :paramtype identity: ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentity
        :keyword kind: Metadata used by portal/tooling/etc to render different UX experiences for
         resources of the same type.
        :paramtype kind: str
        :keyword properties: [Required] Additional attributes of the entity. Required.
        :paramtype properties: ~azure.mgmt.machinelearningservices.models.OnlineEndpointProperties
        :keyword sku: Sku details required for ARM contract for Autoscaling.
        :paramtype sku: ~azure.mgmt.machinelearningservices.models.Sku
        """
        super().__init__(tags=tags, location=location, **kwargs)
        self.identity = identity
        self.kind = kind
        self.properties = properties
        self.sku = sku


class OnlineEndpointProperties(EndpointPropertiesBase):  # pylint: disable=too-many-instance-attributes
    """Online endpoint configuration.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar auth_mode: [Required] Use 'Key' for key based authentication and 'AMLToken' for Azure
     Machine Learning token-based authentication. 'Key' doesn't expire but 'AMLToken' does.
     Required. Known values are: "AMLToken", "Key", and "AADToken".
    :vartype auth_mode: str or ~azure.mgmt.machinelearningservices.models.EndpointAuthMode
    :ivar description: Description of the inference endpoint.
    :vartype description: str
    :ivar keys: EndpointAuthKeys to set initially on an Endpoint.
     This property will always be returned as null. AuthKey values must be retrieved using the
     ListKeys API.
    :vartype keys: ~azure.mgmt.machinelearningservices.models.EndpointAuthKeys
    :ivar properties: Property dictionary. Properties can be added, but not removed or altered.
    :vartype properties: dict[str, str]
    :ivar scoring_uri: Endpoint URI.
    :vartype scoring_uri: str
    :ivar swagger_uri: Endpoint Swagger URI.
    :vartype swagger_uri: str
    :ivar compute: ARM resource ID of the compute if it exists.
     optional.
    :vartype compute: str
    :ivar mirror_traffic: Percentage of traffic to be mirrored to each deployment without using
     returned scoring. Traffic values need to sum to utmost 50.
    :vartype mirror_traffic: dict[str, int]
    :ivar provisioning_state: Provisioning state for the endpoint. Known values are: "Creating",
     "Deleting", "Succeeded", "Failed", "Updating", and "Canceled".
    :vartype provisioning_state: str or
     ~azure.mgmt.machinelearningservices.models.EndpointProvisioningState
    :ivar public_network_access: Set to "Enabled" for endpoints that should allow public access
     when Private Link is enabled. Known values are: "Enabled" and "Disabled".
    :vartype public_network_access: str or
     ~azure.mgmt.machinelearningservices.models.PublicNetworkAccessType
    :ivar traffic: Percentage of traffic from endpoint to divert to each deployment. Traffic values
     need to sum to 100.
    :vartype traffic: dict[str, int]
    """

    _validation = {
        "auth_mode": {"required": True},
        "scoring_uri": {"readonly": True},
        "swagger_uri": {"readonly": True},
        "provisioning_state": {"readonly": True},
    }

    _attribute_map = {
        "auth_mode": {"key": "authMode", "type": "str"},
        "description": {"key": "description", "type": "str"},
        "keys": {"key": "keys", "type": "EndpointAuthKeys"},
        "properties": {"key": "properties", "type": "{str}"},
        "scoring_uri": {"key": "scoringUri", "type": "str"},
        "swagger_uri": {"key": "swaggerUri", "type": "str"},
        "compute": {"key": "compute", "type": "str"},
        "mirror_traffic": {"key": "mirrorTraffic", "type": "{int}"},
        "provisioning_state": {"key": "provisioningState", "type": "str"},
        "public_network_access": {"key": "publicNetworkAccess", "type": "str"},
        "traffic": {"key": "traffic", "type": "{int}"},
    }

    def __init__(
        self,
        *,
        auth_mode: Union[str, "_models.EndpointAuthMode"],
        description: Optional[str] = None,
        keys: Optional["_models.EndpointAuthKeys"] = None,
        properties: Optional[Dict[str, str]] = None,
        compute: Optional[str] = None,
        mirror_traffic: Optional[Dict[str, int]] = None,
        public_network_access: Optional[Union[str, "_models.PublicNetworkAccessType"]] = None,
        traffic: Optional[Dict[str, int]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword auth_mode: [Required] Use 'Key' for key based authentication and 'AMLToken' for Azure
         Machine Learning token-based authentication. 'Key' doesn't expire but 'AMLToken' does.
         Required. Known values are: "AMLToken", "Key", and "AADToken".
        :paramtype auth_mode: str or ~azure.mgmt.machinelearningservices.models.EndpointAuthMode
        :keyword description: Description of the inference endpoint.
        :paramtype description: str
        :keyword keys: EndpointAuthKeys to set initially on an Endpoint.
         This property will always be returned as null. AuthKey values must be retrieved using the
         ListKeys API.
        :paramtype keys: ~azure.mgmt.machinelearningservices.models.EndpointAuthKeys
        :keyword properties: Property dictionary. Properties can be added, but not removed or altered.
        :paramtype properties: dict[str, str]
        :keyword compute: ARM resource ID of the compute if it exists.
         optional.
        :paramtype compute: str
        :keyword mirror_traffic: Percentage of traffic to be mirrored to each deployment without using
         returned scoring. Traffic values need to sum to utmost 50.
        :paramtype mirror_traffic: dict[str, int]
        :keyword public_network_access: Set to "Enabled" for endpoints that should allow public access
         when Private Link is enabled. Known values are: "Enabled" and "Disabled".
        :paramtype public_network_access: str or
         ~azure.mgmt.machinelearningservices.models.PublicNetworkAccessType
        :keyword traffic: Percentage of traffic from endpoint to divert to each deployment. Traffic
         values need to sum to 100.
        :paramtype traffic: dict[str, int]
        """
        super().__init__(auth_mode=auth_mode, description=description, keys=keys, properties=properties, **kwargs)
        self.compute = compute
        self.mirror_traffic = mirror_traffic
        self.provisioning_state = None
        self.public_network_access = public_network_access
        self.traffic = traffic


class OnlineEndpointTrackedResourceArmPaginatedResult(_serialization.Model):
    """A paginated list of OnlineEndpoint entities.

    :ivar next_link: The link to the next page of OnlineEndpoint objects. If null, there are no
     additional pages.
    :vartype next_link: str
    :ivar value: An array of objects of type OnlineEndpoint.
    :vartype value: list[~azure.mgmt.machinelearningservices.models.OnlineEndpoint]
    """

    _attribute_map = {
        "next_link": {"key": "nextLink", "type": "str"},
        "value": {"key": "value", "type": "[OnlineEndpoint]"},
    }

    def __init__(
        self, *, next_link: Optional[str] = None, value: Optional[List["_models.OnlineEndpoint"]] = None, **kwargs: Any
    ) -> None:
        """
        :keyword next_link: The link to the next page of OnlineEndpoint objects. If null, there are no
         additional pages.
        :paramtype next_link: str
        :keyword value: An array of objects of type OnlineEndpoint.
        :paramtype value: list[~azure.mgmt.machinelearningservices.models.OnlineEndpoint]
        """
        super().__init__(**kwargs)
        self.next_link = next_link
        self.value = value


class OnlineRequestSettings(_serialization.Model):
    """Online deployment scoring requests configuration.

    :ivar max_concurrent_requests_per_instance: The number of maximum concurrent requests per node
     allowed per deployment. Defaults to 1.
    :vartype max_concurrent_requests_per_instance: int
    :ivar max_queue_wait: The maximum amount of time a request will stay in the queue in ISO 8601
     format.
     Defaults to 500ms.
    :vartype max_queue_wait: ~datetime.timedelta
    :ivar request_timeout: The scoring timeout in ISO 8601 format.
     Defaults to 5000ms.
    :vartype request_timeout: ~datetime.timedelta
    """

    _attribute_map = {
        "max_concurrent_requests_per_instance": {"key": "maxConcurrentRequestsPerInstance", "type": "int"},
        "max_queue_wait": {"key": "maxQueueWait", "type": "duration"},
        "request_timeout": {"key": "requestTimeout", "type": "duration"},
    }

    def __init__(
        self,
        *,
        max_concurrent_requests_per_instance: int = 1,
        max_queue_wait: datetime.timedelta = "PT0.5S",
        request_timeout: datetime.timedelta = "PT5S",
        **kwargs: Any
    ) -> None:
        """
        :keyword max_concurrent_requests_per_instance: The number of maximum concurrent requests per
         node allowed per deployment. Defaults to 1.
        :paramtype max_concurrent_requests_per_instance: int
        :keyword max_queue_wait: The maximum amount of time a request will stay in the queue in ISO
         8601 format.
         Defaults to 500ms.
        :paramtype max_queue_wait: ~datetime.timedelta
        :keyword request_timeout: The scoring timeout in ISO 8601 format.
         Defaults to 5000ms.
        :paramtype request_timeout: ~datetime.timedelta
        """
        super().__init__(**kwargs)
        self.max_concurrent_requests_per_instance = max_concurrent_requests_per_instance
        self.max_queue_wait = max_queue_wait
        self.request_timeout = request_timeout


class OutputPathAssetReference(AssetReferenceBase):
    """Reference to an asset via its path in a job output.

    All required parameters must be populated in order to send to Azure.

    :ivar reference_type: [Required] Specifies the type of asset reference. Required. Known values
     are: "Id", "DataPath", and "OutputPath".
    :vartype reference_type: str or ~azure.mgmt.machinelearningservices.models.ReferenceType
    :ivar job_id: ARM resource ID of the job.
    :vartype job_id: str
    :ivar path: The path of the file/directory in the job output.
    :vartype path: str
    """

    _validation = {
        "reference_type": {"required": True},
    }

    _attribute_map = {
        "reference_type": {"key": "referenceType", "type": "str"},
        "job_id": {"key": "jobId", "type": "str"},
        "path": {"key": "path", "type": "str"},
    }

    def __init__(self, *, job_id: Optional[str] = None, path: Optional[str] = None, **kwargs: Any) -> None:
        """
        :keyword job_id: ARM resource ID of the job.
        :paramtype job_id: str
        :keyword path: The path of the file/directory in the job output.
        :paramtype path: str
        """
        super().__init__(**kwargs)
        self.reference_type: str = "OutputPath"
        self.job_id = job_id
        self.path = path


class PaginatedComputeResourcesList(_serialization.Model):
    """Paginated list of Machine Learning compute objects wrapped in ARM resource envelope.

    :ivar value: An array of Machine Learning compute objects wrapped in ARM resource envelope.
    :vartype value: list[~azure.mgmt.machinelearningservices.models.ComputeResource]
    :ivar next_link: A continuation link (absolute URI) to the next page of results in the list.
    :vartype next_link: str
    """

    _attribute_map = {
        "value": {"key": "value", "type": "[ComputeResource]"},
        "next_link": {"key": "nextLink", "type": "str"},
    }

    def __init__(
        self, *, value: Optional[List["_models.ComputeResource"]] = None, next_link: Optional[str] = None, **kwargs: Any
    ) -> None:
        """
        :keyword value: An array of Machine Learning compute objects wrapped in ARM resource envelope.
        :paramtype value: list[~azure.mgmt.machinelearningservices.models.ComputeResource]
        :keyword next_link: A continuation link (absolute URI) to the next page of results in the list.
        :paramtype next_link: str
        """
        super().__init__(**kwargs)
        self.value = value
        self.next_link = next_link


class PartialBatchDeployment(_serialization.Model):
    """Mutable batch inference settings per deployment.

    :ivar description: Description of the endpoint deployment.
    :vartype description: str
    """

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
    }

    def __init__(self, *, description: Optional[str] = None, **kwargs: Any) -> None:
        """
        :keyword description: Description of the endpoint deployment.
        :paramtype description: str
        """
        super().__init__(**kwargs)
        self.description = description


class PartialBatchDeploymentPartialMinimalTrackedResourceWithProperties(_serialization.Model):
    """Strictly used in update requests.

    :ivar properties: Additional attributes of the entity.
    :vartype properties: ~azure.mgmt.machinelearningservices.models.PartialBatchDeployment
    :ivar tags: Resource tags.
    :vartype tags: dict[str, str]
    """

    _attribute_map = {
        "properties": {"key": "properties", "type": "PartialBatchDeployment"},
        "tags": {"key": "tags", "type": "{str}"},
    }

    def __init__(
        self,
        *,
        properties: Optional["_models.PartialBatchDeployment"] = None,
        tags: Optional[Dict[str, str]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword properties: Additional attributes of the entity.
        :paramtype properties: ~azure.mgmt.machinelearningservices.models.PartialBatchDeployment
        :keyword tags: Resource tags.
        :paramtype tags: dict[str, str]
        """
        super().__init__(**kwargs)
        self.properties = properties
        self.tags = tags


class PartialManagedServiceIdentity(_serialization.Model):
    """Managed service identity (system assigned and/or user assigned identities).

    :ivar type: Managed service identity (system assigned and/or user assigned identities). Known
     values are: "None", "SystemAssigned", "UserAssigned", and "SystemAssigned,UserAssigned".
    :vartype type: str or ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentityType
    :ivar user_assigned_identities: The set of user assigned identities associated with the
     resource. The userAssignedIdentities dictionary keys will be ARM resource ids in the form:
     '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ManagedIdentity/userAssignedIdentities/{identityName}.
     The dictionary values can be empty objects ({}) in requests.
    :vartype user_assigned_identities: dict[str, JSON]
    """

    _attribute_map = {
        "type": {"key": "type", "type": "str"},
        "user_assigned_identities": {"key": "userAssignedIdentities", "type": "{object}"},
    }

    def __init__(
        self,
        *,
        type: Optional[Union[str, "_models.ManagedServiceIdentityType"]] = None,
        user_assigned_identities: Optional[Dict[str, JSON]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword type: Managed service identity (system assigned and/or user assigned identities).
         Known values are: "None", "SystemAssigned", "UserAssigned", and "SystemAssigned,UserAssigned".
        :paramtype type: str or ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentityType
        :keyword user_assigned_identities: The set of user assigned identities associated with the
         resource. The userAssignedIdentities dictionary keys will be ARM resource ids in the form:
         '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ManagedIdentity/userAssignedIdentities/{identityName}.
         The dictionary values can be empty objects ({}) in requests.
        :paramtype user_assigned_identities: dict[str, JSON]
        """
        super().__init__(**kwargs)
        self.type = type
        self.user_assigned_identities = user_assigned_identities


class PartialMinimalTrackedResource(_serialization.Model):
    """Strictly used in update requests.

    :ivar tags: Resource tags.
    :vartype tags: dict[str, str]
    """

    _attribute_map = {
        "tags": {"key": "tags", "type": "{str}"},
    }

    def __init__(self, *, tags: Optional[Dict[str, str]] = None, **kwargs: Any) -> None:
        """
        :keyword tags: Resource tags.
        :paramtype tags: dict[str, str]
        """
        super().__init__(**kwargs)
        self.tags = tags


class PartialMinimalTrackedResourceWithIdentity(PartialMinimalTrackedResource):
    """Strictly used in update requests.

    :ivar tags: Resource tags.
    :vartype tags: dict[str, str]
    :ivar identity: Managed service identity (system assigned and/or user assigned identities).
    :vartype identity: ~azure.mgmt.machinelearningservices.models.PartialManagedServiceIdentity
    """

    _attribute_map = {
        "tags": {"key": "tags", "type": "{str}"},
        "identity": {"key": "identity", "type": "PartialManagedServiceIdentity"},
    }

    def __init__(
        self,
        *,
        tags: Optional[Dict[str, str]] = None,
        identity: Optional["_models.PartialManagedServiceIdentity"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword tags: Resource tags.
        :paramtype tags: dict[str, str]
        :keyword identity: Managed service identity (system assigned and/or user assigned identities).
        :paramtype identity: ~azure.mgmt.machinelearningservices.models.PartialManagedServiceIdentity
        """
        super().__init__(tags=tags, **kwargs)
        self.identity = identity


class PartialMinimalTrackedResourceWithSku(PartialMinimalTrackedResource):
    """Strictly used in update requests.

    :ivar tags: Resource tags.
    :vartype tags: dict[str, str]
    :ivar sku: Sku details required for ARM contract for Autoscaling.
    :vartype sku: ~azure.mgmt.machinelearningservices.models.PartialSku
    """

    _attribute_map = {
        "tags": {"key": "tags", "type": "{str}"},
        "sku": {"key": "sku", "type": "PartialSku"},
    }

    def __init__(
        self, *, tags: Optional[Dict[str, str]] = None, sku: Optional["_models.PartialSku"] = None, **kwargs: Any
    ) -> None:
        """
        :keyword tags: Resource tags.
        :paramtype tags: dict[str, str]
        :keyword sku: Sku details required for ARM contract for Autoscaling.
        :paramtype sku: ~azure.mgmt.machinelearningservices.models.PartialSku
        """
        super().__init__(tags=tags, **kwargs)
        self.sku = sku


class PartialRegistryPartialTrackedResource(_serialization.Model):
    """Strictly used in update requests.

    :ivar identity: Managed service identity (system assigned and/or user assigned identities).
    :vartype identity:
     ~azure.mgmt.machinelearningservices.models.RegistryPartialManagedServiceIdentity
    :ivar sku: Sku details required for ARM contract for Autoscaling.
    :vartype sku: ~azure.mgmt.machinelearningservices.models.PartialSku
    :ivar tags: Resource tags.
    :vartype tags: dict[str, str]
    """

    _attribute_map = {
        "identity": {"key": "identity", "type": "RegistryPartialManagedServiceIdentity"},
        "sku": {"key": "sku", "type": "PartialSku"},
        "tags": {"key": "tags", "type": "{str}"},
    }

    def __init__(
        self,
        *,
        identity: Optional["_models.RegistryPartialManagedServiceIdentity"] = None,
        sku: Optional["_models.PartialSku"] = None,
        tags: Optional[Dict[str, str]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword identity: Managed service identity (system assigned and/or user assigned identities).
        :paramtype identity:
         ~azure.mgmt.machinelearningservices.models.RegistryPartialManagedServiceIdentity
        :keyword sku: Sku details required for ARM contract for Autoscaling.
        :paramtype sku: ~azure.mgmt.machinelearningservices.models.PartialSku
        :keyword tags: Resource tags.
        :paramtype tags: dict[str, str]
        """
        super().__init__(**kwargs)
        self.identity = identity
        self.sku = sku
        self.tags = tags


class PartialSku(_serialization.Model):
    """Common SKU definition.

    :ivar capacity: If the SKU supports scale out/in then the capacity integer should be included.
     If scale out/in is not possible for the resource this may be omitted.
    :vartype capacity: int
    :ivar family: If the service has different generations of hardware, for the same SKU, then that
     can be captured here.
    :vartype family: str
    :ivar name: The name of the SKU. Ex - P3. It is typically a letter+number code.
    :vartype name: str
    :ivar size: The SKU size. When the name field is the combination of tier and some other value,
     this would be the standalone code.
    :vartype size: str
    :ivar tier: This field is required to be implemented by the Resource Provider if the service
     has more than one tier, but is not required on a PUT. Known values are: "Free", "Basic",
     "Standard", and "Premium".
    :vartype tier: str or ~azure.mgmt.machinelearningservices.models.SkuTier
    """

    _attribute_map = {
        "capacity": {"key": "capacity", "type": "int"},
        "family": {"key": "family", "type": "str"},
        "name": {"key": "name", "type": "str"},
        "size": {"key": "size", "type": "str"},
        "tier": {"key": "tier", "type": "str"},
    }

    def __init__(
        self,
        *,
        capacity: Optional[int] = None,
        family: Optional[str] = None,
        name: Optional[str] = None,
        size: Optional[str] = None,
        tier: Optional[Union[str, "_models.SkuTier"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword capacity: If the SKU supports scale out/in then the capacity integer should be
         included. If scale out/in is not possible for the resource this may be omitted.
        :paramtype capacity: int
        :keyword family: If the service has different generations of hardware, for the same SKU, then
         that can be captured here.
        :paramtype family: str
        :keyword name: The name of the SKU. Ex - P3. It is typically a letter+number code.
        :paramtype name: str
        :keyword size: The SKU size. When the name field is the combination of tier and some other
         value, this would be the standalone code.
        :paramtype size: str
        :keyword tier: This field is required to be implemented by the Resource Provider if the service
         has more than one tier, but is not required on a PUT. Known values are: "Free", "Basic",
         "Standard", and "Premium".
        :paramtype tier: str or ~azure.mgmt.machinelearningservices.models.SkuTier
        """
        super().__init__(**kwargs)
        self.capacity = capacity
        self.family = family
        self.name = name
        self.size = size
        self.tier = tier


class Password(_serialization.Model):
    """Password.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar name:
    :vartype name: str
    :ivar value:
    :vartype value: str
    """

    _validation = {
        "name": {"readonly": True},
        "value": {"readonly": True},
    }

    _attribute_map = {
        "name": {"key": "name", "type": "str"},
        "value": {"key": "value", "type": "str"},
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.name = None
        self.value = None


class PATAuthTypeWorkspaceConnectionProperties(WorkspaceConnectionPropertiesV2):
    """PATAuthTypeWorkspaceConnectionProperties.

    All required parameters must be populated in order to send to Azure.

    :ivar auth_type: Authentication type of the connection target. Required. Known values are:
     "PAT", "ManagedIdentity", "UsernamePassword", "None", and "SAS".
    :vartype auth_type: str or ~azure.mgmt.machinelearningservices.models.ConnectionAuthType
    :ivar category: Category of the connection. Known values are: "PythonFeed",
     "ContainerRegistry", and "Git".
    :vartype category: str or ~azure.mgmt.machinelearningservices.models.ConnectionCategory
    :ivar target:
    :vartype target: str
    :ivar value: Value details of the workspace connection.
    :vartype value: str
    :ivar value_format: format for the workspace connection value. "JSON"
    :vartype value_format: str or ~azure.mgmt.machinelearningservices.models.ValueFormat
    :ivar credentials:
    :vartype credentials:
     ~azure.mgmt.machinelearningservices.models.WorkspaceConnectionPersonalAccessToken
    """

    _validation = {
        "auth_type": {"required": True},
    }

    _attribute_map = {
        "auth_type": {"key": "authType", "type": "str"},
        "category": {"key": "category", "type": "str"},
        "target": {"key": "target", "type": "str"},
        "value": {"key": "value", "type": "str"},
        "value_format": {"key": "valueFormat", "type": "str"},
        "credentials": {"key": "credentials", "type": "WorkspaceConnectionPersonalAccessToken"},
    }

    def __init__(
        self,
        *,
        category: Optional[Union[str, "_models.ConnectionCategory"]] = None,
        target: Optional[str] = None,
        value: Optional[str] = None,
        value_format: Optional[Union[str, "_models.ValueFormat"]] = None,
        credentials: Optional["_models.WorkspaceConnectionPersonalAccessToken"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword category: Category of the connection. Known values are: "PythonFeed",
         "ContainerRegistry", and "Git".
        :paramtype category: str or ~azure.mgmt.machinelearningservices.models.ConnectionCategory
        :keyword target:
        :paramtype target: str
        :keyword value: Value details of the workspace connection.
        :paramtype value: str
        :keyword value_format: format for the workspace connection value. "JSON"
        :paramtype value_format: str or ~azure.mgmt.machinelearningservices.models.ValueFormat
        :keyword credentials:
        :paramtype credentials:
         ~azure.mgmt.machinelearningservices.models.WorkspaceConnectionPersonalAccessToken
        """
        super().__init__(category=category, target=target, value=value, value_format=value_format, **kwargs)
        self.auth_type: str = "PAT"
        self.credentials = credentials


class PendingUploadCredentialDto(_serialization.Model):
    """PendingUploadCredentialDto.

    You probably want to use the sub-classes and not this class directly. Known sub-classes are:
    SASCredentialDto

    All required parameters must be populated in order to send to Azure.

    :ivar credential_type: [Required] Credential type used to authentication with storage.
     Required. "SAS"
    :vartype credential_type: str or
     ~azure.mgmt.machinelearningservices.models.PendingUploadCredentialType
    """

    _validation = {
        "credential_type": {"required": True},
    }

    _attribute_map = {
        "credential_type": {"key": "credentialType", "type": "str"},
    }

    _subtype_map = {"credential_type": {"SAS": "SASCredentialDto"}}

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.credential_type: Optional[str] = None


class PendingUploadRequestDto(_serialization.Model):
    """PendingUploadRequestDto.

    :ivar pending_upload_id: If PendingUploadId = null then random guid will be used.
    :vartype pending_upload_id: str
    :ivar pending_upload_type: TemporaryBlobReference is the only supported type. Known values are:
     "None" and "TemporaryBlobReference".
    :vartype pending_upload_type: str or
     ~azure.mgmt.machinelearningservices.models.PendingUploadType
    """

    _attribute_map = {
        "pending_upload_id": {"key": "pendingUploadId", "type": "str"},
        "pending_upload_type": {"key": "pendingUploadType", "type": "str"},
    }

    def __init__(
        self,
        *,
        pending_upload_id: Optional[str] = None,
        pending_upload_type: Optional[Union[str, "_models.PendingUploadType"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword pending_upload_id: If PendingUploadId = null then random guid will be used.
        :paramtype pending_upload_id: str
        :keyword pending_upload_type: TemporaryBlobReference is the only supported type. Known values
         are: "None" and "TemporaryBlobReference".
        :paramtype pending_upload_type: str or
         ~azure.mgmt.machinelearningservices.models.PendingUploadType
        """
        super().__init__(**kwargs)
        self.pending_upload_id = pending_upload_id
        self.pending_upload_type = pending_upload_type


class PendingUploadResponseDto(_serialization.Model):
    """PendingUploadResponseDto.

    :ivar blob_reference_for_consumption: Container level read, write, list SAS.
    :vartype blob_reference_for_consumption:
     ~azure.mgmt.machinelearningservices.models.BlobReferenceForConsumptionDto
    :ivar pending_upload_id: ID for this upload request.
    :vartype pending_upload_id: str
    :ivar pending_upload_type: TemporaryBlobReference is the only supported type. Known values are:
     "None" and "TemporaryBlobReference".
    :vartype pending_upload_type: str or
     ~azure.mgmt.machinelearningservices.models.PendingUploadType
    """

    _attribute_map = {
        "blob_reference_for_consumption": {
            "key": "blobReferenceForConsumption",
            "type": "BlobReferenceForConsumptionDto",
        },
        "pending_upload_id": {"key": "pendingUploadId", "type": "str"},
        "pending_upload_type": {"key": "pendingUploadType", "type": "str"},
    }

    def __init__(
        self,
        *,
        blob_reference_for_consumption: Optional["_models.BlobReferenceForConsumptionDto"] = None,
        pending_upload_id: Optional[str] = None,
        pending_upload_type: Optional[Union[str, "_models.PendingUploadType"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword blob_reference_for_consumption: Container level read, write, list SAS.
        :paramtype blob_reference_for_consumption:
         ~azure.mgmt.machinelearningservices.models.BlobReferenceForConsumptionDto
        :keyword pending_upload_id: ID for this upload request.
        :paramtype pending_upload_id: str
        :keyword pending_upload_type: TemporaryBlobReference is the only supported type. Known values
         are: "None" and "TemporaryBlobReference".
        :paramtype pending_upload_type: str or
         ~azure.mgmt.machinelearningservices.models.PendingUploadType
        """
        super().__init__(**kwargs)
        self.blob_reference_for_consumption = blob_reference_for_consumption
        self.pending_upload_id = pending_upload_id
        self.pending_upload_type = pending_upload_type


class PersonalComputeInstanceSettings(_serialization.Model):
    """Settings for a personal compute instance.

    :ivar assigned_user: A user explicitly assigned to a personal compute instance.
    :vartype assigned_user: ~azure.mgmt.machinelearningservices.models.AssignedUser
    """

    _attribute_map = {
        "assigned_user": {"key": "assignedUser", "type": "AssignedUser"},
    }

    def __init__(self, *, assigned_user: Optional["_models.AssignedUser"] = None, **kwargs: Any) -> None:
        """
        :keyword assigned_user: A user explicitly assigned to a personal compute instance.
        :paramtype assigned_user: ~azure.mgmt.machinelearningservices.models.AssignedUser
        """
        super().__init__(**kwargs)
        self.assigned_user = assigned_user


class PipelineJob(JobBaseProperties):  # pylint: disable=too-many-instance-attributes
    """Pipeline Job definition: defines generic to MFE attributes.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar description: The asset description text.
    :vartype description: str
    :ivar properties: The asset property dictionary.
    :vartype properties: dict[str, str]
    :ivar tags: Tag dictionary. Tags can be added, removed, and updated.
    :vartype tags: dict[str, str]
    :ivar component_id: ARM resource ID of the component resource.
    :vartype component_id: str
    :ivar compute_id: ARM resource ID of the compute resource.
    :vartype compute_id: str
    :ivar display_name: Display name of job.
    :vartype display_name: str
    :ivar experiment_name: The name of the experiment the job belongs to. If not set, the job is
     placed in the "Default" experiment.
    :vartype experiment_name: str
    :ivar identity: Identity configuration. If set, this should be one of AmlToken,
     ManagedIdentity, UserIdentity or null.
     Defaults to AmlToken if null.
    :vartype identity: ~azure.mgmt.machinelearningservices.models.IdentityConfiguration
    :ivar is_archived: Is the asset archived?.
    :vartype is_archived: bool
    :ivar job_type: [Required] Specifies the type of job. Required. Known values are: "AutoML",
     "Command", "Sweep", and "Pipeline".
    :vartype job_type: str or ~azure.mgmt.machinelearningservices.models.JobType
    :ivar services: List of JobEndpoints.
     For local jobs, a job endpoint will have an endpoint value of FileStreamObject.
    :vartype services: dict[str, ~azure.mgmt.machinelearningservices.models.JobService]
    :ivar status: Status of the job. Known values are: "NotStarted", "Starting", "Provisioning",
     "Preparing", "Queued", "Running", "Finalizing", "CancelRequested", "Completed", "Failed",
     "Canceled", "NotResponding", "Paused", and "Unknown".
    :vartype status: str or ~azure.mgmt.machinelearningservices.models.JobStatus
    :ivar inputs: Inputs for the pipeline job.
    :vartype inputs: dict[str, ~azure.mgmt.machinelearningservices.models.JobInput]
    :ivar jobs: Jobs construct the Pipeline Job.
    :vartype jobs: dict[str, JSON]
    :ivar outputs: Outputs for the pipeline job.
    :vartype outputs: dict[str, ~azure.mgmt.machinelearningservices.models.JobOutput]
    :ivar settings: Pipeline settings, for things like ContinueRunOnStepFailure etc.
    :vartype settings: JSON
    :ivar source_job_id: ARM resource ID of source job.
    :vartype source_job_id: str
    """

    _validation = {
        "job_type": {"required": True},
        "status": {"readonly": True},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "properties": {"key": "properties", "type": "{str}"},
        "tags": {"key": "tags", "type": "{str}"},
        "component_id": {"key": "componentId", "type": "str"},
        "compute_id": {"key": "computeId", "type": "str"},
        "display_name": {"key": "displayName", "type": "str"},
        "experiment_name": {"key": "experimentName", "type": "str"},
        "identity": {"key": "identity", "type": "IdentityConfiguration"},
        "is_archived": {"key": "isArchived", "type": "bool"},
        "job_type": {"key": "jobType", "type": "str"},
        "services": {"key": "services", "type": "{JobService}"},
        "status": {"key": "status", "type": "str"},
        "inputs": {"key": "inputs", "type": "{JobInput}"},
        "jobs": {"key": "jobs", "type": "{object}"},
        "outputs": {"key": "outputs", "type": "{JobOutput}"},
        "settings": {"key": "settings", "type": "object"},
        "source_job_id": {"key": "sourceJobId", "type": "str"},
    }

    def __init__(
        self,
        *,
        description: Optional[str] = None,
        properties: Optional[Dict[str, str]] = None,
        tags: Optional[Dict[str, str]] = None,
        component_id: Optional[str] = None,
        compute_id: Optional[str] = None,
        display_name: Optional[str] = None,
        experiment_name: str = "Default",
        identity: Optional["_models.IdentityConfiguration"] = None,
        is_archived: bool = False,
        services: Optional[Dict[str, "_models.JobService"]] = None,
        inputs: Optional[Dict[str, "_models.JobInput"]] = None,
        jobs: Optional[Dict[str, JSON]] = None,
        outputs: Optional[Dict[str, "_models.JobOutput"]] = None,
        settings: Optional[JSON] = None,
        source_job_id: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword description: The asset description text.
        :paramtype description: str
        :keyword properties: The asset property dictionary.
        :paramtype properties: dict[str, str]
        :keyword tags: Tag dictionary. Tags can be added, removed, and updated.
        :paramtype tags: dict[str, str]
        :keyword component_id: ARM resource ID of the component resource.
        :paramtype component_id: str
        :keyword compute_id: ARM resource ID of the compute resource.
        :paramtype compute_id: str
        :keyword display_name: Display name of job.
        :paramtype display_name: str
        :keyword experiment_name: The name of the experiment the job belongs to. If not set, the job is
         placed in the "Default" experiment.
        :paramtype experiment_name: str
        :keyword identity: Identity configuration. If set, this should be one of AmlToken,
         ManagedIdentity, UserIdentity or null.
         Defaults to AmlToken if null.
        :paramtype identity: ~azure.mgmt.machinelearningservices.models.IdentityConfiguration
        :keyword is_archived: Is the asset archived?.
        :paramtype is_archived: bool
        :keyword services: List of JobEndpoints.
         For local jobs, a job endpoint will have an endpoint value of FileStreamObject.
        :paramtype services: dict[str, ~azure.mgmt.machinelearningservices.models.JobService]
        :keyword inputs: Inputs for the pipeline job.
        :paramtype inputs: dict[str, ~azure.mgmt.machinelearningservices.models.JobInput]
        :keyword jobs: Jobs construct the Pipeline Job.
        :paramtype jobs: dict[str, JSON]
        :keyword outputs: Outputs for the pipeline job.
        :paramtype outputs: dict[str, ~azure.mgmt.machinelearningservices.models.JobOutput]
        :keyword settings: Pipeline settings, for things like ContinueRunOnStepFailure etc.
        :paramtype settings: JSON
        :keyword source_job_id: ARM resource ID of source job.
        :paramtype source_job_id: str
        """
        super().__init__(
            description=description,
            properties=properties,
            tags=tags,
            component_id=component_id,
            compute_id=compute_id,
            display_name=display_name,
            experiment_name=experiment_name,
            identity=identity,
            is_archived=is_archived,
            services=services,
            **kwargs
        )
        self.job_type: str = "Pipeline"
        self.inputs = inputs
        self.jobs = jobs
        self.outputs = outputs
        self.settings = settings
        self.source_job_id = source_job_id


class PrivateEndpoint(_serialization.Model):
    """The Private Endpoint resource.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar id: The ARM identifier for Private Endpoint.
    :vartype id: str
    """

    _validation = {
        "id": {"readonly": True},
    }

    _attribute_map = {
        "id": {"key": "id", "type": "str"},
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.id = None


class PrivateEndpointConnection(Resource):  # pylint: disable=too-many-instance-attributes
    """The Private Endpoint Connection resource.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar id: Fully qualified resource ID for the resource. Ex -
     /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}.
    :vartype id: str
    :ivar name: The name of the resource.
    :vartype name: str
    :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or
     "Microsoft.Storage/storageAccounts".
    :vartype type: str
    :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy
     information.
    :vartype system_data: ~azure.mgmt.machinelearningservices.models.SystemData
    :ivar identity: The identity of the resource.
    :vartype identity: ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentity
    :ivar location: Specifies the location of the resource.
    :vartype location: str
    :ivar tags: Contains resource tags defined as key/value pairs.
    :vartype tags: dict[str, str]
    :ivar sku: The sku of the workspace.
    :vartype sku: ~azure.mgmt.machinelearningservices.models.Sku
    :ivar private_endpoint: The resource of private end point.
    :vartype private_endpoint: ~azure.mgmt.machinelearningservices.models.PrivateEndpoint
    :ivar private_link_service_connection_state: A collection of information about the state of the
     connection between service consumer and provider.
    :vartype private_link_service_connection_state:
     ~azure.mgmt.machinelearningservices.models.PrivateLinkServiceConnectionState
    :ivar provisioning_state: The provisioning state of the private endpoint connection resource.
     Known values are: "Succeeded", "Creating", "Deleting", and "Failed".
    :vartype provisioning_state: str or
     ~azure.mgmt.machinelearningservices.models.PrivateEndpointConnectionProvisioningState
    """

    _validation = {
        "id": {"readonly": True},
        "name": {"readonly": True},
        "type": {"readonly": True},
        "system_data": {"readonly": True},
        "provisioning_state": {"readonly": True},
    }

    _attribute_map = {
        "id": {"key": "id", "type": "str"},
        "name": {"key": "name", "type": "str"},
        "type": {"key": "type", "type": "str"},
        "system_data": {"key": "systemData", "type": "SystemData"},
        "identity": {"key": "identity", "type": "ManagedServiceIdentity"},
        "location": {"key": "location", "type": "str"},
        "tags": {"key": "tags", "type": "{str}"},
        "sku": {"key": "sku", "type": "Sku"},
        "private_endpoint": {"key": "properties.privateEndpoint", "type": "PrivateEndpoint"},
        "private_link_service_connection_state": {
            "key": "properties.privateLinkServiceConnectionState",
            "type": "PrivateLinkServiceConnectionState",
        },
        "provisioning_state": {"key": "properties.provisioningState", "type": "str"},
    }

    def __init__(
        self,
        *,
        identity: Optional["_models.ManagedServiceIdentity"] = None,
        location: Optional[str] = None,
        tags: Optional[Dict[str, str]] = None,
        sku: Optional["_models.Sku"] = None,
        private_endpoint: Optional["_models.PrivateEndpoint"] = None,
        private_link_service_connection_state: Optional["_models.PrivateLinkServiceConnectionState"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword identity: The identity of the resource.
        :paramtype identity: ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentity
        :keyword location: Specifies the location of the resource.
        :paramtype location: str
        :keyword tags: Contains resource tags defined as key/value pairs.
        :paramtype tags: dict[str, str]
        :keyword sku: The sku of the workspace.
        :paramtype sku: ~azure.mgmt.machinelearningservices.models.Sku
        :keyword private_endpoint: The resource of private end point.
        :paramtype private_endpoint: ~azure.mgmt.machinelearningservices.models.PrivateEndpoint
        :keyword private_link_service_connection_state: A collection of information about the state of
         the connection between service consumer and provider.
        :paramtype private_link_service_connection_state:
         ~azure.mgmt.machinelearningservices.models.PrivateLinkServiceConnectionState
        """
        super().__init__(**kwargs)
        self.identity = identity
        self.location = location
        self.tags = tags
        self.sku = sku
        self.private_endpoint = private_endpoint
        self.private_link_service_connection_state = private_link_service_connection_state
        self.provisioning_state = None


class PrivateEndpointConnectionListResult(_serialization.Model):
    """List of private endpoint connection associated with the specified workspace.

    :ivar value: Array of private endpoint connections.
    :vartype value: list[~azure.mgmt.machinelearningservices.models.PrivateEndpointConnection]
    """

    _attribute_map = {
        "value": {"key": "value", "type": "[PrivateEndpointConnection]"},
    }

    def __init__(self, *, value: Optional[List["_models.PrivateEndpointConnection"]] = None, **kwargs: Any) -> None:
        """
        :keyword value: Array of private endpoint connections.
        :paramtype value: list[~azure.mgmt.machinelearningservices.models.PrivateEndpointConnection]
        """
        super().__init__(**kwargs)
        self.value = value


class PrivateEndpointResource(PrivateEndpoint):
    """The PE network resource that is linked to this PE connection.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar id: The ARM identifier for Private Endpoint.
    :vartype id: str
    :ivar subnet_arm_id: The subnetId that the private endpoint is connected to.
    :vartype subnet_arm_id: str
    """

    _validation = {
        "id": {"readonly": True},
    }

    _attribute_map = {
        "id": {"key": "id", "type": "str"},
        "subnet_arm_id": {"key": "subnetArmId", "type": "str"},
    }

    def __init__(self, *, subnet_arm_id: Optional[str] = None, **kwargs: Any) -> None:
        """
        :keyword subnet_arm_id: The subnetId that the private endpoint is connected to.
        :paramtype subnet_arm_id: str
        """
        super().__init__(**kwargs)
        self.subnet_arm_id = subnet_arm_id


class PrivateLinkResource(Resource):  # pylint: disable=too-many-instance-attributes
    """A private link resource.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar id: Fully qualified resource ID for the resource. Ex -
     /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}.
    :vartype id: str
    :ivar name: The name of the resource.
    :vartype name: str
    :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or
     "Microsoft.Storage/storageAccounts".
    :vartype type: str
    :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy
     information.
    :vartype system_data: ~azure.mgmt.machinelearningservices.models.SystemData
    :ivar identity: The identity of the resource.
    :vartype identity: ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentity
    :ivar location: Specifies the location of the resource.
    :vartype location: str
    :ivar tags: Contains resource tags defined as key/value pairs.
    :vartype tags: dict[str, str]
    :ivar sku: The sku of the workspace.
    :vartype sku: ~azure.mgmt.machinelearningservices.models.Sku
    :ivar group_id: The private link resource group id.
    :vartype group_id: str
    :ivar required_members: The private link resource required member names.
    :vartype required_members: list[str]
    :ivar required_zone_names: The private link resource Private link DNS zone name.
    :vartype required_zone_names: list[str]
    """

    _validation = {
        "id": {"readonly": True},
        "name": {"readonly": True},
        "type": {"readonly": True},
        "system_data": {"readonly": True},
        "group_id": {"readonly": True},
        "required_members": {"readonly": True},
    }

    _attribute_map = {
        "id": {"key": "id", "type": "str"},
        "name": {"key": "name", "type": "str"},
        "type": {"key": "type", "type": "str"},
        "system_data": {"key": "systemData", "type": "SystemData"},
        "identity": {"key": "identity", "type": "ManagedServiceIdentity"},
        "location": {"key": "location", "type": "str"},
        "tags": {"key": "tags", "type": "{str}"},
        "sku": {"key": "sku", "type": "Sku"},
        "group_id": {"key": "properties.groupId", "type": "str"},
        "required_members": {"key": "properties.requiredMembers", "type": "[str]"},
        "required_zone_names": {"key": "properties.requiredZoneNames", "type": "[str]"},
    }

    def __init__(
        self,
        *,
        identity: Optional["_models.ManagedServiceIdentity"] = None,
        location: Optional[str] = None,
        tags: Optional[Dict[str, str]] = None,
        sku: Optional["_models.Sku"] = None,
        required_zone_names: Optional[List[str]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword identity: The identity of the resource.
        :paramtype identity: ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentity
        :keyword location: Specifies the location of the resource.
        :paramtype location: str
        :keyword tags: Contains resource tags defined as key/value pairs.
        :paramtype tags: dict[str, str]
        :keyword sku: The sku of the workspace.
        :paramtype sku: ~azure.mgmt.machinelearningservices.models.Sku
        :keyword required_zone_names: The private link resource Private link DNS zone name.
        :paramtype required_zone_names: list[str]
        """
        super().__init__(**kwargs)
        self.identity = identity
        self.location = location
        self.tags = tags
        self.sku = sku
        self.group_id = None
        self.required_members = None
        self.required_zone_names = required_zone_names


class PrivateLinkResourceListResult(_serialization.Model):
    """A list of private link resources.

    :ivar value: Array of private link resources.
    :vartype value: list[~azure.mgmt.machinelearningservices.models.PrivateLinkResource]
    """

    _attribute_map = {
        "value": {"key": "value", "type": "[PrivateLinkResource]"},
    }

    def __init__(self, *, value: Optional[List["_models.PrivateLinkResource"]] = None, **kwargs: Any) -> None:
        """
        :keyword value: Array of private link resources.
        :paramtype value: list[~azure.mgmt.machinelearningservices.models.PrivateLinkResource]
        """
        super().__init__(**kwargs)
        self.value = value


class PrivateLinkServiceConnectionState(_serialization.Model):
    """A collection of information about the state of the connection between service consumer and
    provider.

    :ivar status: Indicates whether the connection has been Approved/Rejected/Removed by the owner
     of the service. Known values are: "Pending", "Approved", "Rejected", "Disconnected", and
     "Timeout".
    :vartype status: str or
     ~azure.mgmt.machinelearningservices.models.PrivateEndpointServiceConnectionStatus
    :ivar description: The reason for approval/rejection of the connection.
    :vartype description: str
    :ivar actions_required: A message indicating if changes on the service provider require any
     updates on the consumer.
    :vartype actions_required: str
    """

    _attribute_map = {
        "status": {"key": "status", "type": "str"},
        "description": {"key": "description", "type": "str"},
        "actions_required": {"key": "actionsRequired", "type": "str"},
    }

    def __init__(
        self,
        *,
        status: Optional[Union[str, "_models.PrivateEndpointServiceConnectionStatus"]] = None,
        description: Optional[str] = None,
        actions_required: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword status: Indicates whether the connection has been Approved/Rejected/Removed by the
         owner of the service. Known values are: "Pending", "Approved", "Rejected", "Disconnected", and
         "Timeout".
        :paramtype status: str or
         ~azure.mgmt.machinelearningservices.models.PrivateEndpointServiceConnectionStatus
        :keyword description: The reason for approval/rejection of the connection.
        :paramtype description: str
        :keyword actions_required: A message indicating if changes on the service provider require any
         updates on the consumer.
        :paramtype actions_required: str
        """
        super().__init__(**kwargs)
        self.status = status
        self.description = description
        self.actions_required = actions_required


class ProbeSettings(_serialization.Model):
    """Deployment container liveness/readiness probe configuration.

    :ivar failure_threshold: The number of failures to allow before returning an unhealthy status.
    :vartype failure_threshold: int
    :ivar initial_delay: The delay before the first probe in ISO 8601 format.
    :vartype initial_delay: ~datetime.timedelta
    :ivar period: The length of time between probes in ISO 8601 format.
    :vartype period: ~datetime.timedelta
    :ivar success_threshold: The number of successful probes before returning a healthy status.
    :vartype success_threshold: int
    :ivar timeout: The probe timeout in ISO 8601 format.
    :vartype timeout: ~datetime.timedelta
    """

    _attribute_map = {
        "failure_threshold": {"key": "failureThreshold", "type": "int"},
        "initial_delay": {"key": "initialDelay", "type": "duration"},
        "period": {"key": "period", "type": "duration"},
        "success_threshold": {"key": "successThreshold", "type": "int"},
        "timeout": {"key": "timeout", "type": "duration"},
    }

    def __init__(
        self,
        *,
        failure_threshold: int = 30,
        initial_delay: Optional[datetime.timedelta] = None,
        period: datetime.timedelta = "PT10S",
        success_threshold: int = 1,
        timeout: datetime.timedelta = "PT2S",
        **kwargs: Any
    ) -> None:
        """
        :keyword failure_threshold: The number of failures to allow before returning an unhealthy
         status.
        :paramtype failure_threshold: int
        :keyword initial_delay: The delay before the first probe in ISO 8601 format.
        :paramtype initial_delay: ~datetime.timedelta
        :keyword period: The length of time between probes in ISO 8601 format.
        :paramtype period: ~datetime.timedelta
        :keyword success_threshold: The number of successful probes before returning a healthy status.
        :paramtype success_threshold: int
        :keyword timeout: The probe timeout in ISO 8601 format.
        :paramtype timeout: ~datetime.timedelta
        """
        super().__init__(**kwargs)
        self.failure_threshold = failure_threshold
        self.initial_delay = initial_delay
        self.period = period
        self.success_threshold = success_threshold
        self.timeout = timeout


class PyTorch(DistributionConfiguration):
    """PyTorch distribution configuration.

    All required parameters must be populated in order to send to Azure.

    :ivar distribution_type: [Required] Specifies the type of distribution framework. Required.
     Known values are: "PyTorch", "TensorFlow", and "Mpi".
    :vartype distribution_type: str or ~azure.mgmt.machinelearningservices.models.DistributionType
    :ivar process_count_per_instance: Number of processes per node.
    :vartype process_count_per_instance: int
    """

    _validation = {
        "distribution_type": {"required": True},
    }

    _attribute_map = {
        "distribution_type": {"key": "distributionType", "type": "str"},
        "process_count_per_instance": {"key": "processCountPerInstance", "type": "int"},
    }

    def __init__(self, *, process_count_per_instance: Optional[int] = None, **kwargs: Any) -> None:
        """
        :keyword process_count_per_instance: Number of processes per node.
        :paramtype process_count_per_instance: int
        """
        super().__init__(**kwargs)
        self.distribution_type: str = "PyTorch"
        self.process_count_per_instance = process_count_per_instance


class QuotaBaseProperties(_serialization.Model):
    """The properties for Quota update or retrieval.

    :ivar id: Specifies the resource ID.
    :vartype id: str
    :ivar type: Specifies the resource type.
    :vartype type: str
    :ivar limit: The maximum permitted quota of the resource.
    :vartype limit: int
    :ivar unit: An enum describing the unit of quota measurement. "Count"
    :vartype unit: str or ~azure.mgmt.machinelearningservices.models.QuotaUnit
    """

    _attribute_map = {
        "id": {"key": "id", "type": "str"},
        "type": {"key": "type", "type": "str"},
        "limit": {"key": "limit", "type": "int"},
        "unit": {"key": "unit", "type": "str"},
    }

    def __init__(
        self,
        *,
        id: Optional[str] = None,  # pylint: disable=redefined-builtin
        type: Optional[str] = None,
        limit: Optional[int] = None,
        unit: Optional[Union[str, "_models.QuotaUnit"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword id: Specifies the resource ID.
        :paramtype id: str
        :keyword type: Specifies the resource type.
        :paramtype type: str
        :keyword limit: The maximum permitted quota of the resource.
        :paramtype limit: int
        :keyword unit: An enum describing the unit of quota measurement. "Count"
        :paramtype unit: str or ~azure.mgmt.machinelearningservices.models.QuotaUnit
        """
        super().__init__(**kwargs)
        self.id = id
        self.type = type
        self.limit = limit
        self.unit = unit


class QuotaUpdateParameters(_serialization.Model):
    """Quota update parameters.

    :ivar value: The list for update quota.
    :vartype value: list[~azure.mgmt.machinelearningservices.models.QuotaBaseProperties]
    :ivar location: Region of workspace quota to be updated.
    :vartype location: str
    """

    _attribute_map = {
        "value": {"key": "value", "type": "[QuotaBaseProperties]"},
        "location": {"key": "location", "type": "str"},
    }

    def __init__(
        self,
        *,
        value: Optional[List["_models.QuotaBaseProperties"]] = None,
        location: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword value: The list for update quota.
        :paramtype value: list[~azure.mgmt.machinelearningservices.models.QuotaBaseProperties]
        :keyword location: Region of workspace quota to be updated.
        :paramtype location: str
        """
        super().__init__(**kwargs)
        self.value = value
        self.location = location


class RandomSamplingAlgorithm(SamplingAlgorithm):
    """Defines a Sampling Algorithm that generates values randomly.

    All required parameters must be populated in order to send to Azure.

    :ivar sampling_algorithm_type: [Required] The algorithm used for generating hyperparameter
     values, along with configuration properties. Required. Known values are: "Grid", "Random", and
     "Bayesian".
    :vartype sampling_algorithm_type: str or
     ~azure.mgmt.machinelearningservices.models.SamplingAlgorithmType
    :ivar rule: The specific type of random algorithm. Known values are: "Random" and "Sobol".
    :vartype rule: str or ~azure.mgmt.machinelearningservices.models.RandomSamplingAlgorithmRule
    :ivar seed: An optional integer to use as the seed for random number generation.
    :vartype seed: int
    """

    _validation = {
        "sampling_algorithm_type": {"required": True},
    }

    _attribute_map = {
        "sampling_algorithm_type": {"key": "samplingAlgorithmType", "type": "str"},
        "rule": {"key": "rule", "type": "str"},
        "seed": {"key": "seed", "type": "int"},
    }

    def __init__(
        self,
        *,
        rule: Optional[Union[str, "_models.RandomSamplingAlgorithmRule"]] = None,
        seed: Optional[int] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword rule: The specific type of random algorithm. Known values are: "Random" and "Sobol".
        :paramtype rule: str or ~azure.mgmt.machinelearningservices.models.RandomSamplingAlgorithmRule
        :keyword seed: An optional integer to use as the seed for random number generation.
        :paramtype seed: int
        """
        super().__init__(**kwargs)
        self.sampling_algorithm_type: str = "Random"
        self.rule = rule
        self.seed = seed


class Recurrence(_serialization.Model):
    """The workflow trigger recurrence for ComputeStartStop schedule type.

    :ivar frequency: [Required] The frequency to trigger schedule. Known values are: "Minute",
     "Hour", "Day", "Week", and "Month".
    :vartype frequency: str or ~azure.mgmt.machinelearningservices.models.RecurrenceFrequency
    :ivar interval: [Required] Specifies schedule interval in conjunction with frequency.
    :vartype interval: int
    :ivar start_time: The start time in yyyy-MM-ddTHH:mm:ss format.
    :vartype start_time: str
    :ivar time_zone: Specifies time zone in which the schedule runs.
     TimeZone should follow Windows time zone format. Refer:
     https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/default-time-zones?view=windows-11.
    :vartype time_zone: str
    :ivar schedule: [Required] The recurrence schedule.
    :vartype schedule: ~azure.mgmt.machinelearningservices.models.RecurrenceSchedule
    """

    _attribute_map = {
        "frequency": {"key": "frequency", "type": "str"},
        "interval": {"key": "interval", "type": "int"},
        "start_time": {"key": "startTime", "type": "str"},
        "time_zone": {"key": "timeZone", "type": "str"},
        "schedule": {"key": "schedule", "type": "RecurrenceSchedule"},
    }

    def __init__(
        self,
        *,
        frequency: Optional[Union[str, "_models.RecurrenceFrequency"]] = None,
        interval: Optional[int] = None,
        start_time: Optional[str] = None,
        time_zone: str = "UTC",
        schedule: Optional["_models.RecurrenceSchedule"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword frequency: [Required] The frequency to trigger schedule. Known values are: "Minute",
         "Hour", "Day", "Week", and "Month".
        :paramtype frequency: str or ~azure.mgmt.machinelearningservices.models.RecurrenceFrequency
        :keyword interval: [Required] Specifies schedule interval in conjunction with frequency.
        :paramtype interval: int
        :keyword start_time: The start time in yyyy-MM-ddTHH:mm:ss format.
        :paramtype start_time: str
        :keyword time_zone: Specifies time zone in which the schedule runs.
         TimeZone should follow Windows time zone format. Refer:
         https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/default-time-zones?view=windows-11.
        :paramtype time_zone: str
        :keyword schedule: [Required] The recurrence schedule.
        :paramtype schedule: ~azure.mgmt.machinelearningservices.models.RecurrenceSchedule
        """
        super().__init__(**kwargs)
        self.frequency = frequency
        self.interval = interval
        self.start_time = start_time
        self.time_zone = time_zone
        self.schedule = schedule


class RecurrenceSchedule(_serialization.Model):
    """RecurrenceSchedule.

    All required parameters must be populated in order to send to Azure.

    :ivar hours: [Required] List of hours for the schedule. Required.
    :vartype hours: list[int]
    :ivar minutes: [Required] List of minutes for the schedule. Required.
    :vartype minutes: list[int]
    :ivar month_days: List of month days for the schedule.
    :vartype month_days: list[int]
    :ivar week_days: List of days for the schedule.
    :vartype week_days: list[str or ~azure.mgmt.machinelearningservices.models.WeekDay]
    """

    _validation = {
        "hours": {"required": True},
        "minutes": {"required": True},
    }

    _attribute_map = {
        "hours": {"key": "hours", "type": "[int]"},
        "minutes": {"key": "minutes", "type": "[int]"},
        "month_days": {"key": "monthDays", "type": "[int]"},
        "week_days": {"key": "weekDays", "type": "[str]"},
    }

    def __init__(
        self,
        *,
        hours: List[int],
        minutes: List[int],
        month_days: Optional[List[int]] = None,
        week_days: Optional[List[Union[str, "_models.WeekDay"]]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword hours: [Required] List of hours for the schedule. Required.
        :paramtype hours: list[int]
        :keyword minutes: [Required] List of minutes for the schedule. Required.
        :paramtype minutes: list[int]
        :keyword month_days: List of month days for the schedule.
        :paramtype month_days: list[int]
        :keyword week_days: List of days for the schedule.
        :paramtype week_days: list[str or ~azure.mgmt.machinelearningservices.models.WeekDay]
        """
        super().__init__(**kwargs)
        self.hours = hours
        self.minutes = minutes
        self.month_days = month_days
        self.week_days = week_days


class RecurrenceTrigger(TriggerBase):
    """RecurrenceTrigger.

    All required parameters must be populated in order to send to Azure.

    :ivar end_time: Specifies end time of schedule in ISO 8601, but without a UTC offset. Refer
     https://en.wikipedia.org/wiki/ISO_8601.
     Recommented format would be "2022-06-01T00:00:01"
     If not present, the schedule will run indefinitely.
    :vartype end_time: str
    :ivar start_time: Specifies start time of schedule in ISO 8601 format, but without a UTC
     offset.
    :vartype start_time: str
    :ivar time_zone: Specifies time zone in which the schedule runs.
     TimeZone should follow Windows time zone format. Refer:
     https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/default-time-zones?view=windows-11.
    :vartype time_zone: str
    :ivar trigger_type: [Required]. Required. Known values are: "Recurrence" and "Cron".
    :vartype trigger_type: str or ~azure.mgmt.machinelearningservices.models.TriggerType
    :ivar frequency: [Required] The frequency to trigger schedule. Required. Known values are:
     "Minute", "Hour", "Day", "Week", and "Month".
    :vartype frequency: str or ~azure.mgmt.machinelearningservices.models.RecurrenceFrequency
    :ivar interval: [Required] Specifies schedule interval in conjunction with frequency. Required.
    :vartype interval: int
    :ivar schedule: The recurrence schedule.
    :vartype schedule: ~azure.mgmt.machinelearningservices.models.RecurrenceSchedule
    """

    _validation = {
        "trigger_type": {"required": True},
        "frequency": {"required": True},
        "interval": {"required": True},
    }

    _attribute_map = {
        "end_time": {"key": "endTime", "type": "str"},
        "start_time": {"key": "startTime", "type": "str"},
        "time_zone": {"key": "timeZone", "type": "str"},
        "trigger_type": {"key": "triggerType", "type": "str"},
        "frequency": {"key": "frequency", "type": "str"},
        "interval": {"key": "interval", "type": "int"},
        "schedule": {"key": "schedule", "type": "RecurrenceSchedule"},
    }

    def __init__(
        self,
        *,
        frequency: Union[str, "_models.RecurrenceFrequency"],
        interval: int,
        end_time: Optional[str] = None,
        start_time: Optional[str] = None,
        time_zone: str = "UTC",
        schedule: Optional["_models.RecurrenceSchedule"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword end_time: Specifies end time of schedule in ISO 8601, but without a UTC offset. Refer
         https://en.wikipedia.org/wiki/ISO_8601.
         Recommented format would be "2022-06-01T00:00:01"
         If not present, the schedule will run indefinitely.
        :paramtype end_time: str
        :keyword start_time: Specifies start time of schedule in ISO 8601 format, but without a UTC
         offset.
        :paramtype start_time: str
        :keyword time_zone: Specifies time zone in which the schedule runs.
         TimeZone should follow Windows time zone format. Refer:
         https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/default-time-zones?view=windows-11.
        :paramtype time_zone: str
        :keyword frequency: [Required] The frequency to trigger schedule. Required. Known values are:
         "Minute", "Hour", "Day", "Week", and "Month".
        :paramtype frequency: str or ~azure.mgmt.machinelearningservices.models.RecurrenceFrequency
        :keyword interval: [Required] Specifies schedule interval in conjunction with frequency.
         Required.
        :paramtype interval: int
        :keyword schedule: The recurrence schedule.
        :paramtype schedule: ~azure.mgmt.machinelearningservices.models.RecurrenceSchedule
        """
        super().__init__(end_time=end_time, start_time=start_time, time_zone=time_zone, **kwargs)
        self.trigger_type: str = "Recurrence"
        self.frequency = frequency
        self.interval = interval
        self.schedule = schedule


class RegenerateEndpointKeysRequest(_serialization.Model):
    """RegenerateEndpointKeysRequest.

    All required parameters must be populated in order to send to Azure.

    :ivar key_type: [Required] Specification for which type of key to generate. Primary or
     Secondary. Required. Known values are: "Primary" and "Secondary".
    :vartype key_type: str or ~azure.mgmt.machinelearningservices.models.KeyType
    :ivar key_value: The value the key is set to.
    :vartype key_value: str
    """

    _validation = {
        "key_type": {"required": True},
    }

    _attribute_map = {
        "key_type": {"key": "keyType", "type": "str"},
        "key_value": {"key": "keyValue", "type": "str"},
    }

    def __init__(
        self, *, key_type: Union[str, "_models.KeyType"], key_value: Optional[str] = None, **kwargs: Any
    ) -> None:
        """
        :keyword key_type: [Required] Specification for which type of key to generate. Primary or
         Secondary. Required. Known values are: "Primary" and "Secondary".
        :paramtype key_type: str or ~azure.mgmt.machinelearningservices.models.KeyType
        :keyword key_value: The value the key is set to.
        :paramtype key_value: str
        """
        super().__init__(**kwargs)
        self.key_type = key_type
        self.key_value = key_value


class Registry(TrackedResource):  # pylint: disable=too-many-instance-attributes
    """Registry.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar id: Fully qualified resource ID for the resource. Ex -
     /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}.
    :vartype id: str
    :ivar name: The name of the resource.
    :vartype name: str
    :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or
     "Microsoft.Storage/storageAccounts".
    :vartype type: str
    :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy
     information.
    :vartype system_data: ~azure.mgmt.machinelearningservices.models.SystemData
    :ivar tags: Resource tags.
    :vartype tags: dict[str, str]
    :ivar location: The geo-location where the resource lives. Required.
    :vartype location: str
    :ivar identity: Managed service identity (system assigned and/or user assigned identities).
    :vartype identity: ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentity
    :ivar kind: Metadata used by portal/tooling/etc to render different UX experiences for
     resources of the same type.
    :vartype kind: str
    :ivar sku: Sku details required for ARM contract for Autoscaling.
    :vartype sku: ~azure.mgmt.machinelearningservices.models.Sku
    :ivar discovery_url: Discovery URL for the Registry.
    :vartype discovery_url: str
    :ivar intellectual_property_publisher: IntellectualPropertyPublisher for the registry.
    :vartype intellectual_property_publisher: str
    :ivar managed_resource_group: ResourceId of the managed RG if the registry has system created
     resources.
    :vartype managed_resource_group: ~azure.mgmt.machinelearningservices.models.ArmResourceId
    :ivar ml_flow_registry_uri: MLFlow Registry URI for the Registry.
    :vartype ml_flow_registry_uri: str
    :ivar registry_private_endpoint_connections: Private endpoint connections info used for pending
     connections in private link portal.
    :vartype registry_private_endpoint_connections:
     list[~azure.mgmt.machinelearningservices.models.RegistryPrivateEndpointConnection]
    :ivar public_network_access: Is the Registry accessible from the internet?
     Possible values: "Enabled" or "Disabled".
    :vartype public_network_access: str
    :ivar region_details: Details of each region the registry is in.
    :vartype region_details:
     list[~azure.mgmt.machinelearningservices.models.RegistryRegionArmDetails]
    """

    _validation = {
        "id": {"readonly": True},
        "name": {"readonly": True},
        "type": {"readonly": True},
        "system_data": {"readonly": True},
        "location": {"required": True},
    }

    _attribute_map = {
        "id": {"key": "id", "type": "str"},
        "name": {"key": "name", "type": "str"},
        "type": {"key": "type", "type": "str"},
        "system_data": {"key": "systemData", "type": "SystemData"},
        "tags": {"key": "tags", "type": "{str}"},
        "location": {"key": "location", "type": "str"},
        "identity": {"key": "identity", "type": "ManagedServiceIdentity"},
        "kind": {"key": "kind", "type": "str"},
        "sku": {"key": "sku", "type": "Sku"},
        "discovery_url": {"key": "properties.discoveryUrl", "type": "str"},
        "intellectual_property_publisher": {"key": "properties.intellectualPropertyPublisher", "type": "str"},
        "managed_resource_group": {"key": "properties.managedResourceGroup", "type": "ArmResourceId"},
        "ml_flow_registry_uri": {"key": "properties.mlFlowRegistryUri", "type": "str"},
        "registry_private_endpoint_connections": {
            "key": "properties.registryPrivateEndpointConnections",
            "type": "[RegistryPrivateEndpointConnection]",
        },
        "public_network_access": {"key": "properties.publicNetworkAccess", "type": "str"},
        "region_details": {"key": "properties.regionDetails", "type": "[RegistryRegionArmDetails]"},
    }

    def __init__(
        self,
        *,
        location: str,
        tags: Optional[Dict[str, str]] = None,
        identity: Optional["_models.ManagedServiceIdentity"] = None,
        kind: Optional[str] = None,
        sku: Optional["_models.Sku"] = None,
        discovery_url: Optional[str] = None,
        intellectual_property_publisher: Optional[str] = None,
        managed_resource_group: Optional["_models.ArmResourceId"] = None,
        ml_flow_registry_uri: Optional[str] = None,
        registry_private_endpoint_connections: Optional[List["_models.RegistryPrivateEndpointConnection"]] = None,
        public_network_access: Optional[str] = None,
        region_details: Optional[List["_models.RegistryRegionArmDetails"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword tags: Resource tags.
        :paramtype tags: dict[str, str]
        :keyword location: The geo-location where the resource lives. Required.
        :paramtype location: str
        :keyword identity: Managed service identity (system assigned and/or user assigned identities).
        :paramtype identity: ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentity
        :keyword kind: Metadata used by portal/tooling/etc to render different UX experiences for
         resources of the same type.
        :paramtype kind: str
        :keyword sku: Sku details required for ARM contract for Autoscaling.
        :paramtype sku: ~azure.mgmt.machinelearningservices.models.Sku
        :keyword discovery_url: Discovery URL for the Registry.
        :paramtype discovery_url: str
        :keyword intellectual_property_publisher: IntellectualPropertyPublisher for the registry.
        :paramtype intellectual_property_publisher: str
        :keyword managed_resource_group: ResourceId of the managed RG if the registry has system
         created resources.
        :paramtype managed_resource_group: ~azure.mgmt.machinelearningservices.models.ArmResourceId
        :keyword ml_flow_registry_uri: MLFlow Registry URI for the Registry.
        :paramtype ml_flow_registry_uri: str
        :keyword registry_private_endpoint_connections: Private endpoint connections info used for
         pending connections in private link portal.
        :paramtype registry_private_endpoint_connections:
         list[~azure.mgmt.machinelearningservices.models.RegistryPrivateEndpointConnection]
        :keyword public_network_access: Is the Registry accessible from the internet?
         Possible values: "Enabled" or "Disabled".
        :paramtype public_network_access: str
        :keyword region_details: Details of each region the registry is in.
        :paramtype region_details:
         list[~azure.mgmt.machinelearningservices.models.RegistryRegionArmDetails]
        """
        super().__init__(tags=tags, location=location, **kwargs)
        self.identity = identity
        self.kind = kind
        self.sku = sku
        self.discovery_url = discovery_url
        self.intellectual_property_publisher = intellectual_property_publisher
        self.managed_resource_group = managed_resource_group
        self.ml_flow_registry_uri = ml_flow_registry_uri
        self.registry_private_endpoint_connections = registry_private_endpoint_connections
        self.public_network_access = public_network_access
        self.region_details = region_details


class RegistryListCredentialsResult(_serialization.Model):
    """RegistryListCredentialsResult.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar location:
    :vartype location: str
    :ivar username:
    :vartype username: str
    :ivar passwords:
    :vartype passwords: list[~azure.mgmt.machinelearningservices.models.Password]
    """

    _validation = {
        "location": {"readonly": True},
        "username": {"readonly": True},
    }

    _attribute_map = {
        "location": {"key": "location", "type": "str"},
        "username": {"key": "username", "type": "str"},
        "passwords": {"key": "passwords", "type": "[Password]"},
    }

    def __init__(self, *, passwords: Optional[List["_models.Password"]] = None, **kwargs: Any) -> None:
        """
        :keyword passwords:
        :paramtype passwords: list[~azure.mgmt.machinelearningservices.models.Password]
        """
        super().__init__(**kwargs)
        self.location = None
        self.username = None
        self.passwords = passwords


class RegistryPartialManagedServiceIdentity(ManagedServiceIdentity):
    """Managed service identity (system assigned and/or user assigned identities).

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar principal_id: The service principal ID of the system assigned identity. This property
     will only be provided for a system assigned identity.
    :vartype principal_id: str
    :ivar tenant_id: The tenant ID of the system assigned identity. This property will only be
     provided for a system assigned identity.
    :vartype tenant_id: str
    :ivar type: Type of managed service identity (where both SystemAssigned and UserAssigned types
     are allowed). Required. Known values are: "None", "SystemAssigned", "UserAssigned", and
     "SystemAssigned,UserAssigned".
    :vartype type: str or ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentityType
    :ivar user_assigned_identities: The set of user assigned identities associated with the
     resource. The userAssignedIdentities dictionary keys will be ARM resource ids in the form:
     '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ManagedIdentity/userAssignedIdentities/{identityName}.
     The dictionary values can be empty objects ({}) in requests.
    :vartype user_assigned_identities: dict[str,
     ~azure.mgmt.machinelearningservices.models.UserAssignedIdentity]
    """

    _validation = {
        "principal_id": {"readonly": True},
        "tenant_id": {"readonly": True},
        "type": {"required": True},
    }

    _attribute_map = {
        "principal_id": {"key": "principalId", "type": "str"},
        "tenant_id": {"key": "tenantId", "type": "str"},
        "type": {"key": "type", "type": "str"},
        "user_assigned_identities": {"key": "userAssignedIdentities", "type": "{UserAssignedIdentity}"},
    }

    def __init__(
        self,
        *,
        type: Union[str, "_models.ManagedServiceIdentityType"],
        user_assigned_identities: Optional[Dict[str, "_models.UserAssignedIdentity"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword type: Type of managed service identity (where both SystemAssigned and UserAssigned
         types are allowed). Required. Known values are: "None", "SystemAssigned", "UserAssigned", and
         "SystemAssigned,UserAssigned".
        :paramtype type: str or ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentityType
        :keyword user_assigned_identities: The set of user assigned identities associated with the
         resource. The userAssignedIdentities dictionary keys will be ARM resource ids in the form:
         '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ManagedIdentity/userAssignedIdentities/{identityName}.
         The dictionary values can be empty objects ({}) in requests.
        :paramtype user_assigned_identities: dict[str,
         ~azure.mgmt.machinelearningservices.models.UserAssignedIdentity]
        """
        super().__init__(type=type, user_assigned_identities=user_assigned_identities, **kwargs)


class RegistryPrivateEndpointConnection(_serialization.Model):
    """Private endpoint connection definition.

    :ivar id: This is the private endpoint connection name created on SRP
     Full resource id:
     /subscriptions/{subId}/resourceGroups/{rgName}/providers/Microsoft.MachineLearningServices/{resourceType}/{resourceName}/registryPrivateEndpointConnections/{peConnectionName}.
    :vartype id: str
    :ivar location: Same as workspace location.
    :vartype location: str
    :ivar group_ids: The group ids.
    :vartype group_ids: list[str]
    :ivar private_endpoint: The PE network resource that is linked to this PE connection.
    :vartype private_endpoint: ~azure.mgmt.machinelearningservices.models.PrivateEndpointResource
    :ivar registry_private_link_service_connection_state: The connection state.
    :vartype registry_private_link_service_connection_state:
     ~azure.mgmt.machinelearningservices.models.RegistryPrivateLinkServiceConnectionState
    :ivar provisioning_state: One of null, "Succeeded", "Provisioning", "Failed". While not
     approved, it's null.
    :vartype provisioning_state: str
    """

    _attribute_map = {
        "id": {"key": "id", "type": "str"},
        "location": {"key": "location", "type": "str"},
        "group_ids": {"key": "properties.groupIds", "type": "[str]"},
        "private_endpoint": {"key": "properties.privateEndpoint", "type": "PrivateEndpointResource"},
        "registry_private_link_service_connection_state": {
            "key": "properties.registryPrivateLinkServiceConnectionState",
            "type": "RegistryPrivateLinkServiceConnectionState",
        },
        "provisioning_state": {"key": "properties.provisioningState", "type": "str"},
    }

    def __init__(
        self,
        *,
        id: Optional[str] = None,  # pylint: disable=redefined-builtin
        location: Optional[str] = None,
        group_ids: Optional[List[str]] = None,
        private_endpoint: Optional["_models.PrivateEndpointResource"] = None,
        registry_private_link_service_connection_state: Optional[
            "_models.RegistryPrivateLinkServiceConnectionState"
        ] = None,
        provisioning_state: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword id: This is the private endpoint connection name created on SRP
         Full resource id:
         /subscriptions/{subId}/resourceGroups/{rgName}/providers/Microsoft.MachineLearningServices/{resourceType}/{resourceName}/registryPrivateEndpointConnections/{peConnectionName}.
        :paramtype id: str
        :keyword location: Same as workspace location.
        :paramtype location: str
        :keyword group_ids: The group ids.
        :paramtype group_ids: list[str]
        :keyword private_endpoint: The PE network resource that is linked to this PE connection.
        :paramtype private_endpoint: ~azure.mgmt.machinelearningservices.models.PrivateEndpointResource
        :keyword registry_private_link_service_connection_state: The connection state.
        :paramtype registry_private_link_service_connection_state:
         ~azure.mgmt.machinelearningservices.models.RegistryPrivateLinkServiceConnectionState
        :keyword provisioning_state: One of null, "Succeeded", "Provisioning", "Failed". While not
         approved, it's null.
        :paramtype provisioning_state: str
        """
        super().__init__(**kwargs)
        self.id = id
        self.location = location
        self.group_ids = group_ids
        self.private_endpoint = private_endpoint
        self.registry_private_link_service_connection_state = registry_private_link_service_connection_state
        self.provisioning_state = provisioning_state


class RegistryPrivateLinkServiceConnectionState(_serialization.Model):
    """The connection state.

    :ivar actions_required: Some RP chose "None". Other RPs use this for region expansion.
    :vartype actions_required: str
    :ivar description: User-defined message that, per NRP doc, may be used for approval-related
     message.
    :vartype description: str
    :ivar status: Connection status of the service consumer with the service provider. Known values
     are: "Approved", "Pending", "Rejected", and "Disconnected".
    :vartype status: str or
     ~azure.mgmt.machinelearningservices.models.EndpointServiceConnectionStatus
    """

    _attribute_map = {
        "actions_required": {"key": "actionsRequired", "type": "str"},
        "description": {"key": "description", "type": "str"},
        "status": {"key": "status", "type": "str"},
    }

    def __init__(
        self,
        *,
        actions_required: Optional[str] = None,
        description: Optional[str] = None,
        status: Optional[Union[str, "_models.EndpointServiceConnectionStatus"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword actions_required: Some RP chose "None". Other RPs use this for region expansion.
        :paramtype actions_required: str
        :keyword description: User-defined message that, per NRP doc, may be used for approval-related
         message.
        :paramtype description: str
        :keyword status: Connection status of the service consumer with the service provider. Known
         values are: "Approved", "Pending", "Rejected", and "Disconnected".
        :paramtype status: str or
         ~azure.mgmt.machinelearningservices.models.EndpointServiceConnectionStatus
        """
        super().__init__(**kwargs)
        self.actions_required = actions_required
        self.description = description
        self.status = status


class RegistryRegionArmDetails(_serialization.Model):
    """Details for each region the registry is in.

    :ivar acr_details: List of ACR accounts.
    :vartype acr_details: list[~azure.mgmt.machinelearningservices.models.AcrDetails]
    :ivar location: The location where the registry exists.
    :vartype location: str
    :ivar storage_account_details: List of storage accounts.
    :vartype storage_account_details:
     list[~azure.mgmt.machinelearningservices.models.StorageAccountDetails]
    """

    _attribute_map = {
        "acr_details": {"key": "acrDetails", "type": "[AcrDetails]"},
        "location": {"key": "location", "type": "str"},
        "storage_account_details": {"key": "storageAccountDetails", "type": "[StorageAccountDetails]"},
    }

    def __init__(
        self,
        *,
        acr_details: Optional[List["_models.AcrDetails"]] = None,
        location: Optional[str] = None,
        storage_account_details: Optional[List["_models.StorageAccountDetails"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword acr_details: List of ACR accounts.
        :paramtype acr_details: list[~azure.mgmt.machinelearningservices.models.AcrDetails]
        :keyword location: The location where the registry exists.
        :paramtype location: str
        :keyword storage_account_details: List of storage accounts.
        :paramtype storage_account_details:
         list[~azure.mgmt.machinelearningservices.models.StorageAccountDetails]
        """
        super().__init__(**kwargs)
        self.acr_details = acr_details
        self.location = location
        self.storage_account_details = storage_account_details


class RegistryTrackedResourceArmPaginatedResult(_serialization.Model):
    """A paginated list of Registry entities.

    :ivar next_link: The link to the next page of Registry objects. If null, there are no
     additional pages.
    :vartype next_link: str
    :ivar value: An array of objects of type Registry.
    :vartype value: list[~azure.mgmt.machinelearningservices.models.Registry]
    """

    _attribute_map = {
        "next_link": {"key": "nextLink", "type": "str"},
        "value": {"key": "value", "type": "[Registry]"},
    }

    def __init__(
        self, *, next_link: Optional[str] = None, value: Optional[List["_models.Registry"]] = None, **kwargs: Any
    ) -> None:
        """
        :keyword next_link: The link to the next page of Registry objects. If null, there are no
         additional pages.
        :paramtype next_link: str
        :keyword value: An array of objects of type Registry.
        :paramtype value: list[~azure.mgmt.machinelearningservices.models.Registry]
        """
        super().__init__(**kwargs)
        self.next_link = next_link
        self.value = value


class Regression(TableVertical, AutoMLVertical):  # pylint: disable=too-many-instance-attributes
    """Regression task in AutoML Table vertical.

    All required parameters must be populated in order to send to Azure.

    :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info",
     "Warning", "Error", and "Critical".
    :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity
    :ivar target_column_name: Target column name: This is prediction values column.
     Also known as label column name in context of classification tasks.
    :vartype target_column_name: str
    :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are:
     "Classification", "Regression", "Forecasting", "ImageClassification",
     "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation",
     "TextClassification", "TextClassificationMultilabel", and "TextNER".
    :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType
    :ivar training_data: [Required] Training data input. Required.
    :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
    :ivar cv_split_column_names: Columns to use for CVSplit data.
    :vartype cv_split_column_names: list[str]
    :ivar featurization_settings: Featurization inputs needed for AutoML job.
    :vartype featurization_settings:
     ~azure.mgmt.machinelearningservices.models.TableVerticalFeaturizationSettings
    :ivar limit_settings: Execution constraints for AutoMLJob.
    :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.TableVerticalLimitSettings
    :ivar n_cross_validations: Number of cross validation folds to be applied on training dataset
     when validation dataset is not provided.
    :vartype n_cross_validations: ~azure.mgmt.machinelearningservices.models.NCrossValidations
    :ivar test_data: Test data input.
    :vartype test_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
    :ivar test_data_size: The fraction of test dataset that needs to be set aside for validation
     purpose.
     Values between (0.0 , 1.0)
     Applied when validation dataset is not provided.
    :vartype test_data_size: float
    :ivar validation_data: Validation data inputs.
    :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
    :ivar validation_data_size: The fraction of training dataset that needs to be set aside for
     validation purpose.
     Values between (0.0 , 1.0)
     Applied when validation dataset is not provided.
    :vartype validation_data_size: float
    :ivar weight_column_name: The name of the sample weight column. Automated ML supports a
     weighted column as an input, causing rows in the data to be weighted up or down.
    :vartype weight_column_name: str
    :ivar primary_metric: Primary metric for regression task. Known values are:
     "SpearmanCorrelation", "NormalizedRootMeanSquaredError", "R2Score", and
     "NormalizedMeanAbsoluteError".
    :vartype primary_metric: str or
     ~azure.mgmt.machinelearningservices.models.RegressionPrimaryMetrics
    :ivar training_settings: Inputs for training phase for an AutoML Job.
    :vartype training_settings:
     ~azure.mgmt.machinelearningservices.models.RegressionTrainingSettings
    """

    _validation = {
        "task_type": {"required": True},
        "training_data": {"required": True},
    }

    _attribute_map = {
        "log_verbosity": {"key": "logVerbosity", "type": "str"},
        "target_column_name": {"key": "targetColumnName", "type": "str"},
        "task_type": {"key": "taskType", "type": "str"},
        "training_data": {"key": "trainingData", "type": "MLTableJobInput"},
        "cv_split_column_names": {"key": "cvSplitColumnNames", "type": "[str]"},
        "featurization_settings": {"key": "featurizationSettings", "type": "TableVerticalFeaturizationSettings"},
        "limit_settings": {"key": "limitSettings", "type": "TableVerticalLimitSettings"},
        "n_cross_validations": {"key": "nCrossValidations", "type": "NCrossValidations"},
        "test_data": {"key": "testData", "type": "MLTableJobInput"},
        "test_data_size": {"key": "testDataSize", "type": "float"},
        "validation_data": {"key": "validationData", "type": "MLTableJobInput"},
        "validation_data_size": {"key": "validationDataSize", "type": "float"},
        "weight_column_name": {"key": "weightColumnName", "type": "str"},
        "primary_metric": {"key": "primaryMetric", "type": "str"},
        "training_settings": {"key": "trainingSettings", "type": "RegressionTrainingSettings"},
    }

    def __init__(
        self,
        *,
        training_data: "_models.MLTableJobInput",
        log_verbosity: Optional[Union[str, "_models.LogVerbosity"]] = None,
        target_column_name: Optional[str] = None,
        cv_split_column_names: Optional[List[str]] = None,
        featurization_settings: Optional["_models.TableVerticalFeaturizationSettings"] = None,
        limit_settings: Optional["_models.TableVerticalLimitSettings"] = None,
        n_cross_validations: Optional["_models.NCrossValidations"] = None,
        test_data: Optional["_models.MLTableJobInput"] = None,
        test_data_size: Optional[float] = None,
        validation_data: Optional["_models.MLTableJobInput"] = None,
        validation_data_size: Optional[float] = None,
        weight_column_name: Optional[str] = None,
        primary_metric: Optional[Union[str, "_models.RegressionPrimaryMetrics"]] = None,
        training_settings: Optional["_models.RegressionTrainingSettings"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info",
         "Warning", "Error", and "Critical".
        :paramtype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity
        :keyword target_column_name: Target column name: This is prediction values column.
         Also known as label column name in context of classification tasks.
        :paramtype target_column_name: str
        :keyword training_data: [Required] Training data input. Required.
        :paramtype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
        :keyword cv_split_column_names: Columns to use for CVSplit data.
        :paramtype cv_split_column_names: list[str]
        :keyword featurization_settings: Featurization inputs needed for AutoML job.
        :paramtype featurization_settings:
         ~azure.mgmt.machinelearningservices.models.TableVerticalFeaturizationSettings
        :keyword limit_settings: Execution constraints for AutoMLJob.
        :paramtype limit_settings:
         ~azure.mgmt.machinelearningservices.models.TableVerticalLimitSettings
        :keyword n_cross_validations: Number of cross validation folds to be applied on training
         dataset
         when validation dataset is not provided.
        :paramtype n_cross_validations: ~azure.mgmt.machinelearningservices.models.NCrossValidations
        :keyword test_data: Test data input.
        :paramtype test_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
        :keyword test_data_size: The fraction of test dataset that needs to be set aside for validation
         purpose.
         Values between (0.0 , 1.0)
         Applied when validation dataset is not provided.
        :paramtype test_data_size: float
        :keyword validation_data: Validation data inputs.
        :paramtype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
        :keyword validation_data_size: The fraction of training dataset that needs to be set aside for
         validation purpose.
         Values between (0.0 , 1.0)
         Applied when validation dataset is not provided.
        :paramtype validation_data_size: float
        :keyword weight_column_name: The name of the sample weight column. Automated ML supports a
         weighted column as an input, causing rows in the data to be weighted up or down.
        :paramtype weight_column_name: str
        :keyword primary_metric: Primary metric for regression task. Known values are:
         "SpearmanCorrelation", "NormalizedRootMeanSquaredError", "R2Score", and
         "NormalizedMeanAbsoluteError".
        :paramtype primary_metric: str or
         ~azure.mgmt.machinelearningservices.models.RegressionPrimaryMetrics
        :keyword training_settings: Inputs for training phase for an AutoML Job.
        :paramtype training_settings:
         ~azure.mgmt.machinelearningservices.models.RegressionTrainingSettings
        """
        super().__init__(
            cv_split_column_names=cv_split_column_names,
            featurization_settings=featurization_settings,
            limit_settings=limit_settings,
            n_cross_validations=n_cross_validations,
            test_data=test_data,
            test_data_size=test_data_size,
            validation_data=validation_data,
            validation_data_size=validation_data_size,
            weight_column_name=weight_column_name,
            log_verbosity=log_verbosity,
            target_column_name=target_column_name,
            training_data=training_data,
            **kwargs
        )
        self.log_verbosity = log_verbosity
        self.target_column_name = target_column_name
        self.task_type: str = "Regression"
        self.training_data = training_data
        self.primary_metric = primary_metric
        self.training_settings = training_settings
        self.cv_split_column_names = cv_split_column_names
        self.featurization_settings = featurization_settings
        self.limit_settings = limit_settings
        self.n_cross_validations = n_cross_validations
        self.test_data = test_data
        self.test_data_size = test_data_size
        self.validation_data = validation_data
        self.validation_data_size = validation_data_size
        self.weight_column_name = weight_column_name


class RegressionTrainingSettings(TrainingSettings):
    """Regression Training related configuration.

    :ivar enable_dnn_training: Enable recommendation of DNN models.
    :vartype enable_dnn_training: bool
    :ivar enable_model_explainability: Flag to turn on explainability on best model.
    :vartype enable_model_explainability: bool
    :ivar enable_onnx_compatible_models: Flag for enabling onnx compatible models.
    :vartype enable_onnx_compatible_models: bool
    :ivar enable_stack_ensemble: Enable stack ensemble run.
    :vartype enable_stack_ensemble: bool
    :ivar enable_vote_ensemble: Enable voting ensemble run.
    :vartype enable_vote_ensemble: bool
    :ivar ensemble_model_download_timeout: During VotingEnsemble and StackEnsemble model
     generation, multiple fitted models from the previous child runs are downloaded.
     Configure this parameter with a higher value than 300 secs, if more time is needed.
    :vartype ensemble_model_download_timeout: ~datetime.timedelta
    :ivar stack_ensemble_settings: Stack ensemble settings for stack ensemble run.
    :vartype stack_ensemble_settings:
     ~azure.mgmt.machinelearningservices.models.StackEnsembleSettings
    :ivar allowed_training_algorithms: Allowed models for regression task.
    :vartype allowed_training_algorithms: list[str or
     ~azure.mgmt.machinelearningservices.models.RegressionModels]
    :ivar blocked_training_algorithms: Blocked models for regression task.
    :vartype blocked_training_algorithms: list[str or
     ~azure.mgmt.machinelearningservices.models.RegressionModels]
    """

    _attribute_map = {
        "enable_dnn_training": {"key": "enableDnnTraining", "type": "bool"},
        "enable_model_explainability": {"key": "enableModelExplainability", "type": "bool"},
        "enable_onnx_compatible_models": {"key": "enableOnnxCompatibleModels", "type": "bool"},
        "enable_stack_ensemble": {"key": "enableStackEnsemble", "type": "bool"},
        "enable_vote_ensemble": {"key": "enableVoteEnsemble", "type": "bool"},
        "ensemble_model_download_timeout": {"key": "ensembleModelDownloadTimeout", "type": "duration"},
        "stack_ensemble_settings": {"key": "stackEnsembleSettings", "type": "StackEnsembleSettings"},
        "allowed_training_algorithms": {"key": "allowedTrainingAlgorithms", "type": "[str]"},
        "blocked_training_algorithms": {"key": "blockedTrainingAlgorithms", "type": "[str]"},
    }

    def __init__(
        self,
        *,
        enable_dnn_training: bool = False,
        enable_model_explainability: bool = True,
        enable_onnx_compatible_models: bool = False,
        enable_stack_ensemble: bool = True,
        enable_vote_ensemble: bool = True,
        ensemble_model_download_timeout: datetime.timedelta = "PT5M",
        stack_ensemble_settings: Optional["_models.StackEnsembleSettings"] = None,
        allowed_training_algorithms: Optional[List[Union[str, "_models.RegressionModels"]]] = None,
        blocked_training_algorithms: Optional[List[Union[str, "_models.RegressionModels"]]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword enable_dnn_training: Enable recommendation of DNN models.
        :paramtype enable_dnn_training: bool
        :keyword enable_model_explainability: Flag to turn on explainability on best model.
        :paramtype enable_model_explainability: bool
        :keyword enable_onnx_compatible_models: Flag for enabling onnx compatible models.
        :paramtype enable_onnx_compatible_models: bool
        :keyword enable_stack_ensemble: Enable stack ensemble run.
        :paramtype enable_stack_ensemble: bool
        :keyword enable_vote_ensemble: Enable voting ensemble run.
        :paramtype enable_vote_ensemble: bool
        :keyword ensemble_model_download_timeout: During VotingEnsemble and StackEnsemble model
         generation, multiple fitted models from the previous child runs are downloaded.
         Configure this parameter with a higher value than 300 secs, if more time is needed.
        :paramtype ensemble_model_download_timeout: ~datetime.timedelta
        :keyword stack_ensemble_settings: Stack ensemble settings for stack ensemble run.
        :paramtype stack_ensemble_settings:
         ~azure.mgmt.machinelearningservices.models.StackEnsembleSettings
        :keyword allowed_training_algorithms: Allowed models for regression task.
        :paramtype allowed_training_algorithms: list[str or
         ~azure.mgmt.machinelearningservices.models.RegressionModels]
        :keyword blocked_training_algorithms: Blocked models for regression task.
        :paramtype blocked_training_algorithms: list[str or
         ~azure.mgmt.machinelearningservices.models.RegressionModels]
        """
        super().__init__(
            enable_dnn_training=enable_dnn_training,
            enable_model_explainability=enable_model_explainability,
            enable_onnx_compatible_models=enable_onnx_compatible_models,
            enable_stack_ensemble=enable_stack_ensemble,
            enable_vote_ensemble=enable_vote_ensemble,
            ensemble_model_download_timeout=ensemble_model_download_timeout,
            stack_ensemble_settings=stack_ensemble_settings,
            **kwargs
        )
        self.allowed_training_algorithms = allowed_training_algorithms
        self.blocked_training_algorithms = blocked_training_algorithms


class ResourceId(_serialization.Model):
    """Represents a resource ID. For example, for a subnet, it is the resource URL for the subnet.

    All required parameters must be populated in order to send to Azure.

    :ivar id: The ID of the resource. Required.
    :vartype id: str
    """

    _validation = {
        "id": {"required": True},
    }

    _attribute_map = {
        "id": {"key": "id", "type": "str"},
    }

    def __init__(self, *, id: str, **kwargs: Any) -> None:  # pylint: disable=redefined-builtin
        """
        :keyword id: The ID of the resource. Required.
        :paramtype id: str
        """
        super().__init__(**kwargs)
        self.id = id


class ResourceName(_serialization.Model):
    """The Resource Name.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar value: The name of the resource.
    :vartype value: str
    :ivar localized_value: The localized name of the resource.
    :vartype localized_value: str
    """

    _validation = {
        "value": {"readonly": True},
        "localized_value": {"readonly": True},
    }

    _attribute_map = {
        "value": {"key": "value", "type": "str"},
        "localized_value": {"key": "localizedValue", "type": "str"},
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.value = None
        self.localized_value = None


class ResourceQuota(_serialization.Model):
    """The quota assigned to a resource.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar id: Specifies the resource ID.
    :vartype id: str
    :ivar aml_workspace_location: Region of the AML workspace in the id.
    :vartype aml_workspace_location: str
    :ivar type: Specifies the resource type.
    :vartype type: str
    :ivar name: Name of the resource.
    :vartype name: ~azure.mgmt.machinelearningservices.models.ResourceName
    :ivar limit: The maximum permitted quota of the resource.
    :vartype limit: int
    :ivar unit: An enum describing the unit of quota measurement. "Count"
    :vartype unit: str or ~azure.mgmt.machinelearningservices.models.QuotaUnit
    """

    _validation = {
        "id": {"readonly": True},
        "aml_workspace_location": {"readonly": True},
        "type": {"readonly": True},
        "name": {"readonly": True},
        "limit": {"readonly": True},
        "unit": {"readonly": True},
    }

    _attribute_map = {
        "id": {"key": "id", "type": "str"},
        "aml_workspace_location": {"key": "amlWorkspaceLocation", "type": "str"},
        "type": {"key": "type", "type": "str"},
        "name": {"key": "name", "type": "ResourceName"},
        "limit": {"key": "limit", "type": "int"},
        "unit": {"key": "unit", "type": "str"},
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.id = None
        self.aml_workspace_location = None
        self.type = None
        self.name = None
        self.limit = None
        self.unit = None


class Route(_serialization.Model):
    """Route.

    All required parameters must be populated in order to send to Azure.

    :ivar path: [Required] The path for the route. Required.
    :vartype path: str
    :ivar port: [Required] The port for the route. Required.
    :vartype port: int
    """

    _validation = {
        "path": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"},
        "port": {"required": True},
    }

    _attribute_map = {
        "path": {"key": "path", "type": "str"},
        "port": {"key": "port", "type": "int"},
    }

    def __init__(self, *, path: str, port: int, **kwargs: Any) -> None:
        """
        :keyword path: [Required] The path for the route. Required.
        :paramtype path: str
        :keyword port: [Required] The port for the route. Required.
        :paramtype port: int
        """
        super().__init__(**kwargs)
        self.path = path
        self.port = port


class SASAuthTypeWorkspaceConnectionProperties(WorkspaceConnectionPropertiesV2):
    """SASAuthTypeWorkspaceConnectionProperties.

    All required parameters must be populated in order to send to Azure.

    :ivar auth_type: Authentication type of the connection target. Required. Known values are:
     "PAT", "ManagedIdentity", "UsernamePassword", "None", and "SAS".
    :vartype auth_type: str or ~azure.mgmt.machinelearningservices.models.ConnectionAuthType
    :ivar category: Category of the connection. Known values are: "PythonFeed",
     "ContainerRegistry", and "Git".
    :vartype category: str or ~azure.mgmt.machinelearningservices.models.ConnectionCategory
    :ivar target:
    :vartype target: str
    :ivar value: Value details of the workspace connection.
    :vartype value: str
    :ivar value_format: format for the workspace connection value. "JSON"
    :vartype value_format: str or ~azure.mgmt.machinelearningservices.models.ValueFormat
    :ivar credentials:
    :vartype credentials:
     ~azure.mgmt.machinelearningservices.models.WorkspaceConnectionSharedAccessSignature
    """

    _validation = {
        "auth_type": {"required": True},
    }

    _attribute_map = {
        "auth_type": {"key": "authType", "type": "str"},
        "category": {"key": "category", "type": "str"},
        "target": {"key": "target", "type": "str"},
        "value": {"key": "value", "type": "str"},
        "value_format": {"key": "valueFormat", "type": "str"},
        "credentials": {"key": "credentials", "type": "WorkspaceConnectionSharedAccessSignature"},
    }

    def __init__(
        self,
        *,
        category: Optional[Union[str, "_models.ConnectionCategory"]] = None,
        target: Optional[str] = None,
        value: Optional[str] = None,
        value_format: Optional[Union[str, "_models.ValueFormat"]] = None,
        credentials: Optional["_models.WorkspaceConnectionSharedAccessSignature"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword category: Category of the connection. Known values are: "PythonFeed",
         "ContainerRegistry", and "Git".
        :paramtype category: str or ~azure.mgmt.machinelearningservices.models.ConnectionCategory
        :keyword target:
        :paramtype target: str
        :keyword value: Value details of the workspace connection.
        :paramtype value: str
        :keyword value_format: format for the workspace connection value. "JSON"
        :paramtype value_format: str or ~azure.mgmt.machinelearningservices.models.ValueFormat
        :keyword credentials:
        :paramtype credentials:
         ~azure.mgmt.machinelearningservices.models.WorkspaceConnectionSharedAccessSignature
        """
        super().__init__(category=category, target=target, value=value, value_format=value_format, **kwargs)
        self.auth_type: str = "SAS"
        self.credentials = credentials


class SASCredentialDto(PendingUploadCredentialDto):
    """SASCredentialDto.

    All required parameters must be populated in order to send to Azure.

    :ivar credential_type: [Required] Credential type used to authentication with storage.
     Required. "SAS"
    :vartype credential_type: str or
     ~azure.mgmt.machinelearningservices.models.PendingUploadCredentialType
    :ivar sas_uri: Full SAS Uri, including the storage, container/blob path and SAS token.
    :vartype sas_uri: str
    """

    _validation = {
        "credential_type": {"required": True},
    }

    _attribute_map = {
        "credential_type": {"key": "credentialType", "type": "str"},
        "sas_uri": {"key": "sasUri", "type": "str"},
    }

    def __init__(self, *, sas_uri: Optional[str] = None, **kwargs: Any) -> None:
        """
        :keyword sas_uri: Full SAS Uri, including the storage, container/blob path and SAS token.
        :paramtype sas_uri: str
        """
        super().__init__(**kwargs)
        self.credential_type: str = "SAS"
        self.sas_uri = sas_uri


class SasDatastoreCredentials(DatastoreCredentials):
    """SAS datastore credentials configuration.

    All required parameters must be populated in order to send to Azure.

    :ivar credentials_type: [Required] Credential type used to authentication with storage.
     Required. Known values are: "AccountKey", "Certificate", "None", "Sas", and "ServicePrincipal".
    :vartype credentials_type: str or ~azure.mgmt.machinelearningservices.models.CredentialsType
    :ivar secrets: [Required] Storage container secrets. Required.
    :vartype secrets: ~azure.mgmt.machinelearningservices.models.SasDatastoreSecrets
    """

    _validation = {
        "credentials_type": {"required": True},
        "secrets": {"required": True},
    }

    _attribute_map = {
        "credentials_type": {"key": "credentialsType", "type": "str"},
        "secrets": {"key": "secrets", "type": "SasDatastoreSecrets"},
    }

    def __init__(self, *, secrets: "_models.SasDatastoreSecrets", **kwargs: Any) -> None:
        """
        :keyword secrets: [Required] Storage container secrets. Required.
        :paramtype secrets: ~azure.mgmt.machinelearningservices.models.SasDatastoreSecrets
        """
        super().__init__(**kwargs)
        self.credentials_type: str = "Sas"
        self.secrets = secrets


class SasDatastoreSecrets(DatastoreSecrets):
    """Datastore SAS secrets.

    All required parameters must be populated in order to send to Azure.

    :ivar secrets_type: [Required] Credential type used to authentication with storage. Required.
     Known values are: "AccountKey", "Certificate", "Sas", and "ServicePrincipal".
    :vartype secrets_type: str or ~azure.mgmt.machinelearningservices.models.SecretsType
    :ivar sas_token: Storage container SAS token.
    :vartype sas_token: str
    """

    _validation = {
        "secrets_type": {"required": True},
    }

    _attribute_map = {
        "secrets_type": {"key": "secretsType", "type": "str"},
        "sas_token": {"key": "sasToken", "type": "str"},
    }

    def __init__(self, *, sas_token: Optional[str] = None, **kwargs: Any) -> None:
        """
        :keyword sas_token: Storage container SAS token.
        :paramtype sas_token: str
        """
        super().__init__(**kwargs)
        self.secrets_type: str = "Sas"
        self.sas_token = sas_token


class ScaleSettings(_serialization.Model):
    """scale settings for AML Compute.

    All required parameters must be populated in order to send to Azure.

    :ivar max_node_count: Max number of nodes to use. Required.
    :vartype max_node_count: int
    :ivar min_node_count: Min number of nodes to use.
    :vartype min_node_count: int
    :ivar node_idle_time_before_scale_down: Node Idle Time before scaling down amlCompute. This
     string needs to be in the RFC Format.
    :vartype node_idle_time_before_scale_down: ~datetime.timedelta
    """

    _validation = {
        "max_node_count": {"required": True},
    }

    _attribute_map = {
        "max_node_count": {"key": "maxNodeCount", "type": "int"},
        "min_node_count": {"key": "minNodeCount", "type": "int"},
        "node_idle_time_before_scale_down": {"key": "nodeIdleTimeBeforeScaleDown", "type": "duration"},
    }

    def __init__(
        self,
        *,
        max_node_count: int,
        min_node_count: int = 0,
        node_idle_time_before_scale_down: Optional[datetime.timedelta] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword max_node_count: Max number of nodes to use. Required.
        :paramtype max_node_count: int
        :keyword min_node_count: Min number of nodes to use.
        :paramtype min_node_count: int
        :keyword node_idle_time_before_scale_down: Node Idle Time before scaling down amlCompute. This
         string needs to be in the RFC Format.
        :paramtype node_idle_time_before_scale_down: ~datetime.timedelta
        """
        super().__init__(**kwargs)
        self.max_node_count = max_node_count
        self.min_node_count = min_node_count
        self.node_idle_time_before_scale_down = node_idle_time_before_scale_down


class ScaleSettingsInformation(_serialization.Model):
    """Desired scale settings for the amlCompute.

    :ivar scale_settings: scale settings for AML Compute.
    :vartype scale_settings: ~azure.mgmt.machinelearningservices.models.ScaleSettings
    """

    _attribute_map = {
        "scale_settings": {"key": "scaleSettings", "type": "ScaleSettings"},
    }

    def __init__(self, *, scale_settings: Optional["_models.ScaleSettings"] = None, **kwargs: Any) -> None:
        """
        :keyword scale_settings: scale settings for AML Compute.
        :paramtype scale_settings: ~azure.mgmt.machinelearningservices.models.ScaleSettings
        """
        super().__init__(**kwargs)
        self.scale_settings = scale_settings


class Schedule(Resource):
    """Azure Resource Manager resource envelope.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar id: Fully qualified resource ID for the resource. Ex -
     /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}.
    :vartype id: str
    :ivar name: The name of the resource.
    :vartype name: str
    :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or
     "Microsoft.Storage/storageAccounts".
    :vartype type: str
    :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy
     information.
    :vartype system_data: ~azure.mgmt.machinelearningservices.models.SystemData
    :ivar properties: [Required] Additional attributes of the entity. Required.
    :vartype properties: ~azure.mgmt.machinelearningservices.models.ScheduleProperties
    """

    _validation = {
        "id": {"readonly": True},
        "name": {"readonly": True},
        "type": {"readonly": True},
        "system_data": {"readonly": True},
        "properties": {"required": True},
    }

    _attribute_map = {
        "id": {"key": "id", "type": "str"},
        "name": {"key": "name", "type": "str"},
        "type": {"key": "type", "type": "str"},
        "system_data": {"key": "systemData", "type": "SystemData"},
        "properties": {"key": "properties", "type": "ScheduleProperties"},
    }

    def __init__(self, *, properties: "_models.ScheduleProperties", **kwargs: Any) -> None:
        """
        :keyword properties: [Required] Additional attributes of the entity. Required.
        :paramtype properties: ~azure.mgmt.machinelearningservices.models.ScheduleProperties
        """
        super().__init__(**kwargs)
        self.properties = properties


class ScheduleBase(_serialization.Model):
    """ScheduleBase.

    :ivar id: A system assigned id for the schedule.
    :vartype id: str
    :ivar provisioning_status: The current deployment state of schedule. Known values are:
     "Completed", "Provisioning", and "Failed".
    :vartype provisioning_status: str or
     ~azure.mgmt.machinelearningservices.models.ScheduleProvisioningState
    :ivar status: Is the schedule enabled or disabled?. Known values are: "Enabled" and "Disabled".
    :vartype status: str or ~azure.mgmt.machinelearningservices.models.ScheduleStatus
    """

    _attribute_map = {
        "id": {"key": "id", "type": "str"},
        "provisioning_status": {"key": "provisioningStatus", "type": "str"},
        "status": {"key": "status", "type": "str"},
    }

    def __init__(
        self,
        *,
        id: Optional[str] = None,  # pylint: disable=redefined-builtin
        provisioning_status: Optional[Union[str, "_models.ScheduleProvisioningState"]] = None,
        status: Optional[Union[str, "_models.ScheduleStatus"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword id: A system assigned id for the schedule.
        :paramtype id: str
        :keyword provisioning_status: The current deployment state of schedule. Known values are:
         "Completed", "Provisioning", and "Failed".
        :paramtype provisioning_status: str or
         ~azure.mgmt.machinelearningservices.models.ScheduleProvisioningState
        :keyword status: Is the schedule enabled or disabled?. Known values are: "Enabled" and
         "Disabled".
        :paramtype status: str or ~azure.mgmt.machinelearningservices.models.ScheduleStatus
        """
        super().__init__(**kwargs)
        self.id = id
        self.provisioning_status = provisioning_status
        self.status = status


class ScheduleProperties(ResourceBase):
    """Base definition of a schedule.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar description: The asset description text.
    :vartype description: str
    :ivar properties: The asset property dictionary.
    :vartype properties: dict[str, str]
    :ivar tags: Tag dictionary. Tags can be added, removed, and updated.
    :vartype tags: dict[str, str]
    :ivar action: [Required] Specifies the action of the schedule. Required.
    :vartype action: ~azure.mgmt.machinelearningservices.models.ScheduleActionBase
    :ivar display_name: Display name of schedule.
    :vartype display_name: str
    :ivar is_enabled: Is the schedule enabled?.
    :vartype is_enabled: bool
    :ivar provisioning_state: Provisioning state for the schedule. Known values are: "Creating",
     "Updating", "Deleting", "Succeeded", "Failed", and "Canceled".
    :vartype provisioning_state: str or
     ~azure.mgmt.machinelearningservices.models.ScheduleProvisioningStatus
    :ivar trigger: [Required] Specifies the trigger details. Required.
    :vartype trigger: ~azure.mgmt.machinelearningservices.models.TriggerBase
    """

    _validation = {
        "action": {"required": True},
        "provisioning_state": {"readonly": True},
        "trigger": {"required": True},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "properties": {"key": "properties", "type": "{str}"},
        "tags": {"key": "tags", "type": "{str}"},
        "action": {"key": "action", "type": "ScheduleActionBase"},
        "display_name": {"key": "displayName", "type": "str"},
        "is_enabled": {"key": "isEnabled", "type": "bool"},
        "provisioning_state": {"key": "provisioningState", "type": "str"},
        "trigger": {"key": "trigger", "type": "TriggerBase"},
    }

    def __init__(
        self,
        *,
        action: "_models.ScheduleActionBase",
        trigger: "_models.TriggerBase",
        description: Optional[str] = None,
        properties: Optional[Dict[str, str]] = None,
        tags: Optional[Dict[str, str]] = None,
        display_name: Optional[str] = None,
        is_enabled: bool = True,
        **kwargs: Any
    ) -> None:
        """
        :keyword description: The asset description text.
        :paramtype description: str
        :keyword properties: The asset property dictionary.
        :paramtype properties: dict[str, str]
        :keyword tags: Tag dictionary. Tags can be added, removed, and updated.
        :paramtype tags: dict[str, str]
        :keyword action: [Required] Specifies the action of the schedule. Required.
        :paramtype action: ~azure.mgmt.machinelearningservices.models.ScheduleActionBase
        :keyword display_name: Display name of schedule.
        :paramtype display_name: str
        :keyword is_enabled: Is the schedule enabled?.
        :paramtype is_enabled: bool
        :keyword trigger: [Required] Specifies the trigger details. Required.
        :paramtype trigger: ~azure.mgmt.machinelearningservices.models.TriggerBase
        """
        super().__init__(description=description, properties=properties, tags=tags, **kwargs)
        self.action = action
        self.display_name = display_name
        self.is_enabled = is_enabled
        self.provisioning_state = None
        self.trigger = trigger


class ScheduleResourceArmPaginatedResult(_serialization.Model):
    """A paginated list of Schedule entities.

    :ivar next_link: The link to the next page of Schedule objects. If null, there are no
     additional pages.
    :vartype next_link: str
    :ivar value: An array of objects of type Schedule.
    :vartype value: list[~azure.mgmt.machinelearningservices.models.Schedule]
    """

    _attribute_map = {
        "next_link": {"key": "nextLink", "type": "str"},
        "value": {"key": "value", "type": "[Schedule]"},
    }

    def __init__(
        self, *, next_link: Optional[str] = None, value: Optional[List["_models.Schedule"]] = None, **kwargs: Any
    ) -> None:
        """
        :keyword next_link: The link to the next page of Schedule objects. If null, there are no
         additional pages.
        :paramtype next_link: str
        :keyword value: An array of objects of type Schedule.
        :paramtype value: list[~azure.mgmt.machinelearningservices.models.Schedule]
        """
        super().__init__(**kwargs)
        self.next_link = next_link
        self.value = value


class ScriptReference(_serialization.Model):
    """Script reference.

    :ivar script_source: The storage source of the script: workspace.
    :vartype script_source: str
    :ivar script_data: The location of scripts in the mounted volume.
    :vartype script_data: str
    :ivar script_arguments: Optional command line arguments passed to the script to run.
    :vartype script_arguments: str
    :ivar timeout: Optional time period passed to timeout command.
    :vartype timeout: str
    """

    _attribute_map = {
        "script_source": {"key": "scriptSource", "type": "str"},
        "script_data": {"key": "scriptData", "type": "str"},
        "script_arguments": {"key": "scriptArguments", "type": "str"},
        "timeout": {"key": "timeout", "type": "str"},
    }

    def __init__(
        self,
        *,
        script_source: Optional[str] = None,
        script_data: Optional[str] = None,
        script_arguments: Optional[str] = None,
        timeout: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword script_source: The storage source of the script: workspace.
        :paramtype script_source: str
        :keyword script_data: The location of scripts in the mounted volume.
        :paramtype script_data: str
        :keyword script_arguments: Optional command line arguments passed to the script to run.
        :paramtype script_arguments: str
        :keyword timeout: Optional time period passed to timeout command.
        :paramtype timeout: str
        """
        super().__init__(**kwargs)
        self.script_source = script_source
        self.script_data = script_data
        self.script_arguments = script_arguments
        self.timeout = timeout


class ScriptsToExecute(_serialization.Model):
    """Customized setup scripts.

    :ivar startup_script: Script that's run every time the machine starts.
    :vartype startup_script: ~azure.mgmt.machinelearningservices.models.ScriptReference
    :ivar creation_script: Script that's run only once during provision of the compute.
    :vartype creation_script: ~azure.mgmt.machinelearningservices.models.ScriptReference
    """

    _attribute_map = {
        "startup_script": {"key": "startupScript", "type": "ScriptReference"},
        "creation_script": {"key": "creationScript", "type": "ScriptReference"},
    }

    def __init__(
        self,
        *,
        startup_script: Optional["_models.ScriptReference"] = None,
        creation_script: Optional["_models.ScriptReference"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword startup_script: Script that's run every time the machine starts.
        :paramtype startup_script: ~azure.mgmt.machinelearningservices.models.ScriptReference
        :keyword creation_script: Script that's run only once during provision of the compute.
        :paramtype creation_script: ~azure.mgmt.machinelearningservices.models.ScriptReference
        """
        super().__init__(**kwargs)
        self.startup_script = startup_script
        self.creation_script = creation_script


class ServiceManagedResourcesSettings(_serialization.Model):
    """ServiceManagedResourcesSettings.

    :ivar cosmos_db: The settings for the service managed cosmosdb account.
    :vartype cosmos_db: ~azure.mgmt.machinelearningservices.models.CosmosDbSettings
    """

    _attribute_map = {
        "cosmos_db": {"key": "cosmosDb", "type": "CosmosDbSettings"},
    }

    def __init__(self, *, cosmos_db: Optional["_models.CosmosDbSettings"] = None, **kwargs: Any) -> None:
        """
        :keyword cosmos_db: The settings for the service managed cosmosdb account.
        :paramtype cosmos_db: ~azure.mgmt.machinelearningservices.models.CosmosDbSettings
        """
        super().__init__(**kwargs)
        self.cosmos_db = cosmos_db


class ServicePrincipalDatastoreCredentials(DatastoreCredentials):
    """Service Principal datastore credentials configuration.

    All required parameters must be populated in order to send to Azure.

    :ivar credentials_type: [Required] Credential type used to authentication with storage.
     Required. Known values are: "AccountKey", "Certificate", "None", "Sas", and "ServicePrincipal".
    :vartype credentials_type: str or ~azure.mgmt.machinelearningservices.models.CredentialsType
    :ivar authority_url: Authority URL used for authentication.
    :vartype authority_url: str
    :ivar client_id: [Required] Service principal client ID. Required.
    :vartype client_id: str
    :ivar resource_url: Resource the service principal has access to.
    :vartype resource_url: str
    :ivar secrets: [Required] Service principal secrets. Required.
    :vartype secrets: ~azure.mgmt.machinelearningservices.models.ServicePrincipalDatastoreSecrets
    :ivar tenant_id: [Required] ID of the tenant to which the service principal belongs. Required.
    :vartype tenant_id: str
    """

    _validation = {
        "credentials_type": {"required": True},
        "client_id": {"required": True},
        "secrets": {"required": True},
        "tenant_id": {"required": True},
    }

    _attribute_map = {
        "credentials_type": {"key": "credentialsType", "type": "str"},
        "authority_url": {"key": "authorityUrl", "type": "str"},
        "client_id": {"key": "clientId", "type": "str"},
        "resource_url": {"key": "resourceUrl", "type": "str"},
        "secrets": {"key": "secrets", "type": "ServicePrincipalDatastoreSecrets"},
        "tenant_id": {"key": "tenantId", "type": "str"},
    }

    def __init__(
        self,
        *,
        client_id: str,
        secrets: "_models.ServicePrincipalDatastoreSecrets",
        tenant_id: str,
        authority_url: Optional[str] = None,
        resource_url: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword authority_url: Authority URL used for authentication.
        :paramtype authority_url: str
        :keyword client_id: [Required] Service principal client ID. Required.
        :paramtype client_id: str
        :keyword resource_url: Resource the service principal has access to.
        :paramtype resource_url: str
        :keyword secrets: [Required] Service principal secrets. Required.
        :paramtype secrets: ~azure.mgmt.machinelearningservices.models.ServicePrincipalDatastoreSecrets
        :keyword tenant_id: [Required] ID of the tenant to which the service principal belongs.
         Required.
        :paramtype tenant_id: str
        """
        super().__init__(**kwargs)
        self.credentials_type: str = "ServicePrincipal"
        self.authority_url = authority_url
        self.client_id = client_id
        self.resource_url = resource_url
        self.secrets = secrets
        self.tenant_id = tenant_id


class ServicePrincipalDatastoreSecrets(DatastoreSecrets):
    """Datastore Service Principal secrets.

    All required parameters must be populated in order to send to Azure.

    :ivar secrets_type: [Required] Credential type used to authentication with storage. Required.
     Known values are: "AccountKey", "Certificate", "Sas", and "ServicePrincipal".
    :vartype secrets_type: str or ~azure.mgmt.machinelearningservices.models.SecretsType
    :ivar client_secret: Service principal secret.
    :vartype client_secret: str
    """

    _validation = {
        "secrets_type": {"required": True},
    }

    _attribute_map = {
        "secrets_type": {"key": "secretsType", "type": "str"},
        "client_secret": {"key": "clientSecret", "type": "str"},
    }

    def __init__(self, *, client_secret: Optional[str] = None, **kwargs: Any) -> None:
        """
        :keyword client_secret: Service principal secret.
        :paramtype client_secret: str
        """
        super().__init__(**kwargs)
        self.secrets_type: str = "ServicePrincipal"
        self.client_secret = client_secret


class SetupScripts(_serialization.Model):
    """Details of customized scripts to execute for setting up the cluster.

    :ivar scripts: Customized setup scripts.
    :vartype scripts: ~azure.mgmt.machinelearningservices.models.ScriptsToExecute
    """

    _attribute_map = {
        "scripts": {"key": "scripts", "type": "ScriptsToExecute"},
    }

    def __init__(self, *, scripts: Optional["_models.ScriptsToExecute"] = None, **kwargs: Any) -> None:
        """
        :keyword scripts: Customized setup scripts.
        :paramtype scripts: ~azure.mgmt.machinelearningservices.models.ScriptsToExecute
        """
        super().__init__(**kwargs)
        self.scripts = scripts


class SharedPrivateLinkResource(_serialization.Model):
    """SharedPrivateLinkResource.

    :ivar name: Unique name of the private link.
    :vartype name: str
    :ivar private_link_resource_id: The resource id that private link links to.
    :vartype private_link_resource_id: str
    :ivar group_id: The private link resource group id.
    :vartype group_id: str
    :ivar request_message: Request message.
    :vartype request_message: str
    :ivar status: Indicates whether the connection has been Approved/Rejected/Removed by the owner
     of the service. Known values are: "Pending", "Approved", "Rejected", "Disconnected", and
     "Timeout".
    :vartype status: str or
     ~azure.mgmt.machinelearningservices.models.PrivateEndpointServiceConnectionStatus
    """

    _attribute_map = {
        "name": {"key": "name", "type": "str"},
        "private_link_resource_id": {"key": "properties.privateLinkResourceId", "type": "str"},
        "group_id": {"key": "properties.groupId", "type": "str"},
        "request_message": {"key": "properties.requestMessage", "type": "str"},
        "status": {"key": "properties.status", "type": "str"},
    }

    def __init__(
        self,
        *,
        name: Optional[str] = None,
        private_link_resource_id: Optional[str] = None,
        group_id: Optional[str] = None,
        request_message: Optional[str] = None,
        status: Optional[Union[str, "_models.PrivateEndpointServiceConnectionStatus"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword name: Unique name of the private link.
        :paramtype name: str
        :keyword private_link_resource_id: The resource id that private link links to.
        :paramtype private_link_resource_id: str
        :keyword group_id: The private link resource group id.
        :paramtype group_id: str
        :keyword request_message: Request message.
        :paramtype request_message: str
        :keyword status: Indicates whether the connection has been Approved/Rejected/Removed by the
         owner of the service. Known values are: "Pending", "Approved", "Rejected", "Disconnected", and
         "Timeout".
        :paramtype status: str or
         ~azure.mgmt.machinelearningservices.models.PrivateEndpointServiceConnectionStatus
        """
        super().__init__(**kwargs)
        self.name = name
        self.private_link_resource_id = private_link_resource_id
        self.group_id = group_id
        self.request_message = request_message
        self.status = status


class Sku(_serialization.Model):
    """The resource model definition representing SKU.

    All required parameters must be populated in order to send to Azure.

    :ivar name: The name of the SKU. Ex - P3. It is typically a letter+number code. Required.
    :vartype name: str
    :ivar tier: This field is required to be implemented by the Resource Provider if the service
     has more than one tier, but is not required on a PUT. Known values are: "Free", "Basic",
     "Standard", and "Premium".
    :vartype tier: str or ~azure.mgmt.machinelearningservices.models.SkuTier
    :ivar size: The SKU size. When the name field is the combination of tier and some other value,
     this would be the standalone code.
    :vartype size: str
    :ivar family: If the service has different generations of hardware, for the same SKU, then that
     can be captured here.
    :vartype family: str
    :ivar capacity: If the SKU supports scale out/in then the capacity integer should be included.
     If scale out/in is not possible for the resource this may be omitted.
    :vartype capacity: int
    """

    _validation = {
        "name": {"required": True},
    }

    _attribute_map = {
        "name": {"key": "name", "type": "str"},
        "tier": {"key": "tier", "type": "str"},
        "size": {"key": "size", "type": "str"},
        "family": {"key": "family", "type": "str"},
        "capacity": {"key": "capacity", "type": "int"},
    }

    def __init__(
        self,
        *,
        name: str,
        tier: Optional[Union[str, "_models.SkuTier"]] = None,
        size: Optional[str] = None,
        family: Optional[str] = None,
        capacity: Optional[int] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword name: The name of the SKU. Ex - P3. It is typically a letter+number code. Required.
        :paramtype name: str
        :keyword tier: This field is required to be implemented by the Resource Provider if the service
         has more than one tier, but is not required on a PUT. Known values are: "Free", "Basic",
         "Standard", and "Premium".
        :paramtype tier: str or ~azure.mgmt.machinelearningservices.models.SkuTier
        :keyword size: The SKU size. When the name field is the combination of tier and some other
         value, this would be the standalone code.
        :paramtype size: str
        :keyword family: If the service has different generations of hardware, for the same SKU, then
         that can be captured here.
        :paramtype family: str
        :keyword capacity: If the SKU supports scale out/in then the capacity integer should be
         included. If scale out/in is not possible for the resource this may be omitted.
        :paramtype capacity: int
        """
        super().__init__(**kwargs)
        self.name = name
        self.tier = tier
        self.size = size
        self.family = family
        self.capacity = capacity


class SkuCapacity(_serialization.Model):
    """SKU capacity information.

    :ivar default: Gets or sets the default capacity.
    :vartype default: int
    :ivar maximum: Gets or sets the maximum.
    :vartype maximum: int
    :ivar minimum: Gets or sets the minimum.
    :vartype minimum: int
    :ivar scale_type: Gets or sets the type of the scale. Known values are: "Automatic", "Manual",
     and "None".
    :vartype scale_type: str or ~azure.mgmt.machinelearningservices.models.SkuScaleType
    """

    _attribute_map = {
        "default": {"key": "default", "type": "int"},
        "maximum": {"key": "maximum", "type": "int"},
        "minimum": {"key": "minimum", "type": "int"},
        "scale_type": {"key": "scaleType", "type": "str"},
    }

    def __init__(
        self,
        *,
        default: int = 0,
        maximum: int = 0,
        minimum: int = 0,
        scale_type: Optional[Union[str, "_models.SkuScaleType"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword default: Gets or sets the default capacity.
        :paramtype default: int
        :keyword maximum: Gets or sets the maximum.
        :paramtype maximum: int
        :keyword minimum: Gets or sets the minimum.
        :paramtype minimum: int
        :keyword scale_type: Gets or sets the type of the scale. Known values are: "Automatic",
         "Manual", and "None".
        :paramtype scale_type: str or ~azure.mgmt.machinelearningservices.models.SkuScaleType
        """
        super().__init__(**kwargs)
        self.default = default
        self.maximum = maximum
        self.minimum = minimum
        self.scale_type = scale_type


class SkuResource(_serialization.Model):
    """Fulfills ARM Contract requirement to list all available SKUS for a resource.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar capacity: Gets or sets the Sku Capacity.
    :vartype capacity: ~azure.mgmt.machinelearningservices.models.SkuCapacity
    :ivar resource_type: The resource type name.
    :vartype resource_type: str
    :ivar sku: Gets or sets the Sku.
    :vartype sku: ~azure.mgmt.machinelearningservices.models.SkuSetting
    """

    _validation = {
        "resource_type": {"readonly": True},
    }

    _attribute_map = {
        "capacity": {"key": "capacity", "type": "SkuCapacity"},
        "resource_type": {"key": "resourceType", "type": "str"},
        "sku": {"key": "sku", "type": "SkuSetting"},
    }

    def __init__(
        self,
        *,
        capacity: Optional["_models.SkuCapacity"] = None,
        sku: Optional["_models.SkuSetting"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword capacity: Gets or sets the Sku Capacity.
        :paramtype capacity: ~azure.mgmt.machinelearningservices.models.SkuCapacity
        :keyword sku: Gets or sets the Sku.
        :paramtype sku: ~azure.mgmt.machinelearningservices.models.SkuSetting
        """
        super().__init__(**kwargs)
        self.capacity = capacity
        self.resource_type = None
        self.sku = sku


class SkuResourceArmPaginatedResult(_serialization.Model):
    """A paginated list of SkuResource entities.

    :ivar next_link: The link to the next page of SkuResource objects. If null, there are no
     additional pages.
    :vartype next_link: str
    :ivar value: An array of objects of type SkuResource.
    :vartype value: list[~azure.mgmt.machinelearningservices.models.SkuResource]
    """

    _attribute_map = {
        "next_link": {"key": "nextLink", "type": "str"},
        "value": {"key": "value", "type": "[SkuResource]"},
    }

    def __init__(
        self, *, next_link: Optional[str] = None, value: Optional[List["_models.SkuResource"]] = None, **kwargs: Any
    ) -> None:
        """
        :keyword next_link: The link to the next page of SkuResource objects. If null, there are no
         additional pages.
        :paramtype next_link: str
        :keyword value: An array of objects of type SkuResource.
        :paramtype value: list[~azure.mgmt.machinelearningservices.models.SkuResource]
        """
        super().__init__(**kwargs)
        self.next_link = next_link
        self.value = value


class SkuSetting(_serialization.Model):
    """SkuSetting fulfills the need for stripped down SKU info in ARM contract.

    All required parameters must be populated in order to send to Azure.

    :ivar name: [Required] The name of the SKU. Ex - P3. It is typically a letter+number code.
     Required.
    :vartype name: str
    :ivar tier: This field is required to be implemented by the Resource Provider if the service
     has more than one tier, but is not required on a PUT. Known values are: "Free", "Basic",
     "Standard", and "Premium".
    :vartype tier: str or ~azure.mgmt.machinelearningservices.models.SkuTier
    """

    _validation = {
        "name": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"},
    }

    _attribute_map = {
        "name": {"key": "name", "type": "str"},
        "tier": {"key": "tier", "type": "str"},
    }

    def __init__(self, *, name: str, tier: Optional[Union[str, "_models.SkuTier"]] = None, **kwargs: Any) -> None:
        """
        :keyword name: [Required] The name of the SKU. Ex - P3. It is typically a letter+number code.
         Required.
        :paramtype name: str
        :keyword tier: This field is required to be implemented by the Resource Provider if the service
         has more than one tier, but is not required on a PUT. Known values are: "Free", "Basic",
         "Standard", and "Premium".
        :paramtype tier: str or ~azure.mgmt.machinelearningservices.models.SkuTier
        """
        super().__init__(**kwargs)
        self.name = name
        self.tier = tier


class SslConfiguration(_serialization.Model):
    """The ssl configuration for scoring.

    :ivar status: Enable or disable ssl for scoring. Known values are: "Disabled", "Enabled", and
     "Auto".
    :vartype status: str or ~azure.mgmt.machinelearningservices.models.SslConfigStatus
    :ivar cert: Cert data.
    :vartype cert: str
    :ivar key: Key data.
    :vartype key: str
    :ivar cname: CNAME of the cert.
    :vartype cname: str
    :ivar leaf_domain_label: Leaf domain label of public endpoint.
    :vartype leaf_domain_label: str
    :ivar overwrite_existing_domain: Indicates whether to overwrite existing domain label.
    :vartype overwrite_existing_domain: bool
    """

    _attribute_map = {
        "status": {"key": "status", "type": "str"},
        "cert": {"key": "cert", "type": "str"},
        "key": {"key": "key", "type": "str"},
        "cname": {"key": "cname", "type": "str"},
        "leaf_domain_label": {"key": "leafDomainLabel", "type": "str"},
        "overwrite_existing_domain": {"key": "overwriteExistingDomain", "type": "bool"},
    }

    def __init__(
        self,
        *,
        status: Optional[Union[str, "_models.SslConfigStatus"]] = None,
        cert: Optional[str] = None,
        key: Optional[str] = None,
        cname: Optional[str] = None,
        leaf_domain_label: Optional[str] = None,
        overwrite_existing_domain: Optional[bool] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword status: Enable or disable ssl for scoring. Known values are: "Disabled", "Enabled",
         and "Auto".
        :paramtype status: str or ~azure.mgmt.machinelearningservices.models.SslConfigStatus
        :keyword cert: Cert data.
        :paramtype cert: str
        :keyword key: Key data.
        :paramtype key: str
        :keyword cname: CNAME of the cert.
        :paramtype cname: str
        :keyword leaf_domain_label: Leaf domain label of public endpoint.
        :paramtype leaf_domain_label: str
        :keyword overwrite_existing_domain: Indicates whether to overwrite existing domain label.
        :paramtype overwrite_existing_domain: bool
        """
        super().__init__(**kwargs)
        self.status = status
        self.cert = cert
        self.key = key
        self.cname = cname
        self.leaf_domain_label = leaf_domain_label
        self.overwrite_existing_domain = overwrite_existing_domain


class StackEnsembleSettings(_serialization.Model):
    """Advances setting to customize StackEnsemble run.

    :ivar stack_meta_learner_k_wargs: Optional parameters to pass to the initializer of the
     meta-learner.
    :vartype stack_meta_learner_k_wargs: JSON
    :ivar stack_meta_learner_train_percentage: Specifies the proportion of the training set (when
     choosing train and validation type of training) to be reserved for training the meta-learner.
     Default value is 0.2.
    :vartype stack_meta_learner_train_percentage: float
    :ivar stack_meta_learner_type: The meta-learner is a model trained on the output of the
     individual heterogeneous models. Known values are: "None", "LogisticRegression",
     "LogisticRegressionCV", "LightGBMClassifier", "ElasticNet", "ElasticNetCV",
     "LightGBMRegressor", and "LinearRegression".
    :vartype stack_meta_learner_type: str or
     ~azure.mgmt.machinelearningservices.models.StackMetaLearnerType
    """

    _attribute_map = {
        "stack_meta_learner_k_wargs": {"key": "stackMetaLearnerKWargs", "type": "object"},
        "stack_meta_learner_train_percentage": {"key": "stackMetaLearnerTrainPercentage", "type": "float"},
        "stack_meta_learner_type": {"key": "stackMetaLearnerType", "type": "str"},
    }

    def __init__(
        self,
        *,
        stack_meta_learner_k_wargs: Optional[JSON] = None,
        stack_meta_learner_train_percentage: float = 0.2,
        stack_meta_learner_type: Optional[Union[str, "_models.StackMetaLearnerType"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword stack_meta_learner_k_wargs: Optional parameters to pass to the initializer of the
         meta-learner.
        :paramtype stack_meta_learner_k_wargs: JSON
        :keyword stack_meta_learner_train_percentage: Specifies the proportion of the training set
         (when choosing train and validation type of training) to be reserved for training the
         meta-learner. Default value is 0.2.
        :paramtype stack_meta_learner_train_percentage: float
        :keyword stack_meta_learner_type: The meta-learner is a model trained on the output of the
         individual heterogeneous models. Known values are: "None", "LogisticRegression",
         "LogisticRegressionCV", "LightGBMClassifier", "ElasticNet", "ElasticNetCV",
         "LightGBMRegressor", and "LinearRegression".
        :paramtype stack_meta_learner_type: str or
         ~azure.mgmt.machinelearningservices.models.StackMetaLearnerType
        """
        super().__init__(**kwargs)
        self.stack_meta_learner_k_wargs = stack_meta_learner_k_wargs
        self.stack_meta_learner_train_percentage = stack_meta_learner_train_percentage
        self.stack_meta_learner_type = stack_meta_learner_type


class StorageAccountDetails(_serialization.Model):
    """Details of storage account to be used for the Registry.

    :ivar system_created_storage_account: Details of system created storage account to be used for
     the registry.
    :vartype system_created_storage_account:
     ~azure.mgmt.machinelearningservices.models.SystemCreatedStorageAccount
    :ivar user_created_storage_account: Details of user created storage account to be used for the
     registry.
    :vartype user_created_storage_account:
     ~azure.mgmt.machinelearningservices.models.UserCreatedStorageAccount
    """

    _attribute_map = {
        "system_created_storage_account": {"key": "systemCreatedStorageAccount", "type": "SystemCreatedStorageAccount"},
        "user_created_storage_account": {"key": "userCreatedStorageAccount", "type": "UserCreatedStorageAccount"},
    }

    def __init__(
        self,
        *,
        system_created_storage_account: Optional["_models.SystemCreatedStorageAccount"] = None,
        user_created_storage_account: Optional["_models.UserCreatedStorageAccount"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword system_created_storage_account: Details of system created storage account to be used
         for the registry.
        :paramtype system_created_storage_account:
         ~azure.mgmt.machinelearningservices.models.SystemCreatedStorageAccount
        :keyword user_created_storage_account: Details of user created storage account to be used for
         the registry.
        :paramtype user_created_storage_account:
         ~azure.mgmt.machinelearningservices.models.UserCreatedStorageAccount
        """
        super().__init__(**kwargs)
        self.system_created_storage_account = system_created_storage_account
        self.user_created_storage_account = user_created_storage_account


class SweepJob(JobBaseProperties):  # pylint: disable=too-many-instance-attributes
    """Sweep job definition.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar description: The asset description text.
    :vartype description: str
    :ivar properties: The asset property dictionary.
    :vartype properties: dict[str, str]
    :ivar tags: Tag dictionary. Tags can be added, removed, and updated.
    :vartype tags: dict[str, str]
    :ivar component_id: ARM resource ID of the component resource.
    :vartype component_id: str
    :ivar compute_id: ARM resource ID of the compute resource.
    :vartype compute_id: str
    :ivar display_name: Display name of job.
    :vartype display_name: str
    :ivar experiment_name: The name of the experiment the job belongs to. If not set, the job is
     placed in the "Default" experiment.
    :vartype experiment_name: str
    :ivar identity: Identity configuration. If set, this should be one of AmlToken,
     ManagedIdentity, UserIdentity or null.
     Defaults to AmlToken if null.
    :vartype identity: ~azure.mgmt.machinelearningservices.models.IdentityConfiguration
    :ivar is_archived: Is the asset archived?.
    :vartype is_archived: bool
    :ivar job_type: [Required] Specifies the type of job. Required. Known values are: "AutoML",
     "Command", "Sweep", and "Pipeline".
    :vartype job_type: str or ~azure.mgmt.machinelearningservices.models.JobType
    :ivar services: List of JobEndpoints.
     For local jobs, a job endpoint will have an endpoint value of FileStreamObject.
    :vartype services: dict[str, ~azure.mgmt.machinelearningservices.models.JobService]
    :ivar status: Status of the job. Known values are: "NotStarted", "Starting", "Provisioning",
     "Preparing", "Queued", "Running", "Finalizing", "CancelRequested", "Completed", "Failed",
     "Canceled", "NotResponding", "Paused", and "Unknown".
    :vartype status: str or ~azure.mgmt.machinelearningservices.models.JobStatus
    :ivar early_termination: Early termination policies enable canceling poor-performing runs
     before they complete.
    :vartype early_termination: ~azure.mgmt.machinelearningservices.models.EarlyTerminationPolicy
    :ivar inputs: Mapping of input data bindings used in the job.
    :vartype inputs: dict[str, ~azure.mgmt.machinelearningservices.models.JobInput]
    :ivar limits: Sweep Job limit.
    :vartype limits: ~azure.mgmt.machinelearningservices.models.SweepJobLimits
    :ivar objective: [Required] Optimization objective. Required.
    :vartype objective: ~azure.mgmt.machinelearningservices.models.Objective
    :ivar outputs: Mapping of output data bindings used in the job.
    :vartype outputs: dict[str, ~azure.mgmt.machinelearningservices.models.JobOutput]
    :ivar sampling_algorithm: [Required] The hyperparameter sampling algorithm. Required.
    :vartype sampling_algorithm: ~azure.mgmt.machinelearningservices.models.SamplingAlgorithm
    :ivar search_space: [Required] A dictionary containing each parameter and its distribution. The
     dictionary key is the name of the parameter. Required.
    :vartype search_space: JSON
    :ivar trial: [Required] Trial component definition. Required.
    :vartype trial: ~azure.mgmt.machinelearningservices.models.TrialComponent
    """

    _validation = {
        "job_type": {"required": True},
        "status": {"readonly": True},
        "objective": {"required": True},
        "sampling_algorithm": {"required": True},
        "search_space": {"required": True},
        "trial": {"required": True},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "properties": {"key": "properties", "type": "{str}"},
        "tags": {"key": "tags", "type": "{str}"},
        "component_id": {"key": "componentId", "type": "str"},
        "compute_id": {"key": "computeId", "type": "str"},
        "display_name": {"key": "displayName", "type": "str"},
        "experiment_name": {"key": "experimentName", "type": "str"},
        "identity": {"key": "identity", "type": "IdentityConfiguration"},
        "is_archived": {"key": "isArchived", "type": "bool"},
        "job_type": {"key": "jobType", "type": "str"},
        "services": {"key": "services", "type": "{JobService}"},
        "status": {"key": "status", "type": "str"},
        "early_termination": {"key": "earlyTermination", "type": "EarlyTerminationPolicy"},
        "inputs": {"key": "inputs", "type": "{JobInput}"},
        "limits": {"key": "limits", "type": "SweepJobLimits"},
        "objective": {"key": "objective", "type": "Objective"},
        "outputs": {"key": "outputs", "type": "{JobOutput}"},
        "sampling_algorithm": {"key": "samplingAlgorithm", "type": "SamplingAlgorithm"},
        "search_space": {"key": "searchSpace", "type": "object"},
        "trial": {"key": "trial", "type": "TrialComponent"},
    }

    def __init__(
        self,
        *,
        objective: "_models.Objective",
        sampling_algorithm: "_models.SamplingAlgorithm",
        search_space: JSON,
        trial: "_models.TrialComponent",
        description: Optional[str] = None,
        properties: Optional[Dict[str, str]] = None,
        tags: Optional[Dict[str, str]] = None,
        component_id: Optional[str] = None,
        compute_id: Optional[str] = None,
        display_name: Optional[str] = None,
        experiment_name: str = "Default",
        identity: Optional["_models.IdentityConfiguration"] = None,
        is_archived: bool = False,
        services: Optional[Dict[str, "_models.JobService"]] = None,
        early_termination: Optional["_models.EarlyTerminationPolicy"] = None,
        inputs: Optional[Dict[str, "_models.JobInput"]] = None,
        limits: Optional["_models.SweepJobLimits"] = None,
        outputs: Optional[Dict[str, "_models.JobOutput"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword description: The asset description text.
        :paramtype description: str
        :keyword properties: The asset property dictionary.
        :paramtype properties: dict[str, str]
        :keyword tags: Tag dictionary. Tags can be added, removed, and updated.
        :paramtype tags: dict[str, str]
        :keyword component_id: ARM resource ID of the component resource.
        :paramtype component_id: str
        :keyword compute_id: ARM resource ID of the compute resource.
        :paramtype compute_id: str
        :keyword display_name: Display name of job.
        :paramtype display_name: str
        :keyword experiment_name: The name of the experiment the job belongs to. If not set, the job is
         placed in the "Default" experiment.
        :paramtype experiment_name: str
        :keyword identity: Identity configuration. If set, this should be one of AmlToken,
         ManagedIdentity, UserIdentity or null.
         Defaults to AmlToken if null.
        :paramtype identity: ~azure.mgmt.machinelearningservices.models.IdentityConfiguration
        :keyword is_archived: Is the asset archived?.
        :paramtype is_archived: bool
        :keyword services: List of JobEndpoints.
         For local jobs, a job endpoint will have an endpoint value of FileStreamObject.
        :paramtype services: dict[str, ~azure.mgmt.machinelearningservices.models.JobService]
        :keyword early_termination: Early termination policies enable canceling poor-performing runs
         before they complete.
        :paramtype early_termination: ~azure.mgmt.machinelearningservices.models.EarlyTerminationPolicy
        :keyword inputs: Mapping of input data bindings used in the job.
        :paramtype inputs: dict[str, ~azure.mgmt.machinelearningservices.models.JobInput]
        :keyword limits: Sweep Job limit.
        :paramtype limits: ~azure.mgmt.machinelearningservices.models.SweepJobLimits
        :keyword objective: [Required] Optimization objective. Required.
        :paramtype objective: ~azure.mgmt.machinelearningservices.models.Objective
        :keyword outputs: Mapping of output data bindings used in the job.
        :paramtype outputs: dict[str, ~azure.mgmt.machinelearningservices.models.JobOutput]
        :keyword sampling_algorithm: [Required] The hyperparameter sampling algorithm. Required.
        :paramtype sampling_algorithm: ~azure.mgmt.machinelearningservices.models.SamplingAlgorithm
        :keyword search_space: [Required] A dictionary containing each parameter and its distribution.
         The dictionary key is the name of the parameter. Required.
        :paramtype search_space: JSON
        :keyword trial: [Required] Trial component definition. Required.
        :paramtype trial: ~azure.mgmt.machinelearningservices.models.TrialComponent
        """
        super().__init__(
            description=description,
            properties=properties,
            tags=tags,
            component_id=component_id,
            compute_id=compute_id,
            display_name=display_name,
            experiment_name=experiment_name,
            identity=identity,
            is_archived=is_archived,
            services=services,
            **kwargs
        )
        self.job_type: str = "Sweep"
        self.early_termination = early_termination
        self.inputs = inputs
        self.limits = limits
        self.objective = objective
        self.outputs = outputs
        self.sampling_algorithm = sampling_algorithm
        self.search_space = search_space
        self.trial = trial


class SweepJobLimits(JobLimits):
    """Sweep Job limit class.

    All required parameters must be populated in order to send to Azure.

    :ivar job_limits_type: [Required] JobLimit type. Required. Known values are: "Command" and
     "Sweep".
    :vartype job_limits_type: str or ~azure.mgmt.machinelearningservices.models.JobLimitsType
    :ivar timeout: The max run duration in ISO 8601 format, after which the job will be cancelled.
     Only supports duration with precision as low as Seconds.
    :vartype timeout: ~datetime.timedelta
    :ivar max_concurrent_trials: Sweep Job max concurrent trials.
    :vartype max_concurrent_trials: int
    :ivar max_total_trials: Sweep Job max total trials.
    :vartype max_total_trials: int
    :ivar trial_timeout: Sweep Job Trial timeout value.
    :vartype trial_timeout: ~datetime.timedelta
    """

    _validation = {
        "job_limits_type": {"required": True},
    }

    _attribute_map = {
        "job_limits_type": {"key": "jobLimitsType", "type": "str"},
        "timeout": {"key": "timeout", "type": "duration"},
        "max_concurrent_trials": {"key": "maxConcurrentTrials", "type": "int"},
        "max_total_trials": {"key": "maxTotalTrials", "type": "int"},
        "trial_timeout": {"key": "trialTimeout", "type": "duration"},
    }

    def __init__(
        self,
        *,
        timeout: Optional[datetime.timedelta] = None,
        max_concurrent_trials: Optional[int] = None,
        max_total_trials: Optional[int] = None,
        trial_timeout: Optional[datetime.timedelta] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword timeout: The max run duration in ISO 8601 format, after which the job will be
         cancelled. Only supports duration with precision as low as Seconds.
        :paramtype timeout: ~datetime.timedelta
        :keyword max_concurrent_trials: Sweep Job max concurrent trials.
        :paramtype max_concurrent_trials: int
        :keyword max_total_trials: Sweep Job max total trials.
        :paramtype max_total_trials: int
        :keyword trial_timeout: Sweep Job Trial timeout value.
        :paramtype trial_timeout: ~datetime.timedelta
        """
        super().__init__(timeout=timeout, **kwargs)
        self.job_limits_type: str = "Sweep"
        self.max_concurrent_trials = max_concurrent_trials
        self.max_total_trials = max_total_trials
        self.trial_timeout = trial_timeout


class SynapseSpark(Compute):  # pylint: disable=too-many-instance-attributes
    """A SynapseSpark compute.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar compute_type: The type of compute. Required. Known values are: "AKS", "Kubernetes",
     "AmlCompute", "ComputeInstance", "DataFactory", "VirtualMachine", "HDInsight", "Databricks",
     "DataLakeAnalytics", and "SynapseSpark".
    :vartype compute_type: str or ~azure.mgmt.machinelearningservices.models.ComputeType
    :ivar compute_location: Location for the underlying compute.
    :vartype compute_location: str
    :ivar provisioning_state: The provision state of the cluster. Valid values are Unknown,
     Updating, Provisioning, Succeeded, and Failed. Known values are: "Unknown", "Updating",
     "Creating", "Deleting", "Succeeded", "Failed", and "Canceled".
    :vartype provisioning_state: str or
     ~azure.mgmt.machinelearningservices.models.ProvisioningState
    :ivar description: The description of the Machine Learning compute.
    :vartype description: str
    :ivar created_on: The time at which the compute was created.
    :vartype created_on: ~datetime.datetime
    :ivar modified_on: The time at which the compute was last modified.
    :vartype modified_on: ~datetime.datetime
    :ivar resource_id: ARM resource id of the underlying compute.
    :vartype resource_id: str
    :ivar provisioning_errors: Errors during provisioning.
    :vartype provisioning_errors: list[~azure.mgmt.machinelearningservices.models.ErrorResponse]
    :ivar is_attached_compute: Indicating whether the compute was provisioned by user and brought
     from outside if true, or machine learning service provisioned it if false.
    :vartype is_attached_compute: bool
    :ivar disable_local_auth: Opt-out of local authentication and ensure customers can use only MSI
     and AAD exclusively for authentication.
    :vartype disable_local_auth: bool
    :ivar properties:
    :vartype properties: ~azure.mgmt.machinelearningservices.models.SynapseSparkProperties
    """

    _validation = {
        "compute_type": {"required": True},
        "provisioning_state": {"readonly": True},
        "created_on": {"readonly": True},
        "modified_on": {"readonly": True},
        "provisioning_errors": {"readonly": True},
        "is_attached_compute": {"readonly": True},
    }

    _attribute_map = {
        "compute_type": {"key": "computeType", "type": "str"},
        "compute_location": {"key": "computeLocation", "type": "str"},
        "provisioning_state": {"key": "provisioningState", "type": "str"},
        "description": {"key": "description", "type": "str"},
        "created_on": {"key": "createdOn", "type": "iso-8601"},
        "modified_on": {"key": "modifiedOn", "type": "iso-8601"},
        "resource_id": {"key": "resourceId", "type": "str"},
        "provisioning_errors": {"key": "provisioningErrors", "type": "[ErrorResponse]"},
        "is_attached_compute": {"key": "isAttachedCompute", "type": "bool"},
        "disable_local_auth": {"key": "disableLocalAuth", "type": "bool"},
        "properties": {"key": "properties", "type": "SynapseSparkProperties"},
    }

    def __init__(
        self,
        *,
        compute_location: Optional[str] = None,
        description: Optional[str] = None,
        resource_id: Optional[str] = None,
        disable_local_auth: Optional[bool] = None,
        properties: Optional["_models.SynapseSparkProperties"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword compute_location: Location for the underlying compute.
        :paramtype compute_location: str
        :keyword description: The description of the Machine Learning compute.
        :paramtype description: str
        :keyword resource_id: ARM resource id of the underlying compute.
        :paramtype resource_id: str
        :keyword disable_local_auth: Opt-out of local authentication and ensure customers can use only
         MSI and AAD exclusively for authentication.
        :paramtype disable_local_auth: bool
        :keyword properties:
        :paramtype properties: ~azure.mgmt.machinelearningservices.models.SynapseSparkProperties
        """
        super().__init__(
            compute_location=compute_location,
            description=description,
            resource_id=resource_id,
            disable_local_auth=disable_local_auth,
            **kwargs
        )
        self.compute_type: str = "SynapseSpark"
        self.properties = properties


class SynapseSparkProperties(_serialization.Model):
    """SynapseSparkProperties.

    :ivar auto_scale_properties: Auto scale properties.
    :vartype auto_scale_properties: ~azure.mgmt.machinelearningservices.models.AutoScaleProperties
    :ivar auto_pause_properties: Auto pause properties.
    :vartype auto_pause_properties: ~azure.mgmt.machinelearningservices.models.AutoPauseProperties
    :ivar spark_version: Spark version.
    :vartype spark_version: str
    :ivar node_count: The number of compute nodes currently assigned to the compute.
    :vartype node_count: int
    :ivar node_size: Node size.
    :vartype node_size: str
    :ivar node_size_family: Node size family.
    :vartype node_size_family: str
    :ivar subscription_id: Azure subscription identifier.
    :vartype subscription_id: str
    :ivar resource_group: Name of the resource group in which workspace is located.
    :vartype resource_group: str
    :ivar workspace_name: Name of Azure Machine Learning workspace.
    :vartype workspace_name: str
    :ivar pool_name: Pool name.
    :vartype pool_name: str
    """

    _attribute_map = {
        "auto_scale_properties": {"key": "autoScaleProperties", "type": "AutoScaleProperties"},
        "auto_pause_properties": {"key": "autoPauseProperties", "type": "AutoPauseProperties"},
        "spark_version": {"key": "sparkVersion", "type": "str"},
        "node_count": {"key": "nodeCount", "type": "int"},
        "node_size": {"key": "nodeSize", "type": "str"},
        "node_size_family": {"key": "nodeSizeFamily", "type": "str"},
        "subscription_id": {"key": "subscriptionId", "type": "str"},
        "resource_group": {"key": "resourceGroup", "type": "str"},
        "workspace_name": {"key": "workspaceName", "type": "str"},
        "pool_name": {"key": "poolName", "type": "str"},
    }

    def __init__(
        self,
        *,
        auto_scale_properties: Optional["_models.AutoScaleProperties"] = None,
        auto_pause_properties: Optional["_models.AutoPauseProperties"] = None,
        spark_version: Optional[str] = None,
        node_count: Optional[int] = None,
        node_size: Optional[str] = None,
        node_size_family: Optional[str] = None,
        subscription_id: Optional[str] = None,
        resource_group: Optional[str] = None,
        workspace_name: Optional[str] = None,
        pool_name: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword auto_scale_properties: Auto scale properties.
        :paramtype auto_scale_properties:
         ~azure.mgmt.machinelearningservices.models.AutoScaleProperties
        :keyword auto_pause_properties: Auto pause properties.
        :paramtype auto_pause_properties:
         ~azure.mgmt.machinelearningservices.models.AutoPauseProperties
        :keyword spark_version: Spark version.
        :paramtype spark_version: str
        :keyword node_count: The number of compute nodes currently assigned to the compute.
        :paramtype node_count: int
        :keyword node_size: Node size.
        :paramtype node_size: str
        :keyword node_size_family: Node size family.
        :paramtype node_size_family: str
        :keyword subscription_id: Azure subscription identifier.
        :paramtype subscription_id: str
        :keyword resource_group: Name of the resource group in which workspace is located.
        :paramtype resource_group: str
        :keyword workspace_name: Name of Azure Machine Learning workspace.
        :paramtype workspace_name: str
        :keyword pool_name: Pool name.
        :paramtype pool_name: str
        """
        super().__init__(**kwargs)
        self.auto_scale_properties = auto_scale_properties
        self.auto_pause_properties = auto_pause_properties
        self.spark_version = spark_version
        self.node_count = node_count
        self.node_size = node_size
        self.node_size_family = node_size_family
        self.subscription_id = subscription_id
        self.resource_group = resource_group
        self.workspace_name = workspace_name
        self.pool_name = pool_name


class SystemCreatedAcrAccount(_serialization.Model):
    """SystemCreatedAcrAccount.

    :ivar acr_account_name: Name of the ACR account.
    :vartype acr_account_name: str
    :ivar acr_account_sku: SKU of the ACR account.
    :vartype acr_account_sku: str
    :ivar arm_resource_id: This is populated once the ACR account is created.
    :vartype arm_resource_id: ~azure.mgmt.machinelearningservices.models.ArmResourceId
    """

    _attribute_map = {
        "acr_account_name": {"key": "acrAccountName", "type": "str"},
        "acr_account_sku": {"key": "acrAccountSku", "type": "str"},
        "arm_resource_id": {"key": "armResourceId", "type": "ArmResourceId"},
    }

    def __init__(
        self,
        *,
        acr_account_name: Optional[str] = None,
        acr_account_sku: Optional[str] = None,
        arm_resource_id: Optional["_models.ArmResourceId"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword acr_account_name: Name of the ACR account.
        :paramtype acr_account_name: str
        :keyword acr_account_sku: SKU of the ACR account.
        :paramtype acr_account_sku: str
        :keyword arm_resource_id: This is populated once the ACR account is created.
        :paramtype arm_resource_id: ~azure.mgmt.machinelearningservices.models.ArmResourceId
        """
        super().__init__(**kwargs)
        self.acr_account_name = acr_account_name
        self.acr_account_sku = acr_account_sku
        self.arm_resource_id = arm_resource_id


class SystemCreatedStorageAccount(_serialization.Model):
    """SystemCreatedStorageAccount.

    :ivar allow_blob_public_access: Public blob access allowed.
    :vartype allow_blob_public_access: bool
    :ivar arm_resource_id: This is populated once the storage account is created.
    :vartype arm_resource_id: ~azure.mgmt.machinelearningservices.models.ArmResourceId
    :ivar storage_account_hns_enabled: HNS enabled for storage account.
    :vartype storage_account_hns_enabled: bool
    :ivar storage_account_name: Name of the storage account.
    :vartype storage_account_name: str
    :ivar storage_account_type: Allowed values:
     "Standard_LRS",
     "Standard_GRS",
     "Standard_RAGRS",
     "Standard_ZRS",
     "Standard_GZRS",
     "Standard_RAGZRS",
     "Premium_LRS",
     "Premium_ZRS".
    :vartype storage_account_type: str
    """

    _attribute_map = {
        "allow_blob_public_access": {"key": "allowBlobPublicAccess", "type": "bool"},
        "arm_resource_id": {"key": "armResourceId", "type": "ArmResourceId"},
        "storage_account_hns_enabled": {"key": "storageAccountHnsEnabled", "type": "bool"},
        "storage_account_name": {"key": "storageAccountName", "type": "str"},
        "storage_account_type": {"key": "storageAccountType", "type": "str"},
    }

    def __init__(
        self,
        *,
        allow_blob_public_access: Optional[bool] = None,
        arm_resource_id: Optional["_models.ArmResourceId"] = None,
        storage_account_hns_enabled: Optional[bool] = None,
        storage_account_name: Optional[str] = None,
        storage_account_type: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword allow_blob_public_access: Public blob access allowed.
        :paramtype allow_blob_public_access: bool
        :keyword arm_resource_id: This is populated once the storage account is created.
        :paramtype arm_resource_id: ~azure.mgmt.machinelearningservices.models.ArmResourceId
        :keyword storage_account_hns_enabled: HNS enabled for storage account.
        :paramtype storage_account_hns_enabled: bool
        :keyword storage_account_name: Name of the storage account.
        :paramtype storage_account_name: str
        :keyword storage_account_type: Allowed values:
         "Standard_LRS",
         "Standard_GRS",
         "Standard_RAGRS",
         "Standard_ZRS",
         "Standard_GZRS",
         "Standard_RAGZRS",
         "Premium_LRS",
         "Premium_ZRS".
        :paramtype storage_account_type: str
        """
        super().__init__(**kwargs)
        self.allow_blob_public_access = allow_blob_public_access
        self.arm_resource_id = arm_resource_id
        self.storage_account_hns_enabled = storage_account_hns_enabled
        self.storage_account_name = storage_account_name
        self.storage_account_type = storage_account_type


class SystemData(_serialization.Model):
    """Metadata pertaining to creation and last modification of the resource.

    :ivar created_by: The identity that created the resource.
    :vartype created_by: str
    :ivar created_by_type: The type of identity that created the resource. Known values are:
     "User", "Application", "ManagedIdentity", and "Key".
    :vartype created_by_type: str or ~azure.mgmt.machinelearningservices.models.CreatedByType
    :ivar created_at: The timestamp of resource creation (UTC).
    :vartype created_at: ~datetime.datetime
    :ivar last_modified_by: The identity that last modified the resource.
    :vartype last_modified_by: str
    :ivar last_modified_by_type: The type of identity that last modified the resource. Known values
     are: "User", "Application", "ManagedIdentity", and "Key".
    :vartype last_modified_by_type: str or ~azure.mgmt.machinelearningservices.models.CreatedByType
    :ivar last_modified_at: The timestamp of resource last modification (UTC).
    :vartype last_modified_at: ~datetime.datetime
    """

    _attribute_map = {
        "created_by": {"key": "createdBy", "type": "str"},
        "created_by_type": {"key": "createdByType", "type": "str"},
        "created_at": {"key": "createdAt", "type": "iso-8601"},
        "last_modified_by": {"key": "lastModifiedBy", "type": "str"},
        "last_modified_by_type": {"key": "lastModifiedByType", "type": "str"},
        "last_modified_at": {"key": "lastModifiedAt", "type": "iso-8601"},
    }

    def __init__(
        self,
        *,
        created_by: Optional[str] = None,
        created_by_type: Optional[Union[str, "_models.CreatedByType"]] = None,
        created_at: Optional[datetime.datetime] = None,
        last_modified_by: Optional[str] = None,
        last_modified_by_type: Optional[Union[str, "_models.CreatedByType"]] = None,
        last_modified_at: Optional[datetime.datetime] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword created_by: The identity that created the resource.
        :paramtype created_by: str
        :keyword created_by_type: The type of identity that created the resource. Known values are:
         "User", "Application", "ManagedIdentity", and "Key".
        :paramtype created_by_type: str or ~azure.mgmt.machinelearningservices.models.CreatedByType
        :keyword created_at: The timestamp of resource creation (UTC).
        :paramtype created_at: ~datetime.datetime
        :keyword last_modified_by: The identity that last modified the resource.
        :paramtype last_modified_by: str
        :keyword last_modified_by_type: The type of identity that last modified the resource. Known
         values are: "User", "Application", "ManagedIdentity", and "Key".
        :paramtype last_modified_by_type: str or
         ~azure.mgmt.machinelearningservices.models.CreatedByType
        :keyword last_modified_at: The timestamp of resource last modification (UTC).
        :paramtype last_modified_at: ~datetime.datetime
        """
        super().__init__(**kwargs)
        self.created_by = created_by
        self.created_by_type = created_by_type
        self.created_at = created_at
        self.last_modified_by = last_modified_by
        self.last_modified_by_type = last_modified_by_type
        self.last_modified_at = last_modified_at


class SystemService(_serialization.Model):
    """A system service running on a compute.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar system_service_type: The type of this system service.
    :vartype system_service_type: str
    :ivar public_ip_address: Public IP address.
    :vartype public_ip_address: str
    :ivar version: The version for this type.
    :vartype version: str
    """

    _validation = {
        "system_service_type": {"readonly": True},
        "public_ip_address": {"readonly": True},
        "version": {"readonly": True},
    }

    _attribute_map = {
        "system_service_type": {"key": "systemServiceType", "type": "str"},
        "public_ip_address": {"key": "publicIpAddress", "type": "str"},
        "version": {"key": "version", "type": "str"},
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.system_service_type = None
        self.public_ip_address = None
        self.version = None


class TableVerticalFeaturizationSettings(FeaturizationSettings):
    """Featurization Configuration.

    :ivar dataset_language: Dataset language, useful for the text data.
    :vartype dataset_language: str
    :ivar blocked_transformers: These transformers shall not be used in featurization.
    :vartype blocked_transformers: list[str or
     ~azure.mgmt.machinelearningservices.models.BlockedTransformers]
    :ivar column_name_and_types: Dictionary of column name and its type (int, float, string,
     datetime etc).
    :vartype column_name_and_types: dict[str, str]
    :ivar enable_dnn_featurization: Determines whether to use Dnn based featurizers for data
     featurization.
    :vartype enable_dnn_featurization: bool
    :ivar mode: Featurization mode - User can keep the default 'Auto' mode and AutoML will take
     care of necessary transformation of the data in featurization phase.
     If 'Off' is selected then no featurization is done.
     If 'Custom' is selected then user can specify additional inputs to customize how featurization
     is done. Known values are: "Auto", "Custom", and "Off".
    :vartype mode: str or ~azure.mgmt.machinelearningservices.models.FeaturizationMode
    :ivar transformer_params: User can specify additional transformers to be used along with the
     columns to which it would be applied and parameters for the transformer constructor.
    :vartype transformer_params: dict[str,
     list[~azure.mgmt.machinelearningservices.models.ColumnTransformer]]
    """

    _attribute_map = {
        "dataset_language": {"key": "datasetLanguage", "type": "str"},
        "blocked_transformers": {"key": "blockedTransformers", "type": "[str]"},
        "column_name_and_types": {"key": "columnNameAndTypes", "type": "{str}"},
        "enable_dnn_featurization": {"key": "enableDnnFeaturization", "type": "bool"},
        "mode": {"key": "mode", "type": "str"},
        "transformer_params": {"key": "transformerParams", "type": "{[ColumnTransformer]}"},
    }

    def __init__(
        self,
        *,
        dataset_language: Optional[str] = None,
        blocked_transformers: Optional[List[Union[str, "_models.BlockedTransformers"]]] = None,
        column_name_and_types: Optional[Dict[str, str]] = None,
        enable_dnn_featurization: bool = False,
        mode: Optional[Union[str, "_models.FeaturizationMode"]] = None,
        transformer_params: Optional[Dict[str, List["_models.ColumnTransformer"]]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword dataset_language: Dataset language, useful for the text data.
        :paramtype dataset_language: str
        :keyword blocked_transformers: These transformers shall not be used in featurization.
        :paramtype blocked_transformers: list[str or
         ~azure.mgmt.machinelearningservices.models.BlockedTransformers]
        :keyword column_name_and_types: Dictionary of column name and its type (int, float, string,
         datetime etc).
        :paramtype column_name_and_types: dict[str, str]
        :keyword enable_dnn_featurization: Determines whether to use Dnn based featurizers for data
         featurization.
        :paramtype enable_dnn_featurization: bool
        :keyword mode: Featurization mode - User can keep the default 'Auto' mode and AutoML will take
         care of necessary transformation of the data in featurization phase.
         If 'Off' is selected then no featurization is done.
         If 'Custom' is selected then user can specify additional inputs to customize how featurization
         is done. Known values are: "Auto", "Custom", and "Off".
        :paramtype mode: str or ~azure.mgmt.machinelearningservices.models.FeaturizationMode
        :keyword transformer_params: User can specify additional transformers to be used along with the
         columns to which it would be applied and parameters for the transformer constructor.
        :paramtype transformer_params: dict[str,
         list[~azure.mgmt.machinelearningservices.models.ColumnTransformer]]
        """
        super().__init__(dataset_language=dataset_language, **kwargs)
        self.blocked_transformers = blocked_transformers
        self.column_name_and_types = column_name_and_types
        self.enable_dnn_featurization = enable_dnn_featurization
        self.mode = mode
        self.transformer_params = transformer_params


class TableVerticalLimitSettings(_serialization.Model):
    """Job execution constraints.

    :ivar enable_early_termination: Enable early termination, determines whether or not if
     AutoMLJob will terminate early if there is no score improvement in last 20 iterations.
    :vartype enable_early_termination: bool
    :ivar exit_score: Exit score for the AutoML job.
    :vartype exit_score: float
    :ivar max_concurrent_trials: Maximum Concurrent iterations.
    :vartype max_concurrent_trials: int
    :ivar max_cores_per_trial: Max cores per iteration.
    :vartype max_cores_per_trial: int
    :ivar max_trials: Number of iterations.
    :vartype max_trials: int
    :ivar timeout: AutoML job timeout.
    :vartype timeout: ~datetime.timedelta
    :ivar trial_timeout: Iteration timeout.
    :vartype trial_timeout: ~datetime.timedelta
    """

    _attribute_map = {
        "enable_early_termination": {"key": "enableEarlyTermination", "type": "bool"},
        "exit_score": {"key": "exitScore", "type": "float"},
        "max_concurrent_trials": {"key": "maxConcurrentTrials", "type": "int"},
        "max_cores_per_trial": {"key": "maxCoresPerTrial", "type": "int"},
        "max_trials": {"key": "maxTrials", "type": "int"},
        "timeout": {"key": "timeout", "type": "duration"},
        "trial_timeout": {"key": "trialTimeout", "type": "duration"},
    }

    def __init__(
        self,
        *,
        enable_early_termination: bool = True,
        exit_score: Optional[float] = None,
        max_concurrent_trials: int = 1,
        max_cores_per_trial: int = -1,
        max_trials: int = 1000,
        timeout: datetime.timedelta = "PT6H",
        trial_timeout: datetime.timedelta = "PT30M",
        **kwargs: Any
    ) -> None:
        """
        :keyword enable_early_termination: Enable early termination, determines whether or not if
         AutoMLJob will terminate early if there is no score improvement in last 20 iterations.
        :paramtype enable_early_termination: bool
        :keyword exit_score: Exit score for the AutoML job.
        :paramtype exit_score: float
        :keyword max_concurrent_trials: Maximum Concurrent iterations.
        :paramtype max_concurrent_trials: int
        :keyword max_cores_per_trial: Max cores per iteration.
        :paramtype max_cores_per_trial: int
        :keyword max_trials: Number of iterations.
        :paramtype max_trials: int
        :keyword timeout: AutoML job timeout.
        :paramtype timeout: ~datetime.timedelta
        :keyword trial_timeout: Iteration timeout.
        :paramtype trial_timeout: ~datetime.timedelta
        """
        super().__init__(**kwargs)
        self.enable_early_termination = enable_early_termination
        self.exit_score = exit_score
        self.max_concurrent_trials = max_concurrent_trials
        self.max_cores_per_trial = max_cores_per_trial
        self.max_trials = max_trials
        self.timeout = timeout
        self.trial_timeout = trial_timeout


class TargetUtilizationScaleSettings(OnlineScaleSettings):
    """TargetUtilizationScaleSettings.

    All required parameters must be populated in order to send to Azure.

    :ivar scale_type: [Required] Type of deployment scaling algorithm. Required. Known values are:
     "Default" and "TargetUtilization".
    :vartype scale_type: str or ~azure.mgmt.machinelearningservices.models.ScaleType
    :ivar max_instances: The maximum number of instances that the deployment can scale to. The
     quota will be reserved for max_instances.
    :vartype max_instances: int
    :ivar min_instances: The minimum number of instances to always be present.
    :vartype min_instances: int
    :ivar polling_interval: The polling interval in ISO 8691 format. Only supports duration with
     precision as low as Seconds.
    :vartype polling_interval: ~datetime.timedelta
    :ivar target_utilization_percentage: Target CPU usage for the autoscaler.
    :vartype target_utilization_percentage: int
    """

    _validation = {
        "scale_type": {"required": True},
    }

    _attribute_map = {
        "scale_type": {"key": "scaleType", "type": "str"},
        "max_instances": {"key": "maxInstances", "type": "int"},
        "min_instances": {"key": "minInstances", "type": "int"},
        "polling_interval": {"key": "pollingInterval", "type": "duration"},
        "target_utilization_percentage": {"key": "targetUtilizationPercentage", "type": "int"},
    }

    def __init__(
        self,
        *,
        max_instances: int = 1,
        min_instances: int = 1,
        polling_interval: datetime.timedelta = "PT1S",
        target_utilization_percentage: int = 70,
        **kwargs: Any
    ) -> None:
        """
        :keyword max_instances: The maximum number of instances that the deployment can scale to. The
         quota will be reserved for max_instances.
        :paramtype max_instances: int
        :keyword min_instances: The minimum number of instances to always be present.
        :paramtype min_instances: int
        :keyword polling_interval: The polling interval in ISO 8691 format. Only supports duration with
         precision as low as Seconds.
        :paramtype polling_interval: ~datetime.timedelta
        :keyword target_utilization_percentage: Target CPU usage for the autoscaler.
        :paramtype target_utilization_percentage: int
        """
        super().__init__(**kwargs)
        self.scale_type: str = "TargetUtilization"
        self.max_instances = max_instances
        self.min_instances = min_instances
        self.polling_interval = polling_interval
        self.target_utilization_percentage = target_utilization_percentage


class TensorFlow(DistributionConfiguration):
    """TensorFlow distribution configuration.

    All required parameters must be populated in order to send to Azure.

    :ivar distribution_type: [Required] Specifies the type of distribution framework. Required.
     Known values are: "PyTorch", "TensorFlow", and "Mpi".
    :vartype distribution_type: str or ~azure.mgmt.machinelearningservices.models.DistributionType
    :ivar parameter_server_count: Number of parameter server tasks.
    :vartype parameter_server_count: int
    :ivar worker_count: Number of workers. If not specified, will default to the instance count.
    :vartype worker_count: int
    """

    _validation = {
        "distribution_type": {"required": True},
    }

    _attribute_map = {
        "distribution_type": {"key": "distributionType", "type": "str"},
        "parameter_server_count": {"key": "parameterServerCount", "type": "int"},
        "worker_count": {"key": "workerCount", "type": "int"},
    }

    def __init__(self, *, parameter_server_count: int = 0, worker_count: Optional[int] = None, **kwargs: Any) -> None:
        """
        :keyword parameter_server_count: Number of parameter server tasks.
        :paramtype parameter_server_count: int
        :keyword worker_count: Number of workers. If not specified, will default to the instance count.
        :paramtype worker_count: int
        """
        super().__init__(**kwargs)
        self.distribution_type: str = "TensorFlow"
        self.parameter_server_count = parameter_server_count
        self.worker_count = worker_count


class TextClassification(NlpVertical, AutoMLVertical):
    """Text Classification task in AutoML NLP vertical.
    NLP - Natural Language Processing.

    All required parameters must be populated in order to send to Azure.

    :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info",
     "Warning", "Error", and "Critical".
    :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity
    :ivar target_column_name: Target column name: This is prediction values column.
     Also known as label column name in context of classification tasks.
    :vartype target_column_name: str
    :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are:
     "Classification", "Regression", "Forecasting", "ImageClassification",
     "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation",
     "TextClassification", "TextClassificationMultilabel", and "TextNER".
    :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType
    :ivar training_data: [Required] Training data input. Required.
    :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
    :ivar featurization_settings: Featurization inputs needed for AutoML job.
    :vartype featurization_settings:
     ~azure.mgmt.machinelearningservices.models.NlpVerticalFeaturizationSettings
    :ivar limit_settings: Execution constraints for AutoMLJob.
    :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.NlpVerticalLimitSettings
    :ivar validation_data: Validation data inputs.
    :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
    :ivar primary_metric: Primary metric for Text-Classification task. Known values are:
     "AUCWeighted", "Accuracy", "NormMacroRecall", "AveragePrecisionScoreWeighted", and
     "PrecisionScoreWeighted".
    :vartype primary_metric: str or
     ~azure.mgmt.machinelearningservices.models.ClassificationPrimaryMetrics
    """

    _validation = {
        "task_type": {"required": True},
        "training_data": {"required": True},
    }

    _attribute_map = {
        "log_verbosity": {"key": "logVerbosity", "type": "str"},
        "target_column_name": {"key": "targetColumnName", "type": "str"},
        "task_type": {"key": "taskType", "type": "str"},
        "training_data": {"key": "trainingData", "type": "MLTableJobInput"},
        "featurization_settings": {"key": "featurizationSettings", "type": "NlpVerticalFeaturizationSettings"},
        "limit_settings": {"key": "limitSettings", "type": "NlpVerticalLimitSettings"},
        "validation_data": {"key": "validationData", "type": "MLTableJobInput"},
        "primary_metric": {"key": "primaryMetric", "type": "str"},
    }

    def __init__(
        self,
        *,
        training_data: "_models.MLTableJobInput",
        log_verbosity: Optional[Union[str, "_models.LogVerbosity"]] = None,
        target_column_name: Optional[str] = None,
        featurization_settings: Optional["_models.NlpVerticalFeaturizationSettings"] = None,
        limit_settings: Optional["_models.NlpVerticalLimitSettings"] = None,
        validation_data: Optional["_models.MLTableJobInput"] = None,
        primary_metric: Optional[Union[str, "_models.ClassificationPrimaryMetrics"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info",
         "Warning", "Error", and "Critical".
        :paramtype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity
        :keyword target_column_name: Target column name: This is prediction values column.
         Also known as label column name in context of classification tasks.
        :paramtype target_column_name: str
        :keyword training_data: [Required] Training data input. Required.
        :paramtype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
        :keyword featurization_settings: Featurization inputs needed for AutoML job.
        :paramtype featurization_settings:
         ~azure.mgmt.machinelearningservices.models.NlpVerticalFeaturizationSettings
        :keyword limit_settings: Execution constraints for AutoMLJob.
        :paramtype limit_settings: ~azure.mgmt.machinelearningservices.models.NlpVerticalLimitSettings
        :keyword validation_data: Validation data inputs.
        :paramtype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
        :keyword primary_metric: Primary metric for Text-Classification task. Known values are:
         "AUCWeighted", "Accuracy", "NormMacroRecall", "AveragePrecisionScoreWeighted", and
         "PrecisionScoreWeighted".
        :paramtype primary_metric: str or
         ~azure.mgmt.machinelearningservices.models.ClassificationPrimaryMetrics
        """
        super().__init__(
            featurization_settings=featurization_settings,
            limit_settings=limit_settings,
            validation_data=validation_data,
            log_verbosity=log_verbosity,
            target_column_name=target_column_name,
            training_data=training_data,
            **kwargs
        )
        self.log_verbosity = log_verbosity
        self.target_column_name = target_column_name
        self.task_type: str = "TextClassification"
        self.training_data = training_data
        self.primary_metric = primary_metric
        self.featurization_settings = featurization_settings
        self.limit_settings = limit_settings
        self.validation_data = validation_data


class TextClassificationMultilabel(NlpVertical, AutoMLVertical):
    """Text Classification Multilabel task in AutoML NLP vertical.
    NLP - Natural Language Processing.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info",
     "Warning", "Error", and "Critical".
    :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity
    :ivar target_column_name: Target column name: This is prediction values column.
     Also known as label column name in context of classification tasks.
    :vartype target_column_name: str
    :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are:
     "Classification", "Regression", "Forecasting", "ImageClassification",
     "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation",
     "TextClassification", "TextClassificationMultilabel", and "TextNER".
    :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType
    :ivar training_data: [Required] Training data input. Required.
    :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
    :ivar featurization_settings: Featurization inputs needed for AutoML job.
    :vartype featurization_settings:
     ~azure.mgmt.machinelearningservices.models.NlpVerticalFeaturizationSettings
    :ivar limit_settings: Execution constraints for AutoMLJob.
    :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.NlpVerticalLimitSettings
    :ivar validation_data: Validation data inputs.
    :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
    :ivar primary_metric: Primary metric for Text-Classification-Multilabel task.
     Currently only Accuracy is supported as primary metric, hence user need not set it explicitly.
     Known values are: "AUCWeighted", "Accuracy", "NormMacroRecall",
     "AveragePrecisionScoreWeighted", "PrecisionScoreWeighted", and "IOU".
    :vartype primary_metric: str or
     ~azure.mgmt.machinelearningservices.models.ClassificationMultilabelPrimaryMetrics
    """

    _validation = {
        "task_type": {"required": True},
        "training_data": {"required": True},
        "primary_metric": {"readonly": True},
    }

    _attribute_map = {
        "log_verbosity": {"key": "logVerbosity", "type": "str"},
        "target_column_name": {"key": "targetColumnName", "type": "str"},
        "task_type": {"key": "taskType", "type": "str"},
        "training_data": {"key": "trainingData", "type": "MLTableJobInput"},
        "featurization_settings": {"key": "featurizationSettings", "type": "NlpVerticalFeaturizationSettings"},
        "limit_settings": {"key": "limitSettings", "type": "NlpVerticalLimitSettings"},
        "validation_data": {"key": "validationData", "type": "MLTableJobInput"},
        "primary_metric": {"key": "primaryMetric", "type": "str"},
    }

    def __init__(
        self,
        *,
        training_data: "_models.MLTableJobInput",
        log_verbosity: Optional[Union[str, "_models.LogVerbosity"]] = None,
        target_column_name: Optional[str] = None,
        featurization_settings: Optional["_models.NlpVerticalFeaturizationSettings"] = None,
        limit_settings: Optional["_models.NlpVerticalLimitSettings"] = None,
        validation_data: Optional["_models.MLTableJobInput"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info",
         "Warning", "Error", and "Critical".
        :paramtype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity
        :keyword target_column_name: Target column name: This is prediction values column.
         Also known as label column name in context of classification tasks.
        :paramtype target_column_name: str
        :keyword training_data: [Required] Training data input. Required.
        :paramtype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
        :keyword featurization_settings: Featurization inputs needed for AutoML job.
        :paramtype featurization_settings:
         ~azure.mgmt.machinelearningservices.models.NlpVerticalFeaturizationSettings
        :keyword limit_settings: Execution constraints for AutoMLJob.
        :paramtype limit_settings: ~azure.mgmt.machinelearningservices.models.NlpVerticalLimitSettings
        :keyword validation_data: Validation data inputs.
        :paramtype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
        """
        super().__init__(
            featurization_settings=featurization_settings,
            limit_settings=limit_settings,
            validation_data=validation_data,
            log_verbosity=log_verbosity,
            target_column_name=target_column_name,
            training_data=training_data,
            **kwargs
        )
        self.log_verbosity = log_verbosity
        self.target_column_name = target_column_name
        self.task_type: str = "TextClassificationMultilabel"
        self.training_data = training_data
        self.primary_metric = None
        self.featurization_settings = featurization_settings
        self.limit_settings = limit_settings
        self.validation_data = validation_data


class TextNer(NlpVertical, AutoMLVertical):
    """Text-NER task in AutoML NLP vertical.
    NER - Named Entity Recognition.
    NLP - Natural Language Processing.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info",
     "Warning", "Error", and "Critical".
    :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity
    :ivar target_column_name: Target column name: This is prediction values column.
     Also known as label column name in context of classification tasks.
    :vartype target_column_name: str
    :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are:
     "Classification", "Regression", "Forecasting", "ImageClassification",
     "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation",
     "TextClassification", "TextClassificationMultilabel", and "TextNER".
    :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType
    :ivar training_data: [Required] Training data input. Required.
    :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
    :ivar featurization_settings: Featurization inputs needed for AutoML job.
    :vartype featurization_settings:
     ~azure.mgmt.machinelearningservices.models.NlpVerticalFeaturizationSettings
    :ivar limit_settings: Execution constraints for AutoMLJob.
    :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.NlpVerticalLimitSettings
    :ivar validation_data: Validation data inputs.
    :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
    :ivar primary_metric: Primary metric for Text-NER task.
     Only 'Accuracy' is supported for Text-NER, so user need not set this explicitly. Known values
     are: "AUCWeighted", "Accuracy", "NormMacroRecall", "AveragePrecisionScoreWeighted", and
     "PrecisionScoreWeighted".
    :vartype primary_metric: str or
     ~azure.mgmt.machinelearningservices.models.ClassificationPrimaryMetrics
    """

    _validation = {
        "task_type": {"required": True},
        "training_data": {"required": True},
        "primary_metric": {"readonly": True},
    }

    _attribute_map = {
        "log_verbosity": {"key": "logVerbosity", "type": "str"},
        "target_column_name": {"key": "targetColumnName", "type": "str"},
        "task_type": {"key": "taskType", "type": "str"},
        "training_data": {"key": "trainingData", "type": "MLTableJobInput"},
        "featurization_settings": {"key": "featurizationSettings", "type": "NlpVerticalFeaturizationSettings"},
        "limit_settings": {"key": "limitSettings", "type": "NlpVerticalLimitSettings"},
        "validation_data": {"key": "validationData", "type": "MLTableJobInput"},
        "primary_metric": {"key": "primaryMetric", "type": "str"},
    }

    def __init__(
        self,
        *,
        training_data: "_models.MLTableJobInput",
        log_verbosity: Optional[Union[str, "_models.LogVerbosity"]] = None,
        target_column_name: Optional[str] = None,
        featurization_settings: Optional["_models.NlpVerticalFeaturizationSettings"] = None,
        limit_settings: Optional["_models.NlpVerticalLimitSettings"] = None,
        validation_data: Optional["_models.MLTableJobInput"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info",
         "Warning", "Error", and "Critical".
        :paramtype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity
        :keyword target_column_name: Target column name: This is prediction values column.
         Also known as label column name in context of classification tasks.
        :paramtype target_column_name: str
        :keyword training_data: [Required] Training data input. Required.
        :paramtype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
        :keyword featurization_settings: Featurization inputs needed for AutoML job.
        :paramtype featurization_settings:
         ~azure.mgmt.machinelearningservices.models.NlpVerticalFeaturizationSettings
        :keyword limit_settings: Execution constraints for AutoMLJob.
        :paramtype limit_settings: ~azure.mgmt.machinelearningservices.models.NlpVerticalLimitSettings
        :keyword validation_data: Validation data inputs.
        :paramtype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput
        """
        super().__init__(
            featurization_settings=featurization_settings,
            limit_settings=limit_settings,
            validation_data=validation_data,
            log_verbosity=log_verbosity,
            target_column_name=target_column_name,
            training_data=training_data,
            **kwargs
        )
        self.log_verbosity = log_verbosity
        self.target_column_name = target_column_name
        self.task_type: str = "TextNER"
        self.training_data = training_data
        self.primary_metric = None
        self.featurization_settings = featurization_settings
        self.limit_settings = limit_settings
        self.validation_data = validation_data


class TmpfsOptions(_serialization.Model):
    """Describes the tmpfs options for the container.

    :ivar size: Mention the Tmpfs size.
    :vartype size: int
    """

    _attribute_map = {
        "size": {"key": "size", "type": "int"},
    }

    def __init__(self, *, size: Optional[int] = None, **kwargs: Any) -> None:
        """
        :keyword size: Mention the Tmpfs size.
        :paramtype size: int
        """
        super().__init__(**kwargs)
        self.size = size


class TrialComponent(_serialization.Model):
    """Trial component definition.

    All required parameters must be populated in order to send to Azure.

    :ivar code_id: ARM resource ID of the code asset.
    :vartype code_id: str
    :ivar command: [Required] The command to execute on startup of the job. eg. "python train.py".
     Required.
    :vartype command: str
    :ivar distribution: Distribution configuration of the job. If set, this should be one of Mpi,
     Tensorflow, PyTorch, or null.
    :vartype distribution: ~azure.mgmt.machinelearningservices.models.DistributionConfiguration
    :ivar environment_id: [Required] The ARM resource ID of the Environment specification for the
     job. Required.
    :vartype environment_id: str
    :ivar environment_variables: Environment variables included in the job.
    :vartype environment_variables: dict[str, str]
    :ivar resources: Compute Resource configuration for the job.
    :vartype resources: ~azure.mgmt.machinelearningservices.models.JobResourceConfiguration
    """

    _validation = {
        "command": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"},
        "environment_id": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"},
    }

    _attribute_map = {
        "code_id": {"key": "codeId", "type": "str"},
        "command": {"key": "command", "type": "str"},
        "distribution": {"key": "distribution", "type": "DistributionConfiguration"},
        "environment_id": {"key": "environmentId", "type": "str"},
        "environment_variables": {"key": "environmentVariables", "type": "{str}"},
        "resources": {"key": "resources", "type": "JobResourceConfiguration"},
    }

    def __init__(
        self,
        *,
        command: str,
        environment_id: str,
        code_id: Optional[str] = None,
        distribution: Optional["_models.DistributionConfiguration"] = None,
        environment_variables: Optional[Dict[str, str]] = None,
        resources: Optional["_models.JobResourceConfiguration"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword code_id: ARM resource ID of the code asset.
        :paramtype code_id: str
        :keyword command: [Required] The command to execute on startup of the job. eg. "python
         train.py". Required.
        :paramtype command: str
        :keyword distribution: Distribution configuration of the job. If set, this should be one of
         Mpi, Tensorflow, PyTorch, or null.
        :paramtype distribution: ~azure.mgmt.machinelearningservices.models.DistributionConfiguration
        :keyword environment_id: [Required] The ARM resource ID of the Environment specification for
         the job. Required.
        :paramtype environment_id: str
        :keyword environment_variables: Environment variables included in the job.
        :paramtype environment_variables: dict[str, str]
        :keyword resources: Compute Resource configuration for the job.
        :paramtype resources: ~azure.mgmt.machinelearningservices.models.JobResourceConfiguration
        """
        super().__init__(**kwargs)
        self.code_id = code_id
        self.command = command
        self.distribution = distribution
        self.environment_id = environment_id
        self.environment_variables = environment_variables
        self.resources = resources


class TritonModelJobInput(AssetJobInput, JobInput):
    """TritonModelJobInput.

    All required parameters must be populated in order to send to Azure.

    :ivar description: Description for the input.
    :vartype description: str
    :ivar job_input_type: [Required] Specifies the type of job. Required. Known values are:
     "literal", "uri_file", "uri_folder", "mltable", "custom_model", "mlflow_model", and
     "triton_model".
    :vartype job_input_type: str or ~azure.mgmt.machinelearningservices.models.JobInputType
    :ivar mode: Input Asset Delivery Mode. Known values are: "ReadOnlyMount", "ReadWriteMount",
     "Download", "Direct", "EvalMount", and "EvalDownload".
    :vartype mode: str or ~azure.mgmt.machinelearningservices.models.InputDeliveryMode
    :ivar uri: [Required] Input Asset URI. Required.
    :vartype uri: str
    """

    _validation = {
        "job_input_type": {"required": True},
        "uri": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "job_input_type": {"key": "jobInputType", "type": "str"},
        "mode": {"key": "mode", "type": "str"},
        "uri": {"key": "uri", "type": "str"},
    }

    def __init__(
        self,
        *,
        uri: str,
        description: Optional[str] = None,
        mode: Optional[Union[str, "_models.InputDeliveryMode"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword description: Description for the input.
        :paramtype description: str
        :keyword mode: Input Asset Delivery Mode. Known values are: "ReadOnlyMount", "ReadWriteMount",
         "Download", "Direct", "EvalMount", and "EvalDownload".
        :paramtype mode: str or ~azure.mgmt.machinelearningservices.models.InputDeliveryMode
        :keyword uri: [Required] Input Asset URI. Required.
        :paramtype uri: str
        """
        super().__init__(mode=mode, uri=uri, description=description, **kwargs)
        self.description = description
        self.job_input_type: str = "triton_model"
        self.mode = mode
        self.uri = uri


class TritonModelJobOutput(AssetJobOutput, JobOutput):
    """TritonModelJobOutput.

    All required parameters must be populated in order to send to Azure.

    :ivar description: Description for the output.
    :vartype description: str
    :ivar job_output_type: [Required] Specifies the type of job. Required. Known values are:
     "uri_file", "uri_folder", "mltable", "custom_model", "mlflow_model", and "triton_model".
    :vartype job_output_type: str or ~azure.mgmt.machinelearningservices.models.JobOutputType
    :ivar mode: Output Asset Delivery Mode. Known values are: "ReadWriteMount" and "Upload".
    :vartype mode: str or ~azure.mgmt.machinelearningservices.models.OutputDeliveryMode
    :ivar uri: Output Asset URI.
    :vartype uri: str
    """

    _validation = {
        "job_output_type": {"required": True},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "job_output_type": {"key": "jobOutputType", "type": "str"},
        "mode": {"key": "mode", "type": "str"},
        "uri": {"key": "uri", "type": "str"},
    }

    def __init__(
        self,
        *,
        description: Optional[str] = None,
        mode: Optional[Union[str, "_models.OutputDeliveryMode"]] = None,
        uri: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword description: Description for the output.
        :paramtype description: str
        :keyword mode: Output Asset Delivery Mode. Known values are: "ReadWriteMount" and "Upload".
        :paramtype mode: str or ~azure.mgmt.machinelearningservices.models.OutputDeliveryMode
        :keyword uri: Output Asset URI.
        :paramtype uri: str
        """
        super().__init__(mode=mode, uri=uri, description=description, **kwargs)
        self.description = description
        self.job_output_type: str = "triton_model"
        self.mode = mode
        self.uri = uri


class TruncationSelectionPolicy(EarlyTerminationPolicy):
    """Defines an early termination policy that cancels a given percentage of runs at each evaluation
    interval.

    All required parameters must be populated in order to send to Azure.

    :ivar delay_evaluation: Number of intervals by which to delay the first evaluation.
    :vartype delay_evaluation: int
    :ivar evaluation_interval: Interval (number of runs) between policy evaluations.
    :vartype evaluation_interval: int
    :ivar policy_type: [Required] Name of policy configuration. Required. Known values are:
     "Bandit", "MedianStopping", and "TruncationSelection".
    :vartype policy_type: str or
     ~azure.mgmt.machinelearningservices.models.EarlyTerminationPolicyType
    :ivar truncation_percentage: The percentage of runs to cancel at each evaluation interval.
    :vartype truncation_percentage: int
    """

    _validation = {
        "policy_type": {"required": True},
    }

    _attribute_map = {
        "delay_evaluation": {"key": "delayEvaluation", "type": "int"},
        "evaluation_interval": {"key": "evaluationInterval", "type": "int"},
        "policy_type": {"key": "policyType", "type": "str"},
        "truncation_percentage": {"key": "truncationPercentage", "type": "int"},
    }

    def __init__(
        self, *, delay_evaluation: int = 0, evaluation_interval: int = 0, truncation_percentage: int = 0, **kwargs: Any
    ) -> None:
        """
        :keyword delay_evaluation: Number of intervals by which to delay the first evaluation.
        :paramtype delay_evaluation: int
        :keyword evaluation_interval: Interval (number of runs) between policy evaluations.
        :paramtype evaluation_interval: int
        :keyword truncation_percentage: The percentage of runs to cancel at each evaluation interval.
        :paramtype truncation_percentage: int
        """
        super().__init__(delay_evaluation=delay_evaluation, evaluation_interval=evaluation_interval, **kwargs)
        self.policy_type: str = "TruncationSelection"
        self.truncation_percentage = truncation_percentage


class UpdateWorkspaceQuotas(_serialization.Model):
    """The properties for update Quota response.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar id: Specifies the resource ID.
    :vartype id: str
    :ivar type: Specifies the resource type.
    :vartype type: str
    :ivar limit: The maximum permitted quota of the resource.
    :vartype limit: int
    :ivar unit: An enum describing the unit of quota measurement. "Count"
    :vartype unit: str or ~azure.mgmt.machinelearningservices.models.QuotaUnit
    :ivar status: Status of update workspace quota. Known values are: "Undefined", "Success",
     "Failure", "InvalidQuotaBelowClusterMinimum", "InvalidQuotaExceedsSubscriptionLimit",
     "InvalidVMFamilyName", "OperationNotSupportedForSku", and "OperationNotEnabledForRegion".
    :vartype status: str or ~azure.mgmt.machinelearningservices.models.Status
    """

    _validation = {
        "id": {"readonly": True},
        "type": {"readonly": True},
        "unit": {"readonly": True},
    }

    _attribute_map = {
        "id": {"key": "id", "type": "str"},
        "type": {"key": "type", "type": "str"},
        "limit": {"key": "limit", "type": "int"},
        "unit": {"key": "unit", "type": "str"},
        "status": {"key": "status", "type": "str"},
    }

    def __init__(
        self, *, limit: Optional[int] = None, status: Optional[Union[str, "_models.Status"]] = None, **kwargs: Any
    ) -> None:
        """
        :keyword limit: The maximum permitted quota of the resource.
        :paramtype limit: int
        :keyword status: Status of update workspace quota. Known values are: "Undefined", "Success",
         "Failure", "InvalidQuotaBelowClusterMinimum", "InvalidQuotaExceedsSubscriptionLimit",
         "InvalidVMFamilyName", "OperationNotSupportedForSku", and "OperationNotEnabledForRegion".
        :paramtype status: str or ~azure.mgmt.machinelearningservices.models.Status
        """
        super().__init__(**kwargs)
        self.id = None
        self.type = None
        self.limit = limit
        self.unit = None
        self.status = status


class UpdateWorkspaceQuotasResult(_serialization.Model):
    """The result of update workspace quota.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar value: The list of workspace quota update result.
    :vartype value: list[~azure.mgmt.machinelearningservices.models.UpdateWorkspaceQuotas]
    :ivar next_link: The URI to fetch the next page of workspace quota update result. Call
     ListNext() with this to fetch the next page of Workspace Quota update result.
    :vartype next_link: str
    """

    _validation = {
        "value": {"readonly": True},
        "next_link": {"readonly": True},
    }

    _attribute_map = {
        "value": {"key": "value", "type": "[UpdateWorkspaceQuotas]"},
        "next_link": {"key": "nextLink", "type": "str"},
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.value = None
        self.next_link = None


class UriFileDataVersion(DataVersionBaseProperties):
    """uri-file data version entity.

    All required parameters must be populated in order to send to Azure.

    :ivar description: The asset description text.
    :vartype description: str
    :ivar properties: The asset property dictionary.
    :vartype properties: dict[str, str]
    :ivar tags: Tag dictionary. Tags can be added, removed, and updated.
    :vartype tags: dict[str, str]
    :ivar is_anonymous: If the name version are system generated (anonymous registration).
    :vartype is_anonymous: bool
    :ivar is_archived: Is the asset archived?.
    :vartype is_archived: bool
    :ivar data_type: [Required] Specifies the type of data. Required. Known values are: "uri_file",
     "uri_folder", and "mltable".
    :vartype data_type: str or ~azure.mgmt.machinelearningservices.models.DataType
    :ivar data_uri: [Required] Uri of the data. Example:
     https://go.microsoft.com/fwlink/?linkid=2202330. Required.
    :vartype data_uri: str
    """

    _validation = {
        "data_type": {"required": True},
        "data_uri": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "properties": {"key": "properties", "type": "{str}"},
        "tags": {"key": "tags", "type": "{str}"},
        "is_anonymous": {"key": "isAnonymous", "type": "bool"},
        "is_archived": {"key": "isArchived", "type": "bool"},
        "data_type": {"key": "dataType", "type": "str"},
        "data_uri": {"key": "dataUri", "type": "str"},
    }

    def __init__(
        self,
        *,
        data_uri: str,
        description: Optional[str] = None,
        properties: Optional[Dict[str, str]] = None,
        tags: Optional[Dict[str, str]] = None,
        is_anonymous: bool = False,
        is_archived: bool = False,
        **kwargs: Any
    ) -> None:
        """
        :keyword description: The asset description text.
        :paramtype description: str
        :keyword properties: The asset property dictionary.
        :paramtype properties: dict[str, str]
        :keyword tags: Tag dictionary. Tags can be added, removed, and updated.
        :paramtype tags: dict[str, str]
        :keyword is_anonymous: If the name version are system generated (anonymous registration).
        :paramtype is_anonymous: bool
        :keyword is_archived: Is the asset archived?.
        :paramtype is_archived: bool
        :keyword data_uri: [Required] Uri of the data. Example:
         https://go.microsoft.com/fwlink/?linkid=2202330. Required.
        :paramtype data_uri: str
        """
        super().__init__(
            description=description,
            properties=properties,
            tags=tags,
            is_anonymous=is_anonymous,
            is_archived=is_archived,
            data_uri=data_uri,
            **kwargs
        )
        self.data_type: str = "uri_file"


class UriFileJobInput(AssetJobInput, JobInput):
    """UriFileJobInput.

    All required parameters must be populated in order to send to Azure.

    :ivar description: Description for the input.
    :vartype description: str
    :ivar job_input_type: [Required] Specifies the type of job. Required. Known values are:
     "literal", "uri_file", "uri_folder", "mltable", "custom_model", "mlflow_model", and
     "triton_model".
    :vartype job_input_type: str or ~azure.mgmt.machinelearningservices.models.JobInputType
    :ivar mode: Input Asset Delivery Mode. Known values are: "ReadOnlyMount", "ReadWriteMount",
     "Download", "Direct", "EvalMount", and "EvalDownload".
    :vartype mode: str or ~azure.mgmt.machinelearningservices.models.InputDeliveryMode
    :ivar uri: [Required] Input Asset URI. Required.
    :vartype uri: str
    """

    _validation = {
        "job_input_type": {"required": True},
        "uri": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "job_input_type": {"key": "jobInputType", "type": "str"},
        "mode": {"key": "mode", "type": "str"},
        "uri": {"key": "uri", "type": "str"},
    }

    def __init__(
        self,
        *,
        uri: str,
        description: Optional[str] = None,
        mode: Optional[Union[str, "_models.InputDeliveryMode"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword description: Description for the input.
        :paramtype description: str
        :keyword mode: Input Asset Delivery Mode. Known values are: "ReadOnlyMount", "ReadWriteMount",
         "Download", "Direct", "EvalMount", and "EvalDownload".
        :paramtype mode: str or ~azure.mgmt.machinelearningservices.models.InputDeliveryMode
        :keyword uri: [Required] Input Asset URI. Required.
        :paramtype uri: str
        """
        super().__init__(mode=mode, uri=uri, description=description, **kwargs)
        self.description = description
        self.job_input_type: str = "uri_file"
        self.mode = mode
        self.uri = uri


class UriFileJobOutput(AssetJobOutput, JobOutput):
    """UriFileJobOutput.

    All required parameters must be populated in order to send to Azure.

    :ivar description: Description for the output.
    :vartype description: str
    :ivar job_output_type: [Required] Specifies the type of job. Required. Known values are:
     "uri_file", "uri_folder", "mltable", "custom_model", "mlflow_model", and "triton_model".
    :vartype job_output_type: str or ~azure.mgmt.machinelearningservices.models.JobOutputType
    :ivar mode: Output Asset Delivery Mode. Known values are: "ReadWriteMount" and "Upload".
    :vartype mode: str or ~azure.mgmt.machinelearningservices.models.OutputDeliveryMode
    :ivar uri: Output Asset URI.
    :vartype uri: str
    """

    _validation = {
        "job_output_type": {"required": True},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "job_output_type": {"key": "jobOutputType", "type": "str"},
        "mode": {"key": "mode", "type": "str"},
        "uri": {"key": "uri", "type": "str"},
    }

    def __init__(
        self,
        *,
        description: Optional[str] = None,
        mode: Optional[Union[str, "_models.OutputDeliveryMode"]] = None,
        uri: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword description: Description for the output.
        :paramtype description: str
        :keyword mode: Output Asset Delivery Mode. Known values are: "ReadWriteMount" and "Upload".
        :paramtype mode: str or ~azure.mgmt.machinelearningservices.models.OutputDeliveryMode
        :keyword uri: Output Asset URI.
        :paramtype uri: str
        """
        super().__init__(mode=mode, uri=uri, description=description, **kwargs)
        self.description = description
        self.job_output_type: str = "uri_file"
        self.mode = mode
        self.uri = uri


class UriFolderDataVersion(DataVersionBaseProperties):
    """uri-folder data version entity.

    All required parameters must be populated in order to send to Azure.

    :ivar description: The asset description text.
    :vartype description: str
    :ivar properties: The asset property dictionary.
    :vartype properties: dict[str, str]
    :ivar tags: Tag dictionary. Tags can be added, removed, and updated.
    :vartype tags: dict[str, str]
    :ivar is_anonymous: If the name version are system generated (anonymous registration).
    :vartype is_anonymous: bool
    :ivar is_archived: Is the asset archived?.
    :vartype is_archived: bool
    :ivar data_type: [Required] Specifies the type of data. Required. Known values are: "uri_file",
     "uri_folder", and "mltable".
    :vartype data_type: str or ~azure.mgmt.machinelearningservices.models.DataType
    :ivar data_uri: [Required] Uri of the data. Example:
     https://go.microsoft.com/fwlink/?linkid=2202330. Required.
    :vartype data_uri: str
    """

    _validation = {
        "data_type": {"required": True},
        "data_uri": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "properties": {"key": "properties", "type": "{str}"},
        "tags": {"key": "tags", "type": "{str}"},
        "is_anonymous": {"key": "isAnonymous", "type": "bool"},
        "is_archived": {"key": "isArchived", "type": "bool"},
        "data_type": {"key": "dataType", "type": "str"},
        "data_uri": {"key": "dataUri", "type": "str"},
    }

    def __init__(
        self,
        *,
        data_uri: str,
        description: Optional[str] = None,
        properties: Optional[Dict[str, str]] = None,
        tags: Optional[Dict[str, str]] = None,
        is_anonymous: bool = False,
        is_archived: bool = False,
        **kwargs: Any
    ) -> None:
        """
        :keyword description: The asset description text.
        :paramtype description: str
        :keyword properties: The asset property dictionary.
        :paramtype properties: dict[str, str]
        :keyword tags: Tag dictionary. Tags can be added, removed, and updated.
        :paramtype tags: dict[str, str]
        :keyword is_anonymous: If the name version are system generated (anonymous registration).
        :paramtype is_anonymous: bool
        :keyword is_archived: Is the asset archived?.
        :paramtype is_archived: bool
        :keyword data_uri: [Required] Uri of the data. Example:
         https://go.microsoft.com/fwlink/?linkid=2202330. Required.
        :paramtype data_uri: str
        """
        super().__init__(
            description=description,
            properties=properties,
            tags=tags,
            is_anonymous=is_anonymous,
            is_archived=is_archived,
            data_uri=data_uri,
            **kwargs
        )
        self.data_type: str = "uri_folder"


class UriFolderJobInput(AssetJobInput, JobInput):
    """UriFolderJobInput.

    All required parameters must be populated in order to send to Azure.

    :ivar description: Description for the input.
    :vartype description: str
    :ivar job_input_type: [Required] Specifies the type of job. Required. Known values are:
     "literal", "uri_file", "uri_folder", "mltable", "custom_model", "mlflow_model", and
     "triton_model".
    :vartype job_input_type: str or ~azure.mgmt.machinelearningservices.models.JobInputType
    :ivar mode: Input Asset Delivery Mode. Known values are: "ReadOnlyMount", "ReadWriteMount",
     "Download", "Direct", "EvalMount", and "EvalDownload".
    :vartype mode: str or ~azure.mgmt.machinelearningservices.models.InputDeliveryMode
    :ivar uri: [Required] Input Asset URI. Required.
    :vartype uri: str
    """

    _validation = {
        "job_input_type": {"required": True},
        "uri": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "job_input_type": {"key": "jobInputType", "type": "str"},
        "mode": {"key": "mode", "type": "str"},
        "uri": {"key": "uri", "type": "str"},
    }

    def __init__(
        self,
        *,
        uri: str,
        description: Optional[str] = None,
        mode: Optional[Union[str, "_models.InputDeliveryMode"]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword description: Description for the input.
        :paramtype description: str
        :keyword mode: Input Asset Delivery Mode. Known values are: "ReadOnlyMount", "ReadWriteMount",
         "Download", "Direct", "EvalMount", and "EvalDownload".
        :paramtype mode: str or ~azure.mgmt.machinelearningservices.models.InputDeliveryMode
        :keyword uri: [Required] Input Asset URI. Required.
        :paramtype uri: str
        """
        super().__init__(mode=mode, uri=uri, description=description, **kwargs)
        self.description = description
        self.job_input_type: str = "uri_folder"
        self.mode = mode
        self.uri = uri


class UriFolderJobOutput(AssetJobOutput, JobOutput):
    """UriFolderJobOutput.

    All required parameters must be populated in order to send to Azure.

    :ivar description: Description for the output.
    :vartype description: str
    :ivar job_output_type: [Required] Specifies the type of job. Required. Known values are:
     "uri_file", "uri_folder", "mltable", "custom_model", "mlflow_model", and "triton_model".
    :vartype job_output_type: str or ~azure.mgmt.machinelearningservices.models.JobOutputType
    :ivar mode: Output Asset Delivery Mode. Known values are: "ReadWriteMount" and "Upload".
    :vartype mode: str or ~azure.mgmt.machinelearningservices.models.OutputDeliveryMode
    :ivar uri: Output Asset URI.
    :vartype uri: str
    """

    _validation = {
        "job_output_type": {"required": True},
    }

    _attribute_map = {
        "description": {"key": "description", "type": "str"},
        "job_output_type": {"key": "jobOutputType", "type": "str"},
        "mode": {"key": "mode", "type": "str"},
        "uri": {"key": "uri", "type": "str"},
    }

    def __init__(
        self,
        *,
        description: Optional[str] = None,
        mode: Optional[Union[str, "_models.OutputDeliveryMode"]] = None,
        uri: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword description: Description for the output.
        :paramtype description: str
        :keyword mode: Output Asset Delivery Mode. Known values are: "ReadWriteMount" and "Upload".
        :paramtype mode: str or ~azure.mgmt.machinelearningservices.models.OutputDeliveryMode
        :keyword uri: Output Asset URI.
        :paramtype uri: str
        """
        super().__init__(mode=mode, uri=uri, description=description, **kwargs)
        self.description = description
        self.job_output_type: str = "uri_folder"
        self.mode = mode
        self.uri = uri


class Usage(_serialization.Model):
    """Describes AML Resource Usage.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar id: Specifies the resource ID.
    :vartype id: str
    :ivar aml_workspace_location: Region of the AML workspace in the id.
    :vartype aml_workspace_location: str
    :ivar type: Specifies the resource type.
    :vartype type: str
    :ivar unit: An enum describing the unit of usage measurement. "Count"
    :vartype unit: str or ~azure.mgmt.machinelearningservices.models.UsageUnit
    :ivar current_value: The current usage of the resource.
    :vartype current_value: int
    :ivar limit: The maximum permitted usage of the resource.
    :vartype limit: int
    :ivar name: The name of the type of usage.
    :vartype name: ~azure.mgmt.machinelearningservices.models.UsageName
    """

    _validation = {
        "id": {"readonly": True},
        "aml_workspace_location": {"readonly": True},
        "type": {"readonly": True},
        "unit": {"readonly": True},
        "current_value": {"readonly": True},
        "limit": {"readonly": True},
        "name": {"readonly": True},
    }

    _attribute_map = {
        "id": {"key": "id", "type": "str"},
        "aml_workspace_location": {"key": "amlWorkspaceLocation", "type": "str"},
        "type": {"key": "type", "type": "str"},
        "unit": {"key": "unit", "type": "str"},
        "current_value": {"key": "currentValue", "type": "int"},
        "limit": {"key": "limit", "type": "int"},
        "name": {"key": "name", "type": "UsageName"},
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.id = None
        self.aml_workspace_location = None
        self.type = None
        self.unit = None
        self.current_value = None
        self.limit = None
        self.name = None


class UsageName(_serialization.Model):
    """The Usage Names.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar value: The name of the resource.
    :vartype value: str
    :ivar localized_value: The localized name of the resource.
    :vartype localized_value: str
    """

    _validation = {
        "value": {"readonly": True},
        "localized_value": {"readonly": True},
    }

    _attribute_map = {
        "value": {"key": "value", "type": "str"},
        "localized_value": {"key": "localizedValue", "type": "str"},
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.value = None
        self.localized_value = None


class UserAccountCredentials(_serialization.Model):
    """Settings for user account that gets created on each on the nodes of a compute.

    All required parameters must be populated in order to send to Azure.

    :ivar admin_user_name: Name of the administrator user account which can be used to SSH to
     nodes. Required.
    :vartype admin_user_name: str
    :ivar admin_user_ssh_public_key: SSH public key of the administrator user account.
    :vartype admin_user_ssh_public_key: str
    :ivar admin_user_password: Password of the administrator user account.
    :vartype admin_user_password: str
    """

    _validation = {
        "admin_user_name": {"required": True},
    }

    _attribute_map = {
        "admin_user_name": {"key": "adminUserName", "type": "str"},
        "admin_user_ssh_public_key": {"key": "adminUserSshPublicKey", "type": "str"},
        "admin_user_password": {"key": "adminUserPassword", "type": "str"},
    }

    def __init__(
        self,
        *,
        admin_user_name: str,
        admin_user_ssh_public_key: Optional[str] = None,
        admin_user_password: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword admin_user_name: Name of the administrator user account which can be used to SSH to
         nodes. Required.
        :paramtype admin_user_name: str
        :keyword admin_user_ssh_public_key: SSH public key of the administrator user account.
        :paramtype admin_user_ssh_public_key: str
        :keyword admin_user_password: Password of the administrator user account.
        :paramtype admin_user_password: str
        """
        super().__init__(**kwargs)
        self.admin_user_name = admin_user_name
        self.admin_user_ssh_public_key = admin_user_ssh_public_key
        self.admin_user_password = admin_user_password


class UserAssignedIdentity(_serialization.Model):
    """User assigned identity properties.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar principal_id: The principal ID of the assigned identity.
    :vartype principal_id: str
    :ivar client_id: The client ID of the assigned identity.
    :vartype client_id: str
    """

    _validation = {
        "principal_id": {"readonly": True},
        "client_id": {"readonly": True},
    }

    _attribute_map = {
        "principal_id": {"key": "principalId", "type": "str"},
        "client_id": {"key": "clientId", "type": "str"},
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.principal_id = None
        self.client_id = None


class UserCreatedAcrAccount(_serialization.Model):
    """UserCreatedAcrAccount.

    :ivar arm_resource_id: ARM ResourceId of a resource.
    :vartype arm_resource_id: ~azure.mgmt.machinelearningservices.models.ArmResourceId
    """

    _attribute_map = {
        "arm_resource_id": {"key": "armResourceId", "type": "ArmResourceId"},
    }

    def __init__(self, *, arm_resource_id: Optional["_models.ArmResourceId"] = None, **kwargs: Any) -> None:
        """
        :keyword arm_resource_id: ARM ResourceId of a resource.
        :paramtype arm_resource_id: ~azure.mgmt.machinelearningservices.models.ArmResourceId
        """
        super().__init__(**kwargs)
        self.arm_resource_id = arm_resource_id


class UserCreatedStorageAccount(_serialization.Model):
    """UserCreatedStorageAccount.

    :ivar arm_resource_id: ARM ResourceId of a resource.
    :vartype arm_resource_id: ~azure.mgmt.machinelearningservices.models.ArmResourceId
    """

    _attribute_map = {
        "arm_resource_id": {"key": "armResourceId", "type": "ArmResourceId"},
    }

    def __init__(self, *, arm_resource_id: Optional["_models.ArmResourceId"] = None, **kwargs: Any) -> None:
        """
        :keyword arm_resource_id: ARM ResourceId of a resource.
        :paramtype arm_resource_id: ~azure.mgmt.machinelearningservices.models.ArmResourceId
        """
        super().__init__(**kwargs)
        self.arm_resource_id = arm_resource_id


class UserIdentity(IdentityConfiguration):
    """User identity configuration.

    All required parameters must be populated in order to send to Azure.

    :ivar identity_type: [Required] Specifies the type of identity framework. Required. Known
     values are: "Managed", "AMLToken", and "UserIdentity".
    :vartype identity_type: str or
     ~azure.mgmt.machinelearningservices.models.IdentityConfigurationType
    """

    _validation = {
        "identity_type": {"required": True},
    }

    _attribute_map = {
        "identity_type": {"key": "identityType", "type": "str"},
    }

    def __init__(self, **kwargs: Any) -> None:
        """ """
        super().__init__(**kwargs)
        self.identity_type: str = "UserIdentity"


class UsernamePasswordAuthTypeWorkspaceConnectionProperties(WorkspaceConnectionPropertiesV2):
    """UsernamePasswordAuthTypeWorkspaceConnectionProperties.

    All required parameters must be populated in order to send to Azure.

    :ivar auth_type: Authentication type of the connection target. Required. Known values are:
     "PAT", "ManagedIdentity", "UsernamePassword", "None", and "SAS".
    :vartype auth_type: str or ~azure.mgmt.machinelearningservices.models.ConnectionAuthType
    :ivar category: Category of the connection. Known values are: "PythonFeed",
     "ContainerRegistry", and "Git".
    :vartype category: str or ~azure.mgmt.machinelearningservices.models.ConnectionCategory
    :ivar target:
    :vartype target: str
    :ivar value: Value details of the workspace connection.
    :vartype value: str
    :ivar value_format: format for the workspace connection value. "JSON"
    :vartype value_format: str or ~azure.mgmt.machinelearningservices.models.ValueFormat
    :ivar credentials:
    :vartype credentials:
     ~azure.mgmt.machinelearningservices.models.WorkspaceConnectionUsernamePassword
    """

    _validation = {
        "auth_type": {"required": True},
    }

    _attribute_map = {
        "auth_type": {"key": "authType", "type": "str"},
        "category": {"key": "category", "type": "str"},
        "target": {"key": "target", "type": "str"},
        "value": {"key": "value", "type": "str"},
        "value_format": {"key": "valueFormat", "type": "str"},
        "credentials": {"key": "credentials", "type": "WorkspaceConnectionUsernamePassword"},
    }

    def __init__(
        self,
        *,
        category: Optional[Union[str, "_models.ConnectionCategory"]] = None,
        target: Optional[str] = None,
        value: Optional[str] = None,
        value_format: Optional[Union[str, "_models.ValueFormat"]] = None,
        credentials: Optional["_models.WorkspaceConnectionUsernamePassword"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword category: Category of the connection. Known values are: "PythonFeed",
         "ContainerRegistry", and "Git".
        :paramtype category: str or ~azure.mgmt.machinelearningservices.models.ConnectionCategory
        :keyword target:
        :paramtype target: str
        :keyword value: Value details of the workspace connection.
        :paramtype value: str
        :keyword value_format: format for the workspace connection value. "JSON"
        :paramtype value_format: str or ~azure.mgmt.machinelearningservices.models.ValueFormat
        :keyword credentials:
        :paramtype credentials:
         ~azure.mgmt.machinelearningservices.models.WorkspaceConnectionUsernamePassword
        """
        super().__init__(category=category, target=target, value=value, value_format=value_format, **kwargs)
        self.auth_type: str = "UsernamePassword"
        self.credentials = credentials


class VirtualMachineSchema(_serialization.Model):
    """VirtualMachineSchema.

    :ivar properties:
    :vartype properties: ~azure.mgmt.machinelearningservices.models.VirtualMachineSchemaProperties
    """

    _attribute_map = {
        "properties": {"key": "properties", "type": "VirtualMachineSchemaProperties"},
    }

    def __init__(self, *, properties: Optional["_models.VirtualMachineSchemaProperties"] = None, **kwargs: Any) -> None:
        """
        :keyword properties:
        :paramtype properties:
         ~azure.mgmt.machinelearningservices.models.VirtualMachineSchemaProperties
        """
        super().__init__(**kwargs)
        self.properties = properties


class VirtualMachine(Compute, VirtualMachineSchema):  # pylint: disable=too-many-instance-attributes
    """A Machine Learning compute based on Azure Virtual Machines.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar properties:
    :vartype properties: ~azure.mgmt.machinelearningservices.models.VirtualMachineSchemaProperties
    :ivar compute_type: The type of compute. Required. Known values are: "AKS", "Kubernetes",
     "AmlCompute", "ComputeInstance", "DataFactory", "VirtualMachine", "HDInsight", "Databricks",
     "DataLakeAnalytics", and "SynapseSpark".
    :vartype compute_type: str or ~azure.mgmt.machinelearningservices.models.ComputeType
    :ivar compute_location: Location for the underlying compute.
    :vartype compute_location: str
    :ivar provisioning_state: The provision state of the cluster. Valid values are Unknown,
     Updating, Provisioning, Succeeded, and Failed. Known values are: "Unknown", "Updating",
     "Creating", "Deleting", "Succeeded", "Failed", and "Canceled".
    :vartype provisioning_state: str or
     ~azure.mgmt.machinelearningservices.models.ProvisioningState
    :ivar description: The description of the Machine Learning compute.
    :vartype description: str
    :ivar created_on: The time at which the compute was created.
    :vartype created_on: ~datetime.datetime
    :ivar modified_on: The time at which the compute was last modified.
    :vartype modified_on: ~datetime.datetime
    :ivar resource_id: ARM resource id of the underlying compute.
    :vartype resource_id: str
    :ivar provisioning_errors: Errors during provisioning.
    :vartype provisioning_errors: list[~azure.mgmt.machinelearningservices.models.ErrorResponse]
    :ivar is_attached_compute: Indicating whether the compute was provisioned by user and brought
     from outside if true, or machine learning service provisioned it if false.
    :vartype is_attached_compute: bool
    :ivar disable_local_auth: Opt-out of local authentication and ensure customers can use only MSI
     and AAD exclusively for authentication.
    :vartype disable_local_auth: bool
    """

    _validation = {
        "compute_type": {"required": True},
        "provisioning_state": {"readonly": True},
        "created_on": {"readonly": True},
        "modified_on": {"readonly": True},
        "provisioning_errors": {"readonly": True},
        "is_attached_compute": {"readonly": True},
    }

    _attribute_map = {
        "properties": {"key": "properties", "type": "VirtualMachineSchemaProperties"},
        "compute_type": {"key": "computeType", "type": "str"},
        "compute_location": {"key": "computeLocation", "type": "str"},
        "provisioning_state": {"key": "provisioningState", "type": "str"},
        "description": {"key": "description", "type": "str"},
        "created_on": {"key": "createdOn", "type": "iso-8601"},
        "modified_on": {"key": "modifiedOn", "type": "iso-8601"},
        "resource_id": {"key": "resourceId", "type": "str"},
        "provisioning_errors": {"key": "provisioningErrors", "type": "[ErrorResponse]"},
        "is_attached_compute": {"key": "isAttachedCompute", "type": "bool"},
        "disable_local_auth": {"key": "disableLocalAuth", "type": "bool"},
    }

    def __init__(
        self,
        *,
        properties: Optional["_models.VirtualMachineSchemaProperties"] = None,
        compute_location: Optional[str] = None,
        description: Optional[str] = None,
        resource_id: Optional[str] = None,
        disable_local_auth: Optional[bool] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword properties:
        :paramtype properties:
         ~azure.mgmt.machinelearningservices.models.VirtualMachineSchemaProperties
        :keyword compute_location: Location for the underlying compute.
        :paramtype compute_location: str
        :keyword description: The description of the Machine Learning compute.
        :paramtype description: str
        :keyword resource_id: ARM resource id of the underlying compute.
        :paramtype resource_id: str
        :keyword disable_local_auth: Opt-out of local authentication and ensure customers can use only
         MSI and AAD exclusively for authentication.
        :paramtype disable_local_auth: bool
        """
        super().__init__(
            compute_location=compute_location,
            description=description,
            resource_id=resource_id,
            disable_local_auth=disable_local_auth,
            properties=properties,
            **kwargs
        )
        self.properties = properties
        self.compute_type: str = "VirtualMachine"
        self.compute_location = compute_location
        self.provisioning_state = None
        self.description = description
        self.created_on = None
        self.modified_on = None
        self.resource_id = resource_id
        self.provisioning_errors = None
        self.is_attached_compute = None
        self.disable_local_auth = disable_local_auth


class VirtualMachineImage(_serialization.Model):
    """Virtual Machine image for Windows AML Compute.

    All required parameters must be populated in order to send to Azure.

    :ivar id: Virtual Machine image path. Required.
    :vartype id: str
    """

    _validation = {
        "id": {"required": True},
    }

    _attribute_map = {
        "id": {"key": "id", "type": "str"},
    }

    def __init__(self, *, id: str, **kwargs: Any) -> None:  # pylint: disable=redefined-builtin
        """
        :keyword id: Virtual Machine image path. Required.
        :paramtype id: str
        """
        super().__init__(**kwargs)
        self.id = id


class VirtualMachineSchemaProperties(_serialization.Model):
    """VirtualMachineSchemaProperties.

    :ivar virtual_machine_size: Virtual Machine size.
    :vartype virtual_machine_size: str
    :ivar ssh_port: Port open for ssh connections.
    :vartype ssh_port: int
    :ivar notebook_server_port: Notebook server port open for ssh connections.
    :vartype notebook_server_port: int
    :ivar address: Public IP address of the virtual machine.
    :vartype address: str
    :ivar administrator_account: Admin credentials for virtual machine.
    :vartype administrator_account:
     ~azure.mgmt.machinelearningservices.models.VirtualMachineSshCredentials
    :ivar is_notebook_instance_compute: Indicates whether this compute will be used for running
     notebooks.
    :vartype is_notebook_instance_compute: bool
    """

    _attribute_map = {
        "virtual_machine_size": {"key": "virtualMachineSize", "type": "str"},
        "ssh_port": {"key": "sshPort", "type": "int"},
        "notebook_server_port": {"key": "notebookServerPort", "type": "int"},
        "address": {"key": "address", "type": "str"},
        "administrator_account": {"key": "administratorAccount", "type": "VirtualMachineSshCredentials"},
        "is_notebook_instance_compute": {"key": "isNotebookInstanceCompute", "type": "bool"},
    }

    def __init__(
        self,
        *,
        virtual_machine_size: Optional[str] = None,
        ssh_port: Optional[int] = None,
        notebook_server_port: Optional[int] = None,
        address: Optional[str] = None,
        administrator_account: Optional["_models.VirtualMachineSshCredentials"] = None,
        is_notebook_instance_compute: Optional[bool] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword virtual_machine_size: Virtual Machine size.
        :paramtype virtual_machine_size: str
        :keyword ssh_port: Port open for ssh connections.
        :paramtype ssh_port: int
        :keyword notebook_server_port: Notebook server port open for ssh connections.
        :paramtype notebook_server_port: int
        :keyword address: Public IP address of the virtual machine.
        :paramtype address: str
        :keyword administrator_account: Admin credentials for virtual machine.
        :paramtype administrator_account:
         ~azure.mgmt.machinelearningservices.models.VirtualMachineSshCredentials
        :keyword is_notebook_instance_compute: Indicates whether this compute will be used for running
         notebooks.
        :paramtype is_notebook_instance_compute: bool
        """
        super().__init__(**kwargs)
        self.virtual_machine_size = virtual_machine_size
        self.ssh_port = ssh_port
        self.notebook_server_port = notebook_server_port
        self.address = address
        self.administrator_account = administrator_account
        self.is_notebook_instance_compute = is_notebook_instance_compute


class VirtualMachineSecretsSchema(_serialization.Model):
    """VirtualMachineSecretsSchema.

    :ivar administrator_account: Admin credentials for virtual machine.
    :vartype administrator_account:
     ~azure.mgmt.machinelearningservices.models.VirtualMachineSshCredentials
    """

    _attribute_map = {
        "administrator_account": {"key": "administratorAccount", "type": "VirtualMachineSshCredentials"},
    }

    def __init__(
        self, *, administrator_account: Optional["_models.VirtualMachineSshCredentials"] = None, **kwargs: Any
    ) -> None:
        """
        :keyword administrator_account: Admin credentials for virtual machine.
        :paramtype administrator_account:
         ~azure.mgmt.machinelearningservices.models.VirtualMachineSshCredentials
        """
        super().__init__(**kwargs)
        self.administrator_account = administrator_account


class VirtualMachineSecrets(ComputeSecrets, VirtualMachineSecretsSchema):
    """Secrets related to a Machine Learning compute based on AKS.

    All required parameters must be populated in order to send to Azure.

    :ivar administrator_account: Admin credentials for virtual machine.
    :vartype administrator_account:
     ~azure.mgmt.machinelearningservices.models.VirtualMachineSshCredentials
    :ivar compute_type: The type of compute. Required. Known values are: "AKS", "Kubernetes",
     "AmlCompute", "ComputeInstance", "DataFactory", "VirtualMachine", "HDInsight", "Databricks",
     "DataLakeAnalytics", and "SynapseSpark".
    :vartype compute_type: str or ~azure.mgmt.machinelearningservices.models.ComputeType
    """

    _validation = {
        "compute_type": {"required": True},
    }

    _attribute_map = {
        "administrator_account": {"key": "administratorAccount", "type": "VirtualMachineSshCredentials"},
        "compute_type": {"key": "computeType", "type": "str"},
    }

    def __init__(
        self, *, administrator_account: Optional["_models.VirtualMachineSshCredentials"] = None, **kwargs: Any
    ) -> None:
        """
        :keyword administrator_account: Admin credentials for virtual machine.
        :paramtype administrator_account:
         ~azure.mgmt.machinelearningservices.models.VirtualMachineSshCredentials
        """
        super().__init__(administrator_account=administrator_account, **kwargs)
        self.administrator_account = administrator_account
        self.compute_type: str = "VirtualMachine"


class VirtualMachineSize(_serialization.Model):  # pylint: disable=too-many-instance-attributes
    """Describes the properties of a VM size.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar name: The name of the virtual machine size.
    :vartype name: str
    :ivar family: The family name of the virtual machine size.
    :vartype family: str
    :ivar v_cp_us: The number of vCPUs supported by the virtual machine size.
    :vartype v_cp_us: int
    :ivar gpus: The number of gPUs supported by the virtual machine size.
    :vartype gpus: int
    :ivar os_vhd_size_mb: The OS VHD disk size, in MB, allowed by the virtual machine size.
    :vartype os_vhd_size_mb: int
    :ivar max_resource_volume_mb: The resource volume size, in MB, allowed by the virtual machine
     size.
    :vartype max_resource_volume_mb: int
    :ivar memory_gb: The amount of memory, in GB, supported by the virtual machine size.
    :vartype memory_gb: float
    :ivar low_priority_capable: Specifies if the virtual machine size supports low priority VMs.
    :vartype low_priority_capable: bool
    :ivar premium_io: Specifies if the virtual machine size supports premium IO.
    :vartype premium_io: bool
    :ivar estimated_vm_prices: The estimated price information for using a VM.
    :vartype estimated_vm_prices: ~azure.mgmt.machinelearningservices.models.EstimatedVMPrices
    :ivar supported_compute_types: Specifies the compute types supported by the virtual machine
     size.
    :vartype supported_compute_types: list[str]
    """

    _validation = {
        "name": {"readonly": True},
        "family": {"readonly": True},
        "v_cp_us": {"readonly": True},
        "gpus": {"readonly": True},
        "os_vhd_size_mb": {"readonly": True},
        "max_resource_volume_mb": {"readonly": True},
        "memory_gb": {"readonly": True},
        "low_priority_capable": {"readonly": True},
        "premium_io": {"readonly": True},
    }

    _attribute_map = {
        "name": {"key": "name", "type": "str"},
        "family": {"key": "family", "type": "str"},
        "v_cp_us": {"key": "vCPUs", "type": "int"},
        "gpus": {"key": "gpus", "type": "int"},
        "os_vhd_size_mb": {"key": "osVhdSizeMB", "type": "int"},
        "max_resource_volume_mb": {"key": "maxResourceVolumeMB", "type": "int"},
        "memory_gb": {"key": "memoryGB", "type": "float"},
        "low_priority_capable": {"key": "lowPriorityCapable", "type": "bool"},
        "premium_io": {"key": "premiumIO", "type": "bool"},
        "estimated_vm_prices": {"key": "estimatedVMPrices", "type": "EstimatedVMPrices"},
        "supported_compute_types": {"key": "supportedComputeTypes", "type": "[str]"},
    }

    def __init__(
        self,
        *,
        estimated_vm_prices: Optional["_models.EstimatedVMPrices"] = None,
        supported_compute_types: Optional[List[str]] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword estimated_vm_prices: The estimated price information for using a VM.
        :paramtype estimated_vm_prices: ~azure.mgmt.machinelearningservices.models.EstimatedVMPrices
        :keyword supported_compute_types: Specifies the compute types supported by the virtual machine
         size.
        :paramtype supported_compute_types: list[str]
        """
        super().__init__(**kwargs)
        self.name = None
        self.family = None
        self.v_cp_us = None
        self.gpus = None
        self.os_vhd_size_mb = None
        self.max_resource_volume_mb = None
        self.memory_gb = None
        self.low_priority_capable = None
        self.premium_io = None
        self.estimated_vm_prices = estimated_vm_prices
        self.supported_compute_types = supported_compute_types


class VirtualMachineSizeListResult(_serialization.Model):
    """The List Virtual Machine size operation response.

    :ivar value: The list of virtual machine sizes supported by AmlCompute.
    :vartype value: list[~azure.mgmt.machinelearningservices.models.VirtualMachineSize]
    """

    _attribute_map = {
        "value": {"key": "value", "type": "[VirtualMachineSize]"},
    }

    def __init__(self, *, value: Optional[List["_models.VirtualMachineSize"]] = None, **kwargs: Any) -> None:
        """
        :keyword value: The list of virtual machine sizes supported by AmlCompute.
        :paramtype value: list[~azure.mgmt.machinelearningservices.models.VirtualMachineSize]
        """
        super().__init__(**kwargs)
        self.value = value


class VirtualMachineSshCredentials(_serialization.Model):
    """Admin credentials for virtual machine.

    :ivar username: Username of admin account.
    :vartype username: str
    :ivar password: Password of admin account.
    :vartype password: str
    :ivar public_key_data: Public key data.
    :vartype public_key_data: str
    :ivar private_key_data: Private key data.
    :vartype private_key_data: str
    """

    _attribute_map = {
        "username": {"key": "username", "type": "str"},
        "password": {"key": "password", "type": "str"},
        "public_key_data": {"key": "publicKeyData", "type": "str"},
        "private_key_data": {"key": "privateKeyData", "type": "str"},
    }

    def __init__(
        self,
        *,
        username: Optional[str] = None,
        password: Optional[str] = None,
        public_key_data: Optional[str] = None,
        private_key_data: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword username: Username of admin account.
        :paramtype username: str
        :keyword password: Password of admin account.
        :paramtype password: str
        :keyword public_key_data: Public key data.
        :paramtype public_key_data: str
        :keyword private_key_data: Private key data.
        :paramtype private_key_data: str
        """
        super().__init__(**kwargs)
        self.username = username
        self.password = password
        self.public_key_data = public_key_data
        self.private_key_data = private_key_data


class VolumeDefinition(_serialization.Model):
    """Describes the volume configuration for the container.

    :ivar type: Type of Volume Definition. Possible Values: bind,volume,tmpfs,npipe. Known values
     are: "bind", "volume", "tmpfs", and "npipe".
    :vartype type: str or ~azure.mgmt.machinelearningservices.models.VolumeDefinitionType
    :ivar read_only: Indicate whether to mount volume as readOnly. Default value for this is false.
    :vartype read_only: bool
    :ivar source: Source of the mount. For bind mounts this is the host path.
    :vartype source: str
    :ivar target: Target of the mount. For bind mounts this is the path in the container.
    :vartype target: str
    :ivar consistency: Consistency of the volume.
    :vartype consistency: str
    :ivar bind: Bind Options of the mount.
    :vartype bind: ~azure.mgmt.machinelearningservices.models.BindOptions
    :ivar volume: Volume Options of the mount.
    :vartype volume: ~azure.mgmt.machinelearningservices.models.VolumeOptions
    :ivar tmpfs: tmpfs option of the mount.
    :vartype tmpfs: ~azure.mgmt.machinelearningservices.models.TmpfsOptions
    """

    _attribute_map = {
        "type": {"key": "type", "type": "str"},
        "read_only": {"key": "readOnly", "type": "bool"},
        "source": {"key": "source", "type": "str"},
        "target": {"key": "target", "type": "str"},
        "consistency": {"key": "consistency", "type": "str"},
        "bind": {"key": "bind", "type": "BindOptions"},
        "volume": {"key": "volume", "type": "VolumeOptions"},
        "tmpfs": {"key": "tmpfs", "type": "TmpfsOptions"},
    }

    def __init__(
        self,
        *,
        type: Union[str, "_models.VolumeDefinitionType"] = "bind",
        read_only: Optional[bool] = None,
        source: Optional[str] = None,
        target: Optional[str] = None,
        consistency: Optional[str] = None,
        bind: Optional["_models.BindOptions"] = None,
        volume: Optional["_models.VolumeOptions"] = None,
        tmpfs: Optional["_models.TmpfsOptions"] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword type: Type of Volume Definition. Possible Values: bind,volume,tmpfs,npipe. Known
         values are: "bind", "volume", "tmpfs", and "npipe".
        :paramtype type: str or ~azure.mgmt.machinelearningservices.models.VolumeDefinitionType
        :keyword read_only: Indicate whether to mount volume as readOnly. Default value for this is
         false.
        :paramtype read_only: bool
        :keyword source: Source of the mount. For bind mounts this is the host path.
        :paramtype source: str
        :keyword target: Target of the mount. For bind mounts this is the path in the container.
        :paramtype target: str
        :keyword consistency: Consistency of the volume.
        :paramtype consistency: str
        :keyword bind: Bind Options of the mount.
        :paramtype bind: ~azure.mgmt.machinelearningservices.models.BindOptions
        :keyword volume: Volume Options of the mount.
        :paramtype volume: ~azure.mgmt.machinelearningservices.models.VolumeOptions
        :keyword tmpfs: tmpfs option of the mount.
        :paramtype tmpfs: ~azure.mgmt.machinelearningservices.models.TmpfsOptions
        """
        super().__init__(**kwargs)
        self.type = type
        self.read_only = read_only
        self.source = source
        self.target = target
        self.consistency = consistency
        self.bind = bind
        self.volume = volume
        self.tmpfs = tmpfs


class VolumeOptions(_serialization.Model):
    """Describes the volume options for the container.

    :ivar nocopy: Indicate whether volume is nocopy.
    :vartype nocopy: bool
    """

    _attribute_map = {
        "nocopy": {"key": "nocopy", "type": "bool"},
    }

    def __init__(self, *, nocopy: Optional[bool] = None, **kwargs: Any) -> None:
        """
        :keyword nocopy: Indicate whether volume is nocopy.
        :paramtype nocopy: bool
        """
        super().__init__(**kwargs)
        self.nocopy = nocopy


class Workspace(Resource):  # pylint: disable=too-many-instance-attributes
    """An object that represents a machine learning workspace.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar id: Fully qualified resource ID for the resource. Ex -
     /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}.
    :vartype id: str
    :ivar name: The name of the resource.
    :vartype name: str
    :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or
     "Microsoft.Storage/storageAccounts".
    :vartype type: str
    :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy
     information.
    :vartype system_data: ~azure.mgmt.machinelearningservices.models.SystemData
    :ivar identity: The identity of the resource.
    :vartype identity: ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentity
    :ivar location: Specifies the location of the resource.
    :vartype location: str
    :ivar tags: Contains resource tags defined as key/value pairs.
    :vartype tags: dict[str, str]
    :ivar sku: The sku of the workspace.
    :vartype sku: ~azure.mgmt.machinelearningservices.models.Sku
    :ivar workspace_id: The immutable id associated with this workspace.
    :vartype workspace_id: str
    :ivar description: The description of this workspace.
    :vartype description: str
    :ivar friendly_name: The friendly name for this workspace. This name in mutable.
    :vartype friendly_name: str
    :ivar key_vault: ARM id of the key vault associated with this workspace. This cannot be changed
     once the workspace has been created.
    :vartype key_vault: str
    :ivar application_insights: ARM id of the application insights associated with this workspace.
    :vartype application_insights: str
    :ivar container_registry: ARM id of the container registry associated with this workspace.
    :vartype container_registry: str
    :ivar storage_account: ARM id of the storage account associated with this workspace. This
     cannot be changed once the workspace has been created.
    :vartype storage_account: str
    :ivar discovery_url: Url for the discovery service to identify regional endpoints for machine
     learning experimentation services.
    :vartype discovery_url: str
    :ivar provisioning_state: The current deployment state of workspace resource. The
     provisioningState is to indicate states for resource provisioning. Known values are: "Unknown",
     "Updating", "Creating", "Deleting", "Succeeded", "Failed", and "Canceled".
    :vartype provisioning_state: str or
     ~azure.mgmt.machinelearningservices.models.ProvisioningState
    :ivar encryption: The encryption settings of Azure ML workspace.
    :vartype encryption: ~azure.mgmt.machinelearningservices.models.EncryptionProperty
    :ivar hbi_workspace: The flag to signal HBI data in the workspace and reduce diagnostic data
     collected by the service.
    :vartype hbi_workspace: bool
    :ivar service_provisioned_resource_group: The name of the managed resource group created by
     workspace RP in customer subscription if the workspace is CMK workspace.
    :vartype service_provisioned_resource_group: str
    :ivar private_link_count: Count of private connections in the workspace.
    :vartype private_link_count: int
    :ivar image_build_compute: The compute name for image build.
    :vartype image_build_compute: str
    :ivar allow_public_access_when_behind_vnet: The flag to indicate whether to allow public access
     when behind VNet.
    :vartype allow_public_access_when_behind_vnet: bool
    :ivar public_network_access: Whether requests from Public Network are allowed. Known values
     are: "Enabled" and "Disabled".
    :vartype public_network_access: str or
     ~azure.mgmt.machinelearningservices.models.PublicNetworkAccess
    :ivar private_endpoint_connections: The list of private endpoint connections in the workspace.
    :vartype private_endpoint_connections:
     list[~azure.mgmt.machinelearningservices.models.PrivateEndpointConnection]
    :ivar shared_private_link_resources: The list of shared private link resources in this
     workspace.
    :vartype shared_private_link_resources:
     list[~azure.mgmt.machinelearningservices.models.SharedPrivateLinkResource]
    :ivar notebook_info: The notebook info of Azure ML workspace.
    :vartype notebook_info: ~azure.mgmt.machinelearningservices.models.NotebookResourceInfo
    :ivar service_managed_resources_settings: The service managed resource settings.
    :vartype service_managed_resources_settings:
     ~azure.mgmt.machinelearningservices.models.ServiceManagedResourcesSettings
    :ivar primary_user_assigned_identity: The user assigned identity resource id that represents
     the workspace identity.
    :vartype primary_user_assigned_identity: str
    :ivar tenant_id: The tenant id associated with this workspace.
    :vartype tenant_id: str
    :ivar storage_hns_enabled: If the storage associated with the workspace has hierarchical
     namespace(HNS) enabled.
    :vartype storage_hns_enabled: bool
    :ivar ml_flow_tracking_uri: The URI associated with this workspace that machine learning flow
     must point at to set up tracking.
    :vartype ml_flow_tracking_uri: str
    :ivar v1_legacy_mode: Enabling v1_legacy_mode may prevent you from using features provided by
     the v2 API.
    :vartype v1_legacy_mode: bool
    """

    _validation = {
        "id": {"readonly": True},
        "name": {"readonly": True},
        "type": {"readonly": True},
        "system_data": {"readonly": True},
        "workspace_id": {"readonly": True},
        "provisioning_state": {"readonly": True},
        "service_provisioned_resource_group": {"readonly": True},
        "private_link_count": {"readonly": True},
        "private_endpoint_connections": {"readonly": True},
        "notebook_info": {"readonly": True},
        "tenant_id": {"readonly": True},
        "storage_hns_enabled": {"readonly": True},
        "ml_flow_tracking_uri": {"readonly": True},
    }

    _attribute_map = {
        "id": {"key": "id", "type": "str"},
        "name": {"key": "name", "type": "str"},
        "type": {"key": "type", "type": "str"},
        "system_data": {"key": "systemData", "type": "SystemData"},
        "identity": {"key": "identity", "type": "ManagedServiceIdentity"},
        "location": {"key": "location", "type": "str"},
        "tags": {"key": "tags", "type": "{str}"},
        "sku": {"key": "sku", "type": "Sku"},
        "workspace_id": {"key": "properties.workspaceId", "type": "str"},
        "description": {"key": "properties.description", "type": "str"},
        "friendly_name": {"key": "properties.friendlyName", "type": "str"},
        "key_vault": {"key": "properties.keyVault", "type": "str"},
        "application_insights": {"key": "properties.applicationInsights", "type": "str"},
        "container_registry": {"key": "properties.containerRegistry", "type": "str"},
        "storage_account": {"key": "properties.storageAccount", "type": "str"},
        "discovery_url": {"key": "properties.discoveryUrl", "type": "str"},
        "provisioning_state": {"key": "properties.provisioningState", "type": "str"},
        "encryption": {"key": "properties.encryption", "type": "EncryptionProperty"},
        "hbi_workspace": {"key": "properties.hbiWorkspace", "type": "bool"},
        "service_provisioned_resource_group": {"key": "properties.serviceProvisionedResourceGroup", "type": "str"},
        "private_link_count": {"key": "properties.privateLinkCount", "type": "int"},
        "image_build_compute": {"key": "properties.imageBuildCompute", "type": "str"},
        "allow_public_access_when_behind_vnet": {"key": "properties.allowPublicAccessWhenBehindVnet", "type": "bool"},
        "public_network_access": {"key": "properties.publicNetworkAccess", "type": "str"},
        "private_endpoint_connections": {
            "key": "properties.privateEndpointConnections",
            "type": "[PrivateEndpointConnection]",
        },
        "shared_private_link_resources": {
            "key": "properties.sharedPrivateLinkResources",
            "type": "[SharedPrivateLinkResource]",
        },
        "notebook_info": {"key": "properties.notebookInfo", "type": "NotebookResourceInfo"},
        "service_managed_resources_settings": {
            "key": "properties.serviceManagedResourcesSettings",
            "type": "ServiceManagedResourcesSettings",
        },
        "primary_user_assigned_identity": {"key": "properties.primaryUserAssignedIdentity", "type": "str"},
        "tenant_id": {"key": "properties.tenantId", "type": "str"},
        "storage_hns_enabled": {"key": "properties.storageHnsEnabled", "type": "bool"},
        "ml_flow_tracking_uri": {"key": "properties.mlFlowTrackingUri", "type": "str"},
        "v1_legacy_mode": {"key": "properties.v1LegacyMode", "type": "bool"},
    }

    def __init__(  # pylint: disable=too-many-locals
        self,
        *,
        identity: Optional["_models.ManagedServiceIdentity"] = None,
        location: Optional[str] = None,
        tags: Optional[Dict[str, str]] = None,
        sku: Optional["_models.Sku"] = None,
        description: Optional[str] = None,
        friendly_name: Optional[str] = None,
        key_vault: Optional[str] = None,
        application_insights: Optional[str] = None,
        container_registry: Optional[str] = None,
        storage_account: Optional[str] = None,
        discovery_url: Optional[str] = None,
        encryption: Optional["_models.EncryptionProperty"] = None,
        hbi_workspace: bool = False,
        image_build_compute: Optional[str] = None,
        allow_public_access_when_behind_vnet: bool = False,
        public_network_access: Optional[Union[str, "_models.PublicNetworkAccess"]] = None,
        shared_private_link_resources: Optional[List["_models.SharedPrivateLinkResource"]] = None,
        service_managed_resources_settings: Optional["_models.ServiceManagedResourcesSettings"] = None,
        primary_user_assigned_identity: Optional[str] = None,
        v1_legacy_mode: bool = False,
        **kwargs: Any
    ) -> None:
        """
        :keyword identity: The identity of the resource.
        :paramtype identity: ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentity
        :keyword location: Specifies the location of the resource.
        :paramtype location: str
        :keyword tags: Contains resource tags defined as key/value pairs.
        :paramtype tags: dict[str, str]
        :keyword sku: The sku of the workspace.
        :paramtype sku: ~azure.mgmt.machinelearningservices.models.Sku
        :keyword description: The description of this workspace.
        :paramtype description: str
        :keyword friendly_name: The friendly name for this workspace. This name in mutable.
        :paramtype friendly_name: str
        :keyword key_vault: ARM id of the key vault associated with this workspace. This cannot be
         changed once the workspace has been created.
        :paramtype key_vault: str
        :keyword application_insights: ARM id of the application insights associated with this
         workspace.
        :paramtype application_insights: str
        :keyword container_registry: ARM id of the container registry associated with this workspace.
        :paramtype container_registry: str
        :keyword storage_account: ARM id of the storage account associated with this workspace. This
         cannot be changed once the workspace has been created.
        :paramtype storage_account: str
        :keyword discovery_url: Url for the discovery service to identify regional endpoints for
         machine learning experimentation services.
        :paramtype discovery_url: str
        :keyword encryption: The encryption settings of Azure ML workspace.
        :paramtype encryption: ~azure.mgmt.machinelearningservices.models.EncryptionProperty
        :keyword hbi_workspace: The flag to signal HBI data in the workspace and reduce diagnostic data
         collected by the service.
        :paramtype hbi_workspace: bool
        :keyword image_build_compute: The compute name for image build.
        :paramtype image_build_compute: str
        :keyword allow_public_access_when_behind_vnet: The flag to indicate whether to allow public
         access when behind VNet.
        :paramtype allow_public_access_when_behind_vnet: bool
        :keyword public_network_access: Whether requests from Public Network are allowed. Known values
         are: "Enabled" and "Disabled".
        :paramtype public_network_access: str or
         ~azure.mgmt.machinelearningservices.models.PublicNetworkAccess
        :keyword shared_private_link_resources: The list of shared private link resources in this
         workspace.
        :paramtype shared_private_link_resources:
         list[~azure.mgmt.machinelearningservices.models.SharedPrivateLinkResource]
        :keyword service_managed_resources_settings: The service managed resource settings.
        :paramtype service_managed_resources_settings:
         ~azure.mgmt.machinelearningservices.models.ServiceManagedResourcesSettings
        :keyword primary_user_assigned_identity: The user assigned identity resource id that represents
         the workspace identity.
        :paramtype primary_user_assigned_identity: str
        :keyword v1_legacy_mode: Enabling v1_legacy_mode may prevent you from using features provided
         by the v2 API.
        :paramtype v1_legacy_mode: bool
        """
        super().__init__(**kwargs)
        self.identity = identity
        self.location = location
        self.tags = tags
        self.sku = sku
        self.workspace_id = None
        self.description = description
        self.friendly_name = friendly_name
        self.key_vault = key_vault
        self.application_insights = application_insights
        self.container_registry = container_registry
        self.storage_account = storage_account
        self.discovery_url = discovery_url
        self.provisioning_state = None
        self.encryption = encryption
        self.hbi_workspace = hbi_workspace
        self.service_provisioned_resource_group = None
        self.private_link_count = None
        self.image_build_compute = image_build_compute
        self.allow_public_access_when_behind_vnet = allow_public_access_when_behind_vnet
        self.public_network_access = public_network_access
        self.private_endpoint_connections = None
        self.shared_private_link_resources = shared_private_link_resources
        self.notebook_info = None
        self.service_managed_resources_settings = service_managed_resources_settings
        self.primary_user_assigned_identity = primary_user_assigned_identity
        self.tenant_id = None
        self.storage_hns_enabled = None
        self.ml_flow_tracking_uri = None
        self.v1_legacy_mode = v1_legacy_mode


class WorkspaceConnectionManagedIdentity(_serialization.Model):
    """WorkspaceConnectionManagedIdentity.

    :ivar resource_id:
    :vartype resource_id: str
    :ivar client_id:
    :vartype client_id: str
    """

    _attribute_map = {
        "resource_id": {"key": "resourceId", "type": "str"},
        "client_id": {"key": "clientId", "type": "str"},
    }

    def __init__(self, *, resource_id: Optional[str] = None, client_id: Optional[str] = None, **kwargs: Any) -> None:
        """
        :keyword resource_id:
        :paramtype resource_id: str
        :keyword client_id:
        :paramtype client_id: str
        """
        super().__init__(**kwargs)
        self.resource_id = resource_id
        self.client_id = client_id


class WorkspaceConnectionPersonalAccessToken(_serialization.Model):
    """WorkspaceConnectionPersonalAccessToken.

    :ivar pat:
    :vartype pat: str
    """

    _attribute_map = {
        "pat": {"key": "pat", "type": "str"},
    }

    def __init__(self, *, pat: Optional[str] = None, **kwargs: Any) -> None:
        """
        :keyword pat:
        :paramtype pat: str
        """
        super().__init__(**kwargs)
        self.pat = pat


class WorkspaceConnectionPropertiesV2BasicResource(Resource):
    """WorkspaceConnectionPropertiesV2BasicResource.

    Variables are only populated by the server, and will be ignored when sending a request.

    All required parameters must be populated in order to send to Azure.

    :ivar id: Fully qualified resource ID for the resource. Ex -
     /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}.
    :vartype id: str
    :ivar name: The name of the resource.
    :vartype name: str
    :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or
     "Microsoft.Storage/storageAccounts".
    :vartype type: str
    :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy
     information.
    :vartype system_data: ~azure.mgmt.machinelearningservices.models.SystemData
    :ivar properties: Required.
    :vartype properties: ~azure.mgmt.machinelearningservices.models.WorkspaceConnectionPropertiesV2
    """

    _validation = {
        "id": {"readonly": True},
        "name": {"readonly": True},
        "type": {"readonly": True},
        "system_data": {"readonly": True},
        "properties": {"required": True},
    }

    _attribute_map = {
        "id": {"key": "id", "type": "str"},
        "name": {"key": "name", "type": "str"},
        "type": {"key": "type", "type": "str"},
        "system_data": {"key": "systemData", "type": "SystemData"},
        "properties": {"key": "properties", "type": "WorkspaceConnectionPropertiesV2"},
    }

    def __init__(self, *, properties: "_models.WorkspaceConnectionPropertiesV2", **kwargs: Any) -> None:
        """
        :keyword properties: Required.
        :paramtype properties:
         ~azure.mgmt.machinelearningservices.models.WorkspaceConnectionPropertiesV2
        """
        super().__init__(**kwargs)
        self.properties = properties


class WorkspaceConnectionPropertiesV2BasicResourceArmPaginatedResult(_serialization.Model):
    """WorkspaceConnectionPropertiesV2BasicResourceArmPaginatedResult.

    Variables are only populated by the server, and will be ignored when sending a request.

    :ivar value:
    :vartype value:
     list[~azure.mgmt.machinelearningservices.models.WorkspaceConnectionPropertiesV2BasicResource]
    :ivar next_link:
    :vartype next_link: str
    """

    _validation = {
        "next_link": {"readonly": True},
    }

    _attribute_map = {
        "value": {"key": "value", "type": "[WorkspaceConnectionPropertiesV2BasicResource]"},
        "next_link": {"key": "nextLink", "type": "str"},
    }

    def __init__(
        self, *, value: Optional[List["_models.WorkspaceConnectionPropertiesV2BasicResource"]] = None, **kwargs: Any
    ) -> None:
        """
        :keyword value:
        :paramtype value:
         list[~azure.mgmt.machinelearningservices.models.WorkspaceConnectionPropertiesV2BasicResource]
        """
        super().__init__(**kwargs)
        self.value = value
        self.next_link = None


class WorkspaceConnectionSharedAccessSignature(_serialization.Model):
    """WorkspaceConnectionSharedAccessSignature.

    :ivar sas:
    :vartype sas: str
    """

    _attribute_map = {
        "sas": {"key": "sas", "type": "str"},
    }

    def __init__(self, *, sas: Optional[str] = None, **kwargs: Any) -> None:
        """
        :keyword sas:
        :paramtype sas: str
        """
        super().__init__(**kwargs)
        self.sas = sas


class WorkspaceConnectionUsernamePassword(_serialization.Model):
    """WorkspaceConnectionUsernamePassword.

    :ivar username:
    :vartype username: str
    :ivar password:
    :vartype password: str
    """

    _attribute_map = {
        "username": {"key": "username", "type": "str"},
        "password": {"key": "password", "type": "str"},
    }

    def __init__(self, *, username: Optional[str] = None, password: Optional[str] = None, **kwargs: Any) -> None:
        """
        :keyword username:
        :paramtype username: str
        :keyword password:
        :paramtype password: str
        """
        super().__init__(**kwargs)
        self.username = username
        self.password = password


class WorkspaceListResult(_serialization.Model):
    """The result of a request to list machine learning workspaces.

    :ivar value: The list of machine learning workspaces. Since this list may be incomplete, the
     nextLink field should be used to request the next list of machine learning workspaces.
    :vartype value: list[~azure.mgmt.machinelearningservices.models.Workspace]
    :ivar next_link: The URI that can be used to request the next list of machine learning
     workspaces.
    :vartype next_link: str
    """

    _attribute_map = {
        "value": {"key": "value", "type": "[Workspace]"},
        "next_link": {"key": "nextLink", "type": "str"},
    }

    def __init__(
        self, *, value: Optional[List["_models.Workspace"]] = None, next_link: Optional[str] = None, **kwargs: Any
    ) -> None:
        """
        :keyword value: The list of machine learning workspaces. Since this list may be incomplete, the
         nextLink field should be used to request the next list of machine learning workspaces.
        :paramtype value: list[~azure.mgmt.machinelearningservices.models.Workspace]
        :keyword next_link: The URI that can be used to request the next list of machine learning
         workspaces.
        :paramtype next_link: str
        """
        super().__init__(**kwargs)
        self.value = value
        self.next_link = next_link


class WorkspaceUpdateParameters(_serialization.Model):  # pylint: disable=too-many-instance-attributes
    """The parameters for updating a machine learning workspace.

    :ivar tags: The resource tags for the machine learning workspace.
    :vartype tags: dict[str, str]
    :ivar sku: The sku of the workspace.
    :vartype sku: ~azure.mgmt.machinelearningservices.models.Sku
    :ivar identity: The identity of the resource.
    :vartype identity: ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentity
    :ivar description: The description of this workspace.
    :vartype description: str
    :ivar friendly_name: The friendly name for this workspace.
    :vartype friendly_name: str
    :ivar image_build_compute: The compute name for image build.
    :vartype image_build_compute: str
    :ivar service_managed_resources_settings: The service managed resource settings.
    :vartype service_managed_resources_settings:
     ~azure.mgmt.machinelearningservices.models.ServiceManagedResourcesSettings
    :ivar primary_user_assigned_identity: The user assigned identity resource id that represents
     the workspace identity.
    :vartype primary_user_assigned_identity: str
    :ivar public_network_access: Whether requests from Public Network are allowed. Known values
     are: "Enabled" and "Disabled".
    :vartype public_network_access: str or
     ~azure.mgmt.machinelearningservices.models.PublicNetworkAccess
    :ivar application_insights: ARM id of the application insights associated with this workspace.
    :vartype application_insights: str
    :ivar container_registry: ARM id of the container registry associated with this workspace.
    :vartype container_registry: str
    """

    _attribute_map = {
        "tags": {"key": "tags", "type": "{str}"},
        "sku": {"key": "sku", "type": "Sku"},
        "identity": {"key": "identity", "type": "ManagedServiceIdentity"},
        "description": {"key": "properties.description", "type": "str"},
        "friendly_name": {"key": "properties.friendlyName", "type": "str"},
        "image_build_compute": {"key": "properties.imageBuildCompute", "type": "str"},
        "service_managed_resources_settings": {
            "key": "properties.serviceManagedResourcesSettings",
            "type": "ServiceManagedResourcesSettings",
        },
        "primary_user_assigned_identity": {"key": "properties.primaryUserAssignedIdentity", "type": "str"},
        "public_network_access": {"key": "properties.publicNetworkAccess", "type": "str"},
        "application_insights": {"key": "properties.applicationInsights", "type": "str"},
        "container_registry": {"key": "properties.containerRegistry", "type": "str"},
    }

    def __init__(
        self,
        *,
        tags: Optional[Dict[str, str]] = None,
        sku: Optional["_models.Sku"] = None,
        identity: Optional["_models.ManagedServiceIdentity"] = None,
        description: Optional[str] = None,
        friendly_name: Optional[str] = None,
        image_build_compute: Optional[str] = None,
        service_managed_resources_settings: Optional["_models.ServiceManagedResourcesSettings"] = None,
        primary_user_assigned_identity: Optional[str] = None,
        public_network_access: Optional[Union[str, "_models.PublicNetworkAccess"]] = None,
        application_insights: Optional[str] = None,
        container_registry: Optional[str] = None,
        **kwargs: Any
    ) -> None:
        """
        :keyword tags: The resource tags for the machine learning workspace.
        :paramtype tags: dict[str, str]
        :keyword sku: The sku of the workspace.
        :paramtype sku: ~azure.mgmt.machinelearningservices.models.Sku
        :keyword identity: The identity of the resource.
        :paramtype identity: ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentity
        :keyword description: The description of this workspace.
        :paramtype description: str
        :keyword friendly_name: The friendly name for this workspace.
        :paramtype friendly_name: str
        :keyword image_build_compute: The compute name for image build.
        :paramtype image_build_compute: str
        :keyword service_managed_resources_settings: The service managed resource settings.
        :paramtype service_managed_resources_settings:
         ~azure.mgmt.machinelearningservices.models.ServiceManagedResourcesSettings
        :keyword primary_user_assigned_identity: The user assigned identity resource id that represents
         the workspace identity.
        :paramtype primary_user_assigned_identity: str
        :keyword public_network_access: Whether requests from Public Network are allowed. Known values
         are: "Enabled" and "Disabled".
        :paramtype public_network_access: str or
         ~azure.mgmt.machinelearningservices.models.PublicNetworkAccess
        :keyword application_insights: ARM id of the application insights associated with this
         workspace.
        :paramtype application_insights: str
        :keyword container_registry: ARM id of the container registry associated with this workspace.
        :paramtype container_registry: str
        """
        super().__init__(**kwargs)
        self.tags = tags
        self.sku = sku
        self.identity = identity
        self.description = description
        self.friendly_name = friendly_name
        self.image_build_compute = image_build_compute
        self.service_managed_resources_settings = service_managed_resources_settings
        self.primary_user_assigned_identity = primary_user_assigned_identity
        self.public_network_access = public_network_access
        self.application_insights = application_insights
        self.container_registry = container_registry