1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
# coding: utf-8
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
"""
FILE: ml_samples_automl_image.py
DESCRIPTION:
These samples demonstrate how to use AutoML Image functions
USAGE:
python ml_samples_automl_image.py
"""
class AutoMLImageSamples(object):
def automl_image_jobs(self):
# [START automl.image_classification]
from azure.ai.ml import automl, Input
from azure.ai.ml.constants import AssetTypes
from azure.ai.ml.automl import ClassificationMultilabelPrimaryMetrics
image_classification_job = automl.image_classification(
experiment_name="my_experiment",
compute="my_compute",
training_data=Input(type=AssetTypes.MLTABLE, path="./training-mltable-folder"),
validation_data=Input(type=AssetTypes.MLTABLE, path="./validation-mltable-folder"),
target_column_name="label",
primary_metric=ClassificationMultilabelPrimaryMetrics.ACCURACY,
tags={"my_custom_tag": "My custom value"},
)
# [END automl.image_classification]
# [START automl.image_classification_multilabel]
from azure.ai.ml import automl, Input
from azure.ai.ml.constants import AssetTypes
from azure.ai.ml.automl import ClassificationMultilabelPrimaryMetrics
image_classification_multilabel_job = automl.image_classification_multilabel(
experiment_name="my_experiment",
compute="my_compute",
training_data=Input(type=AssetTypes.MLTABLE, path="./training-mltable-folder"),
validation_data=Input(type=AssetTypes.MLTABLE, path="./validation-mltable-folder"),
target_column_name="label",
primary_metric=ClassificationMultilabelPrimaryMetrics.IOU,
tags={"my_custom_tag": "My custom value"},
)
# [END automl.image_classification_multilabel]
# [START automl.image_object_detection]
from azure.ai.ml import automl, Input
from azure.ai.ml.constants import AssetTypes
from azure.ai.ml.automl import ObjectDetectionPrimaryMetrics
image_object_detection_job = automl.image_object_detection(
experiment_name="my_experiment",
compute="my_compute",
training_data=Input(type=AssetTypes.MLTABLE, path="./training-mltable-folder"),
validation_data=Input(type=AssetTypes.MLTABLE, path="./validation-mltable-folder"),
target_column_name="label",
primary_metric=ObjectDetectionPrimaryMetrics.MEAN_AVERAGE_PRECISION,
tags={"my_custom_tag": "My custom value"},
)
# [END automl.image_object_detection]
# [START automl.image_instance_segmentation]
from azure.ai.ml import automl, Input
from azure.ai.ml.constants import AssetTypes
from azure.ai.ml.automl import InstanceSegmentationPrimaryMetrics
image_instance_segmentation_job = automl.image_instance_segmentation(
experiment_name="my_experiment",
compute="my_compute",
training_data=Input(type=AssetTypes.MLTABLE, path="./training-mltable-folder"),
validation_data=Input(type=AssetTypes.MLTABLE, path="./validation-mltable-folder"),
target_column_name="label",
primary_metric=InstanceSegmentationPrimaryMetrics.MEAN_AVERAGE_PRECISION,
tags={"my_custom_tag": "My custom value"},
)
# [END automl.image_instance_segmentation]
# [START automl.automl_image_job.image_classification_job]
from azure.ai.ml import automl, Input
from azure.ai.ml.constants import AssetTypes
from azure.ai.ml.automl import ClassificationMultilabelPrimaryMetrics
image_classification_job = automl.ImageClassificationJob(
experiment_name="my_experiment",
compute="my_compute",
training_data=Input(type=AssetTypes.MLTABLE, path="./training-mltable-folder"),
validation_data=Input(type=AssetTypes.MLTABLE, path="./validation-mltable-folder"),
target_column_name="label",
primary_metric=ClassificationMultilabelPrimaryMetrics.ACCURACY,
tags={"my_custom_tag": "My custom value"},
)
# [END automl.automl_image_job.image_classification_job]
# [START automl.automl_image_job.image_classification_multilabel_job]
from azure.ai.ml import automl, Input
from azure.ai.ml.constants import AssetTypes
from azure.ai.ml.automl import ClassificationMultilabelPrimaryMetrics
image_classification_multilabel_job = automl.ImageClassificationMultilabelJob(
experiment_name="my_experiment",
compute="my_compute",
training_data=Input(type=AssetTypes.MLTABLE, path="./training-mltable-folder"),
validation_data=Input(type=AssetTypes.MLTABLE, path="./validation-mltable-folder"),
target_column_name="terms",
primary_metric=ClassificationMultilabelPrimaryMetrics.IOU,
tags={"my_custom_tag": "My custom value"},
)
# [END automl.automl_image_job.image_classification_multilabel_job]
# [START automl.automl_image_job.image_object_detection_job]
from azure.ai.ml import automl, Input
from azure.ai.ml.constants import AssetTypes
from azure.ai.ml.automl import ObjectDetectionPrimaryMetrics
image_object_detection_job = automl.ImageObjectDetectionJob(
experiment_name="my_experiment",
compute="my_compute",
training_data=Input(type=AssetTypes.MLTABLE, path="./training-mltable-folder"),
validation_data=Input(type=AssetTypes.MLTABLE, path="./validation-mltable-folder"),
tags={"my_custom_tag": "My custom value"},
primary_metric=ObjectDetectionPrimaryMetrics.MEAN_AVERAGE_PRECISION,
)
# [END automl.automl_image_job.image_object_detection_job]
# [START automl.automl_image_job.image_instance_segmentation_job]
from azure.ai.ml import automl, Input
from azure.ai.ml.constants import AssetTypes
from azure.ai.ml.automl import ObjectDetectionPrimaryMetrics
image_instance_segmentation_job = automl.ImageInstanceSegmentationJob(
experiment_name="my_experiment",
compute="my_compute",
training_data=Input(type=AssetTypes.MLTABLE, path="./training-mltable-folder"),
validation_data=Input(type=AssetTypes.MLTABLE, path="./validation-mltable-folder"),
tags={"my_custom_tag": "My custom value"},
primary_metric=ObjectDetectionPrimaryMetrics.MEAN_AVERAGE_PRECISION,
)
# [END automl.automl_image_job.image_instance_segmentation_job]
# [START automl.automl_image_job.image_sweep_settings]
from azure.ai.ml import automl
from azure.ai.ml.sweep import BanditPolicy
image_sweep_settings = automl.ImageSweepSettings(
sampling_algorithm="Grid",
early_termination=BanditPolicy(evaluation_interval=2, slack_factor=0.05, delay_evaluation=6),
)
# [END automl.automl_image_job.image_sweep_settings]
# [START automl.automl_image_job.image_classification_search_space]
from azure.ai.ml import automl
from azure.ai.ml.sweep import Uniform, Choice
image_classification_search_space = automl.ImageClassificationSearchSpace(
model_name="vitb16r224",
number_of_epochs=Choice([15, 30]),
weight_decay=Uniform(0.01, 0.1),
)
# [END automl.automl_image_job.image_classification_search_space]
# [START automl.automl_image_job.image_object_detection_search_space]
from azure.ai.ml import automl
from azure.ai.ml.sweep import Uniform
image_detection_search_space = automl.ImageObjectDetectionSearchSpace(
learning_rate=Uniform(0.005, 0.05),
model_name="yolov5",
weight_decay=Uniform(0.01, 0.1),
)
# [END automl.automl_image_job.image_object_detection_search_space]
# [START automl.automl_image_job.image_limit_settings]
from azure.ai.ml import automl, Input
from azure.ai.ml.constants import AssetTypes
# Create the AutoML job with the related factory-function.
image_job = automl.image_instance_segmentation(
experiment_name="my_experiment",
compute="my_compute",
training_data=Input(type=AssetTypes.MLTABLE, path="./training-mltable-folder"),
validation_data=Input(type=AssetTypes.MLTABLE, path="./validation-mltable-folder"),
target_column_name="label",
primary_metric="MeanAveragePrecision",
tags={"my_custom_tag": "custom value"},
)
# Set the limits for the AutoML job.
image_job.set_limits(
max_trials=10,
max_concurrent_trials=2,
)
# [END automl.automl_image_job.image_limit_settings]
# [START automl.automl_image_job.image_classification_model_settings]
from azure.ai.ml import automl
image_classification_model_settings = automl.ImageModelSettingsClassification(
checkpoint_frequency=5,
early_stopping=False,
gradient_accumulation_step=2,
)
# [END automl.automl_image_job.image_classification_model_settings]
# [START automl.automl_image_job.image_object_detection_model_settings]
from azure.ai.ml import automl
object_detection_model_settings = automl.ImageModelSettingsObjectDetection(min_size=600, max_size=1333)
# [END automl.automl_image_job.image_object_detection_model_settings]
if __name__ == "__main__":
sample = AutoMLImageSamples()
sample.automl_image_jobs()
|