1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
# coding: utf-8
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
"""
FILE: ml_samples_automl_nlp.py
DESCRIPTION:
These samples demonstrate how to use AutoML NLP functions
USAGE:
python ml_samples_automl_nlp.py
"""
import os
class AutoMLNLPSamples(object):
def automl_nlp_jobs(self):
# [START automl.text_classification]
from azure.ai.ml import automl, Input
from azure.ai.ml.constants import AssetTypes
test_classification_job = automl.text_classification(
experiment_name="my_experiment",
compute="my_compute",
training_data=Input(type=AssetTypes.MLTABLE, path="./training-mltable-folder"),
validation_data=Input(type=AssetTypes.MLTABLE, path="./validation-mltable-folder"),
target_column_name="Sentiment",
primary_metric="accuracy",
tags={"my_custom_tag": "My custom value"},
)
# [END automl.text_classification]
# [START automl.text_classification_multilabel]
from azure.ai.ml import automl, Input
from azure.ai.ml.constants import AssetTypes
text_classification_multilabel_job = automl.text_classification_multilabel(
experiment_name="my_experiment",
compute="my_compute",
training_data=Input(type=AssetTypes.MLTABLE, path="./training-mltable-folder"),
validation_data=Input(type=AssetTypes.MLTABLE, path="./validation-mltable-folder"),
target_column_name="terms",
primary_metric="accuracy",
tags={"my_custom_tag": "My custom value"},
)
# [END automl.text_classification_multilabel]
# [START automl.text_ner]
from azure.ai.ml import automl, Input
from azure.ai.ml.constants import AssetTypes
text_ner_job = automl.text_ner(
experiment_name="my_experiment",
compute="my_compute",
training_data=Input(type=AssetTypes.MLTABLE, path="./training-mltable-folder"),
validation_data=Input(type=AssetTypes.MLTABLE, path="./validation-mltable-folder"),
tags={"my_custom_tag": "My custom value"},
)
# [END automl.text_ner]
# [START automl.automl_nlp_job.text_classification_job]
from azure.ai.ml import automl, Input
from azure.ai.ml.constants import AssetTypes
text_classification_job = automl.TextClassificationJob(
experiment_name="my_experiment",
compute="my_compute",
training_data=Input(type=AssetTypes.MLTABLE, path="./training-mltable-folder"),
validation_data=Input(type=AssetTypes.MLTABLE, path="./validation-mltable-folder"),
target_column_name="terms",
tags={"my_custom_tag": "My custom value"},
)
# [END automl.automl_nlp_job.text_classification_job]
# [START automl.text_classification_multilabel_job]
from azure.ai.ml import automl, Input
from azure.ai.ml.constants import AssetTypes
text_classification_multilabel_job = automl.TextClassificationMultilabelJob(
experiment_name="my_experiment",
compute="my_compute",
training_data=Input(type=AssetTypes.MLTABLE, path="./training-mltable-folder"),
validation_data=Input(type=AssetTypes.MLTABLE, path="./validation-mltable-folder"),
target_column_name="terms",
primary_metric="accuracy",
tags={"my_custom_tag": "My custom value"},
)
# [END automl.text_classification_multilabel_job]
# [START automl.text_ner_job]
from azure.ai.ml import automl, Input
from azure.ai.ml.constants import AssetTypes
text_ner_job = automl.TextNerJob(
experiment_name="my_experiment",
compute="my_compute",
training_data=Input(type=AssetTypes.MLTABLE, path="./training-mltable-folder"),
validation_data=Input(type=AssetTypes.MLTABLE, path="./validation-mltable-folder"),
tags={"my_custom_tag": "My custom value"},
)
# [END automl.text_ner_job]
# [START automl.nlp_sweep_settings]
from azure.ai.ml import automl
from azure.ai.ml.sweep import BanditPolicy
nlp_sweep_settings = automl.NlpSweepSettings(
sampling_algorithm="Grid",
early_termination=BanditPolicy(evaluation_interval=2, slack_factor=0.05, delay_evaluation=6),
)
# [END automl.nlp_sweep_settings]
# [START automl.nlp_search_space]
from azure.ai.ml import automl
from azure.ai.ml.constants import NlpLearningRateScheduler
from azure.ai.ml.sweep import Uniform
nlp_search_space = automl.NlpSearchSpace(
learning_rate_scheduler=NlpLearningRateScheduler.LINEAR,
warmup_ratio=0.1,
model_name="roberta-base",
weight_decay=Uniform(0.01, 0.1),
)
# [END automl.nlp_search_space]
# [START automl.nlp_limit_settings]
from azure.ai.ml import automl
nlp_limit_settings = automl.NlpLimitSettings(
max_concurrent_trials=2, max_trials=4, max_nodes=4, timeout_minutes=120
)
# [END automl.nlp_limit_settings]
# [START automl.nlp_fixed_parameters]
from azure.ai.ml import automl
from azure.ai.ml.constants import NlpLearningRateScheduler
nlp_fixed_parameters = automl.NlpFixedParameters(
model_name="roberta-base",
learning_rate_scheduler=NlpLearningRateScheduler.LINEAR,
warmup_ratio=0.1,
)
# [END automl.nlp_fixed_parameters]
# [START automl.nlp_featurization_settings]
from azure.ai.ml import automl
nlp_featurization_settings = automl.NlpFeaturizationSettings(dataset_language="eng")
# [END automl.nlp_featurization_settings]
if __name__ == "__main__":
sample = AutoMLNLPSamples()
sample.automl_nlp_jobs()
|