1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
# coding: utf-8
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
"""
FILE: ml_samples_genAI_monitors_configuration.py
DESCRIPTION:
These samples demonstrate how to set up monitors in GenAI
USAGE:
python ml_samples_genAI_monitors_configuration.py
"""
import os
from azure.ai.ml import MLClient
from azure.ai.ml.entities import (
MonitorSchedule,
CronTrigger,
MonitorDefinition,
ServerlessSparkCompute,
MonitoringTarget,
GenerationTokenStatisticsSignal,
GenerationTokenStatisticsMonitorMetricThreshold,
GenerationSafetyQualitySignal,
GenerationSafetyQualityMonitoringMetricThreshold,
BaselineDataRange,
AlertNotification,
LlmData,
)
from azure.ai.ml.entities._inputs_outputs import Input
from azure.ai.ml.constants import MonitorTargetTasks, MonitorDatasetContext
# Authentication package
from azure.identity import DefaultAzureCredential
credential = DefaultAzureCredential()
subscription_id = os.environ["AZURE_SUBSCRIPTION_ID"]
resource_group = os.environ["RESOURCE_GROUP_NAME"]
workspace_name = "test-ws1"
aoai_connection_name = "INSERT_YOUR_AOAI_CONNECTION_NAME"
aoai_deployment_name = "INSERT_YOUR_AOAI_DEPLOYMENT_NAME"
endpoint_name = "INSERT_YOUR_ENDPOINT_NAME"
deployment_name = "INSERT_YOUR_DEPLOYMENT_NAME"
app_trace_name = "app_traces"
app_trace_Version = "1"
# Default Monitor configuration for GenAI apps - Enable monitoring with minimal configurations
ml_client = MLClient(
credential=credential,
subscription_id=subscription_id,
resource_group_name=resource_group,
workspace_name=workspace_name,
)
class GenAIMonitoringSamples(object):
def ml_gen_ai_monitor_default(self):
# [START default_monitoring]
spark_compute = ServerlessSparkCompute(instance_type="standard_e4s_v3", runtime_version="3.4")
monitoring_target = MonitoringTarget(
ml_task=MonitorTargetTasks.QUESTION_ANSWERING,
endpoint_deployment_id=f"azureml:{endpoint_name}:{deployment_name}",
)
monitoring_target = MonitoringTarget(
ml_task=MonitorTargetTasks.QUESTION_ANSWERING,
endpoint_deployment_id=f"azureml:{endpoint_name}:{deployment_name}",
)
monitor_settings = MonitorDefinition(compute=spark_compute, monitoring_target=monitoring_target)
model_monitor = MonitorSchedule(
name="qa_model_monitor", trigger=CronTrigger(expression="15 10 * * *"), create_monitor=monitor_settings
)
ml_client.schedules.begin_create_or_update(model_monitor)
# [END default_monitoring]
def ml_gen_ai_monitor_advance(self):
# [START advance_monitoring]
spark_compute = ServerlessSparkCompute(instance_type="standard_e4s_v3", runtime_version="3.4")
monitoring_target = MonitoringTarget(
ml_task=MonitorTargetTasks.QUESTION_ANSWERING,
endpoint_deployment_id=f"azureml:{endpoint_name}:{deployment_name}",
)
token_statistics_signal = GenerationTokenStatisticsSignal()
generation_quality_thresholds = GenerationSafetyQualityMonitoringMetricThreshold(
fluency={"acceptable_fluency_score_per_instance": 4, "aggregated_fluency_pass_rate": 0.5},
coherence={"acceptable_coherence_score_per_instance": 4, "aggregated_coherence_pass_rate": 0.5},
)
input_data = Input(
type="uri_folder",
path=f"{endpoint_name}-{deployment_name}-{app_trace_name}:{app_trace_Version}",
)
data_window = BaselineDataRange(lookback_window_size="P7D", lookback_window_offset="P0D")
production_data = LlmData(
data_column_names={"prompt_column": "question", "completion_column": "answer"},
input_data=input_data,
data_window=data_window,
)
generation_quality_signal = GenerationSafetyQualitySignal(
connection_id=f"/subscriptions/{subscription_id}/resourceGroups/{resource_group}/providers/Microsoft.MachineLearningServices/workspaces/{workspace_name}/connections/{aoai_connection_name}",
metric_thresholds=generation_quality_thresholds,
production_data=[production_data],
sampling_rate=1.0,
properties={
"aoai_deployment_name": aoai_deployment_name,
"enable_action_analyzer": "false",
"azureml.modelmonitor.gsq_thresholds": '[{"metricName":"average_fluency","threshold":{"value":4}},{"metricName":"average_coherence","threshold":{"value":4}}]',
},
)
monitoring_signals = {
"token-usage-signal": token_statistics_signal,
"gsq-signal": generation_quality_signal,
}
alert_notification = AlertNotification(emails=["test@example.com", "def@example.com"])
monitor_settings = MonitorDefinition(
compute=spark_compute,
monitoring_target=monitoring_target,
monitoring_signals=monitoring_signals, # type:ignore
alert_notification=alert_notification,
)
model_monitor = MonitorSchedule(
name="monitor-name-2", trigger=CronTrigger(expression="15 10 * * *"), create_monitor=monitor_settings
)
ml_client.schedules.begin_create_or_update(model_monitor)
if __name__ == "__main__":
sample = GenAIMonitoringSamples()
sample.ml_gen_ai_monitor_default()
sample.ml_gen_ai_monitor_advance()
|