1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
|
# coding: utf-8
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
"""
FILE: ml_samples_misc.py
DESCRIPTION:
These samples demonstrate different ways to configure generic entities including jobs, assets, and components.
USAGE:
python ml_samples_misc.py
"""
import os
from ml_samples_compute import handle_resource_exists_error
from azure.ai.ml import MLClient
from azure.identity import DefaultAzureCredential
subscription_id = os.environ["AZURE_SUBSCRIPTION_ID"]
resource_group = os.environ["RESOURCE_GROUP_NAME"]
workspace_name = "test-ws1"
credential = DefaultAzureCredential()
ml_client = MLClient(credential, subscription_id, resource_group, workspace_name=workspace_name)
import uuid
job_name = f"iris-dataset-job-{str(uuid.uuid4())}"
class MiscConfigurationOptions(object):
def ml_misc_config_0(self):
# [START job_operations_create_and_update]
from azure.ai.ml import load_job
created_job = ml_client.jobs.create_or_update(
name=job_name,
job=load_job(
"./sdk/ml/azure-ai-ml/tests/test_configs/command_job/command_job_test_local_env.yml",
params_override=[{"name": job_name}, {"compute": "cpucluster"}],
),
)
# [END job_operations_create_and_update]
# [START job_operations_list]
from azure.ai.ml._restclient.v2023_04_01_preview.models import ListViewType
list_of_jobs = ml_client.jobs.list(parent_job_name=job_name, list_view_type=ListViewType.ARCHIVED_ONLY)
# [END job_operations_list]
# [START job_operations_get]
retrieved_job = ml_client.jobs.get(job_name)
# [END job_operations_get]
# [START job_operations_begin_cancel]
cancel_poller = ml_client.jobs.begin_cancel(job_name)
print(cancel_poller.result())
# [END job_operations_begin_cancel]
# [START job_operations_validate]
from azure.ai.ml import load_job
from azure.ai.ml.entities import PipelineJob
pipeline_job: PipelineJob = load_job( # type:ignore
"./sdk/ml/azure-ai-ml/tests/test_configs/pipeline_jobs/invalid/combo.yml",
params_override=[{"name": job_name}, {"compute": "cpucluster"}],
)
print(ml_client.jobs.validate(pipeline_job).error_messages)
# [END job_operations_validate]
# [START job_operations_archive]
ml_client.jobs.archive(name=job_name)
# [END job_operations_archive]
# [START job_operations_restore]
ml_client.jobs.restore(name=job_name)
# [END job_operations_restore]
# [START job_operations_stream_logs]
running_job = ml_client.jobs.create_or_update(
load_job(
"./sdk/ml/azure-ai-ml/tests/test_configs/command_job/command_job_test_local_env.yml",
params_override=[{"name": job_name}, {"compute": "cpucluster"}],
)
)
ml_client.jobs.stream(running_job.name)
# [END job_operations_stream_logs]
# [START job_operations_download]
ml_client.jobs.download(name=job_name, download_path="./job-1-logs", all=True)
# [END job_operations_download]
# [START model_entity_create]
from azure.ai.ml.entities import Model
model = Model(
name="model1",
version="5",
description="my first model in prod",
path="models/very_important_model.pkl",
properties={"prop1": "value1", "prop2": "value2"},
type="mlflow_model",
flavors={
"sklearn": {"sklearn_version": "0.23.2"},
"python_function": {"loader_module": "office.plrmodel", "python_version": 3.6},
},
stage="Production",
)
ml_client.models.create_or_update(model)
# [END model_entity_create]
# [START model_operations_archive]
ml_client.models.archive(name="model1", version="5")
# [END model_operations_archive]
# [START model_operations_restore]
ml_client.models.restore(name="model1", version="5")
# [END model_operations_restore]
# [START model_batch_deployment_settings_entity_create]
from azure.ai.ml.entities._deployment.model_batch_deployment_settings import ModelBatchDeploymentSettings
modelBatchDeploymentSetting = ModelBatchDeploymentSettings(
mini_batch_size=256,
instance_count=5,
max_concurrency_per_instance=2,
output_file_name="output-file-name",
environment_variables={"env1": "value1", "env2": "value2"},
error_threshold=2,
logging_level="1",
)
# [END model_batch_deployment_settings_entity_create]
# [START model_configuration_entity_create]
from azure.ai.ml.entities._assets._artifacts._package.model_configuration import ModelConfiguration
modelConfiguration = ModelConfiguration(mode="model-mode", mount_path="model-mount-path")
# [END model_configuration_entity_create]
# [START model_package_input_entity_create]
from azure.ai.ml.entities._assets._artifacts._package.model_package import ModelPackageInput
modelPackageInput = ModelPackageInput(type="input-type", mode="input-mode", mount_path="input-mount-path")
# [END model_package_input_entity_create]
# [START model_package_entity_create]
from azure.ai.ml.entities import AzureMLOnlineInferencingServer, CodeConfiguration, ModelPackage
modelPackage = ModelPackage( # type:ignore
inferencing_server=AzureMLOnlineInferencingServer(
code_configuration=CodeConfiguration(code="../model-1/foo/", scoring_script="score.py")
),
target_environment_name="env-name",
target_environment_version="1.0",
environment_variables={"env1": "value1", "env2": "value2"},
tags={"tag1": "value1", "tag2": "value2"},
)
# [END model_package_entity_create]
# [START create_inputs_outputs]
from azure.ai.ml import Input, Output
from azure.ai.ml.entities import CommandJob, CommandJobLimits
command_job = CommandJob(
code="./src",
command="python train.py --ss {search_space.ss}",
inputs={
"input1": Input(path="trial.csv", mode="ro_mount", description="trial input data"),
"input_2": Input(
path="azureml:list_data_v2_test:2", type="uri_folder", description="registered data asset"
),
},
outputs={"default": Output(path="./foo")},
compute="trial",
environment="AzureML-sklearn-1.0-ubuntu20.04-py38-cpu:33",
limits=CommandJobLimits(timeout=120),
)
# [END create_inputs_outputs]
# [START load_job]
from azure.ai.ml import load_job
job = load_job(source="./sdk/ml/azure-ai-ml/tests/test_configs/command_job/command_job_test_local_env.yml")
# [END load_job]
# [START load_model]
from azure.ai.ml import load_model
model = load_model(
source="./sdk/ml/azure-ai-ml/tests/test_configs/model/model_with_stage.yml",
params_override=[{"name": "new_model_name"}, {"version": "1"}],
)
# [END load_model]
# [START load_model_package]
from azure.ai.ml import load_model_package
model_package = load_model_package(
"./sdk/ml/azure-ai-ml/tests/test_configs/model_package/model_package_simple.yml"
)
# [END load_model_package]
# [START tensorflow_distribution_configuration]
from azure.ai.ml import TensorFlowDistribution
from azure.ai.ml.entities import CommandComponent
component = CommandComponent(
name="microsoftsamples_tf",
description="This is the TF command component",
inputs={
"component_in_number": {"description": "A number", "type": "number", "default": 10.99},
"component_in_path": {"description": "A path", "type": "uri_folder"},
},
outputs={"component_out_path": {"type": "uri_folder"}},
command="echo Hello World & echo ${{inputs.component_in_number}} & echo ${{inputs.component_in_path}} "
"& echo ${{outputs.component_out_path}}",
environment="AzureML-sklearn-1.0-ubuntu20.04-py38-cpu:33",
distribution=TensorFlowDistribution(
parameter_server_count=1,
worker_count=2,
),
instance_count=2,
)
# [END tensorflow_distribution_configuration]
# [START pytorch_distribution_configuration]
from azure.ai.ml import PyTorchDistribution
from azure.ai.ml.entities import CommandComponent
component = CommandComponent(
name="microsoftsamples_torch",
description="This is the PyTorch command component",
inputs={
"component_in_number": {"description": "A number", "type": "number", "default": 10.99},
"component_in_path": {"description": "A path", "type": "uri_folder"},
},
outputs={"component_out_path": {"type": "uri_folder"}},
command="echo Hello World & echo ${{inputs.component_in_number}} & echo ${{inputs.component_in_path}} "
"& echo ${{outputs.component_out_path}}",
environment="AzureML-sklearn-1.0-ubuntu20.04-py38-cpu:33",
distribution=PyTorchDistribution(
process_count_per_instance=2,
),
instance_count=2,
)
# [END pytorch_distribution_configuration]
# [START mpi_distribution_configuration]
from azure.ai.ml import MpiDistribution
from azure.ai.ml.entities import CommandComponent
component = CommandComponent(
name="microsoftsamples_mpi",
description="This is the MPI command component",
inputs={
"component_in_number": {"description": "A number", "type": "number", "default": 10.99},
"component_in_path": {"description": "A path", "type": "uri_folder"},
},
outputs={"component_out_path": {"type": "uri_folder"}},
command="echo Hello World & echo ${{inputs.component_in_number}} & echo ${{inputs.component_in_path}} "
"& echo ${{outputs.component_out_path}}",
environment="AzureML-sklearn-1.0-ubuntu20.04-py38-cpu:33",
distribution=MpiDistribution(
process_count_per_instance=2,
),
instance_count=2,
)
# [END mpi_distribution_configuration]
# [START code_configuration]
from azure.ai.ml.entities import BatchDeployment, CodeConfiguration
deployment = BatchDeployment(
name="non-mlflow-deployment",
description="this is a sample non-mlflow deployment",
endpoint_name="my-batch-endpoint",
model=model,
code_configuration=CodeConfiguration(
code="configs/deployments/model-2/onlinescoring", scoring_script="score1.py"
),
environment="env",
compute="cpu-cluster",
instance_count=2,
max_concurrency_per_instance=2,
mini_batch_size=10,
output_file_name="predictions.csv",
)
# [END code_configuration]
# [START intellectual_property_configuration]
from azure.ai.ml.constants import IPProtectionLevel
from azure.ai.ml.entities import CommandComponent, IntellectualProperty
component = CommandComponent(
name="random_name",
version="1",
environment="azureml:AzureML-Minimal:1",
command="echo hello",
intellectual_property=IntellectualProperty(publisher="contoso", protection_level=IPProtectionLevel.ALL),
)
# [END intellectual_property_configuration]
# [START personal_access_token_configuration]
from azure.ai.ml.entities import PatTokenConfiguration, WorkspaceConnection
ws_connection = WorkspaceConnection(
target="my_target",
type="python_feed",
credentials=PatTokenConfiguration(pat="abcdefghijklmnopqrstuvwxyz"),
name="my_connection",
metadata=None,
)
# [END personal_access_token_configuration]
# [START job_schedule_configuration]
from azure.ai.ml import load_job
from azure.ai.ml.entities import JobSchedule, RecurrencePattern, RecurrenceTrigger
pipeline_job = load_job(
"./sdk/ml/azure-ai-ml/tests/test_configs/command_job/command_job_test_local_env.yml"
) # type:ignore
trigger = RecurrenceTrigger(
frequency="week",
interval=4,
schedule=RecurrencePattern(hours=10, minutes=15, week_days=["Monday", "Tuesday"]),
start_time="2023-03-10",
)
job_schedule = JobSchedule(name="simple_sdk_create_schedule", trigger=trigger, create_job=pipeline_job)
# [END job_schedule_configuration]
# [START cron_trigger_configuration]
from datetime import datetime
from azure.ai.ml.constants import TimeZone
from azure.ai.ml.entities import CronTrigger
trigger = CronTrigger( # type:ignore
expression="15 10 * * 1",
start_time=datetime(year=2022, month=3, day=10, hour=10, minute=15),
end_time=datetime(year=2022, month=6, day=10, hour=10, minute=15),
time_zone=TimeZone.PACIFIC_STANDARD_TIME,
)
# [END cron_trigger_configuration]
# [START resource_requirements_configuration]
from azure.ai.ml.entities import (
CodeConfiguration,
KubernetesOnlineDeployment,
ResourceRequirementsSettings,
ResourceSettings,
)
blue_deployment = KubernetesOnlineDeployment(
name="kubernetes_deployment",
endpoint_name="online_endpoint_name",
model=load_model("./sdk/ml/azure-ai-ml/tests/test_configs/model/model_with_stage.yml"),
environment="azureml:AzureML-Minimal:1",
code_configuration=CodeConfiguration(
code="endpoints/online/model-1/onlinescoring", scoring_script="score.py"
),
instance_count=1,
resources=ResourceRequirementsSettings(
requests=ResourceSettings(
cpu="500m",
memory="0.5Gi",
),
limits=ResourceSettings(
cpu="1",
memory="1Gi",
),
),
)
# [END resource_requirements_configuration]
# [START ssh_job_service_configuration]
from azure.ai.ml import command
from azure.ai.ml.entities import JupyterLabJobService, SshJobService, TensorBoardJobService, VsCodeJobService
node = command(
name="interactive-command-job",
description="description",
environment="AzureML-sklearn-1.0-ubuntu20.04-py38-cpu:33",
command="ls",
compute="testCompute",
services={
"my_ssh": SshJobService(),
"my_tensorboard": TensorBoardJobService(log_dir="~/blog"),
"my_jupyter_lab": JupyterLabJobService(),
"my_vscode": VsCodeJobService(),
},
)
# [END ssh_job_service_configuration]
# [START build_context_entity_create]
from azure.ai.ml.entities._assets.environment import BuildContext
build_context = BuildContext(dockerfile_path="docker-file-path", path="docker-build-context-path")
# [END build_context_entity_create]
# [START base_env_entity_create]
from azure.ai.ml.entities._assets._artifacts._package.base_environment_source import BaseEnvironment
base_environment = BaseEnvironment(type="base-env-type", resource_id="base-env-resource-id")
# [END base_env_entity_create]
# [START env_entity_create]
from azure.ai.ml.entities._assets.environment import Environment
environment = Environment(
name="env-name",
version="2.0",
description="env-description",
image="env-image",
conda_file="./sdk/ml/azure-ai-ml/tests/test_configs/deployments/model-1/environment/conda.yml",
tags={"tag1": "value1", "tag2": "value2"},
properties={"prop1": "value1", "prop2": "value2"},
datastore="datastore",
)
# [END env_entity_create]
# [START env_operations_create_or_update]
from azure.ai.ml.entities import BuildContext, Environment
env_docker_context = Environment(
build=BuildContext(
path="./sdk/ml/azure-ai-ml/tests/test_configs/environment/environment_files",
dockerfile_path="DockerfileNonDefault",
),
name="create-environment",
version="2.0",
description="Environment created from a Docker context.",
)
ml_client.environments.create_or_update(env_docker_context)
# [END env_operations_create_or_update]
# [START env_entities_validate]
from azure.ai.ml.entities import BuildContext, Environment
env_docker_context = Environment(
build=BuildContext(
path="./sdk/ml/azure-ai-ml/tests/test_configs/environment/environment_files",
dockerfile_path="DockerfileNonDefault",
),
name="create-environment",
version="2.0",
description="Environment created from a Docker context.",
)
env_docker_context.validate()
# [END env_entities_validate]
# [START env_operations_archive]
ml_client.environments.archive("create-environment", "2.0")
# [END env_operations_archive]
# [START env_operations_restore]
ml_client.environments.restore("create-environment", "2.0")
# [END env_operations_restore]
# [START env_operations_list]
ml_client.environments.list()
# [END env_operations_list]
# [START env_operations_get]
ml_client.environments.get("create-environment", "2.0")
# [END env_operations_get]
@handle_resource_exists_error
def ml_misc_config_1(self):
from random import randint
from azure.ai.ml import load_batch_endpoint
from azure.ai.ml.entities import BatchEndpoint
endpoint_example = load_batch_endpoint(
source="./sdk/ml/azure-ai-ml/tests/test_configs/endpoints/batch/batch_endpoint_mlflow_new.yaml",
params_override=[{"name": f"endpoint-{randint(0, 1000)}"}],
)
ml_client.batch_endpoints.begin_create_or_update(endpoint_example)
endpoint_name = endpoint_example.name
# [START batch_deployment_operations_begin_create_or_update]
from azure.ai.ml import load_batch_deployment
from azure.ai.ml.entities import BatchDeployment
deployment_example = load_batch_deployment(
source="./sdk/ml/azure-ai-ml/tests/test_configs/deployments/batch/batch_deployment_anon_env_with_image.yaml",
params_override=[{"name": f"deployment-{randint(0, 1000)}", "endpoint_name": endpoint_example.name}],
)
ml_client.batch_deployments.begin_create_or_update(deployment=deployment_example, skip_script_validation=True)
# [END batch_deployment_operations_begin_create_or_update]
deployment_name = deployment_example.name
# [START batch_deployment_operations_get]
ml_client.batch_deployments.get(deployment_name, endpoint_name)
# [END batch_deployment_operations_get]
# [START batch_deployment_operations_list]
ml_client.batch_deployments.list(endpoint_name)
# [END batch_deployment_operations_list]
# [START batch_deployment_operations_list_jobs]
ml_client.batch_deployments.list_jobs(deployment_name, endpoint_name)
# [END batch_deployment_operations_list_jobs]
# [START batch_deployment_operations_delete]
ml_client.batch_deployments.begin_delete(deployment_name, endpoint_name)
# [END batch_deployment_operations_delete]
# [START batch_endpoint_operations_list]
ml_client.batch_endpoints.list()
# [END batch_endpoint_operations_list]
# [START batch_endpoint_operations_get]
ml_client.batch_endpoints.get(endpoint_name)
# [END batch_endpoint_operations_get]
# [START batch_endpoint_operations_delete]
ml_client.batch_endpoints.begin_delete(endpoint_name)
# [END batch_endpoint_operations_delete]
from random import randint
endpoint_name_2 = f"new-endpoint-{randint(0, 1000)}"
# [START batch_endpoint_operations_create_or_update]
from azure.ai.ml.entities import BatchEndpoint
endpoint_example = BatchEndpoint(name=endpoint_name_2)
ml_client.batch_endpoints.begin_create_or_update(endpoint_example)
# [END batch_endpoint_operations_create_or_update]
# [START batch_endpoint_operations_invoke]
ml_client.batch_endpoints.invoke(endpoint_name_2)
# [END batch_endpoint_operations_invoke]
# [START batch_endpoint_operations_list_jobs]
ml_client.batch_endpoints.list_jobs(endpoint_name_2)
# [END batch_endpoint_operations_list_jobs]
def ml_misc_config_2(self):
# [START component_operations_create_or_update]
from azure.ai.ml import load_component
from azure.ai.ml.entities._component.component import Component
component_example = load_component(
source="./sdk/ml/azure-ai-ml/tests/test_configs/components/helloworld_component.yml",
params_override=[{"version": "1.0.2"}],
)
component = ml_client.components.create_or_update(component_example)
# [END component_operations_create_or_update]
print(component)
# [START code_operations_create_or_update]
from azure.ai.ml.entities._assets._artifacts.code import Code
code_example = Code(name="my-code-asset", version="2.0", path="./sdk/ml/azure-ai-ml/samples/src")
code_asset = ml_client._code.create_or_update(code_example)
# [END code_operations_create_or_update]
from random import randint
data_asset_name = f"data_asset_name_{randint(0, 1000)}"
# [START data_operations_create_or_update]
from azure.ai.ml.entities import Data
data_asset_example = Data(name=data_asset_name, version="2.0", path="./sdk/ml/azure-ai-ml/samples/src")
ml_client.data.create_or_update(data_asset_example)
# [END data_operations_create_or_update]
# [START component_operations_list]
print(ml_client.components.list())
# [END component_operations_list]
# [START component_operations_get]
ml_client.components.get(name=component_example.name, version="1.0.2")
# [END component_operations_get]
# [START component_operations_validate]
from azure.ai.ml.entities._component.component import Component
ml_client.components.validate(component_example)
# [END component_operations_validate]
# [START component_operations_archive]
ml_client.components.archive(name=component_example.name)
# [END component_operations_archive]
# [START component_operations_restore]
ml_client.components.restore(name=component_example.name)
# [END component_operations_restore]
# [START code_operations_get]
ml_client._code.get(name=code_asset.name, version=code_asset.version)
# [END code_operations_get]
# [START data_operations_list]
ml_client.data.list(name="data_asset_name")
# [END data_operations_list]
# [START data_operations_get]
ml_client.data.get(name="data_asset_name", version="2.0")
# [END data_operations_get]
# [START data_operations_import_data]
from azure.ai.ml.entities._data_import.data_import import DataImport
from azure.ai.ml.entities._inputs_outputs.external_data import Database
database_example = Database(query="SELECT ID FROM DataTable", connection="azureml:my_azuresqldb_connection")
data_import_example = DataImport(
name="data_asset_name", path="azureml://datastores/workspaceblobstore/paths/", source=database_example
)
ml_client.data.import_data(data_import_example)
# [END data_operations_import_data]
# [START data_operations_list_materialization_status]
ml_client.data.list_materialization_status("data_asset_name")
# [END data_operations_list_materialization_status]
# [START data_operations_archive]
ml_client.data.archive("data_asset_name")
# [END data_operations_archive]
# [START data_operations_restore]
ml_client.data.restore("data_asset_name")
# [END data_operations_restore]
try:
# [START data_operations_share]
ml_client.data.share(
name="data_asset_name",
version="2.0",
registry_name="my-registry",
share_with_name="transformed-nyc-taxi-data-shared-from-ws",
share_with_version="2.0",
)
# [END data_operations_share]
except TypeError:
pass
# [START datastore_operations_create_or_update]
from azure.ai.ml.entities import AzureBlobDatastore
datastore_example = AzureBlobDatastore(
name="azure_blob_datastore",
account_name="sdkvnextclidcdnrc7zb7xyy", # cspell:disable-line
container_name="testblob",
)
ml_client.datastores.create_or_update(datastore_example)
# [END datastore_operations_create_or_update]
# [START datastore_operations_list]
ml_client.datastores.list()
# [END datastore_operations_list]
# [START datastore_operations_get]
ml_client.datastores.get("azure_blob_datastore")
# [END datastore_operations_get]
# [START datastore_operations_get_default]
ml_client.datastores.get_default()
# [END datastore_operations_get_default]
# [START datastore_operations_delete]
ml_client.datastores.delete("azure_blob_datastore")
# [END datastore_operations_delete]
# [START validation_result]
"""For example, if repr(self) is:
```python
{
"errors": [
{
"path": "jobs.job_a.inputs.input_str",
"message": "input_str is required",
"value": None,
},
{
"path": "jobs.job_a.inputs.input_str",
"message": "input_str must be in the format of xxx",
"value": None,
},
{
"path": "settings.on_init",
"message": "On_init job name job_b does not exist in jobs.",
"value": None,
},
],
"warnings": [
{
"path": "jobs.job_a.inputs.input_str",
"message": "input_str is required",
"value": None,
}
]
}
```
then the error_messages will be:
```python
{
"jobs.job_a.inputs.input_str": "input_str is required; input_str must be in the format of xxx",
"settings.on_init": "On_init job name job_b does not exist in jobs.",
}
```
"""
# [END validation_result]
@handle_resource_exists_error
def ml_misc_config_3(self):
# [START job_operations_show_services]
job_services = ml_client.jobs.show_services(job_name)
# [END job_operations_show_services]
if __name__ == "__main__":
sample = MiscConfigurationOptions()
sample.ml_misc_config_0()
sample.ml_misc_config_1()
sample.ml_misc_config_2()
sample.ml_misc_config_3()
|