1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
|
# Microsoft OpenTelemetry exporter for Azure Monitor
The exporter for Azure Monitor allows Python applications to export data from the OpenTelemetry SDK to Azure Monitor. The exporter is intended for users who require advanced configuration or have more complicated telemetry needs that require all of distributed tracing, logging and metrics. If you have simpler configuration requirements, we recommend using the [Azure Monitor OpenTelemetry Distro](https://learn.microsoft.com/azure/azure-monitor/app/opentelemetry-enable?tabs=python) instead for a simpler one-line setup.
Prior to using this SDK, please read and understand [Data Collection Basics](https://learn.microsoft.com/azure/azure-monitor/app/opentelemetry-overview?tabs=python), especially the section on [telemetry types](https://learn.microsoft.com/azure/azure-monitor/app/opentelemetry-overview?tabs=python#telemetry-types). OpenTelemetry terminology differs from Application Insights terminology so it is important to understand the way the telemetry types map to each other.
[Source code](https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/monitor/azure-monitor-opentelemetry-exporter) | [Package (PyPi)][pypi] | [API reference documentation][api_docs] | [Product documentation][product_docs] | [Samples][exporter_samples] | [Changelog](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/monitor/azure-monitor-opentelemetry-exporter/CHANGELOG.md)
## Getting started
### Install the package
Install the Microsoft OpenTelemetry exporter for Azure Monitor with [pip][pip]:
```Bash
pip install azure-monitor-opentelemetry-exporter --pre
```
### Prerequisites
To use this package, you must have:
* Azure subscription - [Create a free account][azure_sub]
* Azure Monitor - [How to use application insights][application_insights_namespace]
* OpenTelemetry SDK - [OpenTelemetry SDK for Python][ot_sdk_python]
* Python 3.8 or later - [Install Python][python]
### Instantiate the client
Interaction with Azure monitor exporter starts with an instance of the `AzureMonitorTraceExporter` class for distributed tracing, `AzureMonitorLogExporter` for logging and `AzureMonitorMetricExporter` for metrics. You will need a **connection_string** to instantiate the object.
Please find the samples linked below for demonstration as to how to construct the exporter using a connection string.
#### Logging (experimental)
NOTE: The logging signal for the `AzureMonitorLogExporter` is currently in an EXPERIMENTAL state. Possible breaking changes may ensue in the future.
```python
from azure.monitor.opentelemetry.exporter import AzureMonitorLogExporter
exporter = AzureMonitorLogExporter(
connection_string=os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)
```
#### Metrics
```python
from azure.monitor.opentelemetry.exporter import AzureMonitorMetricExporter
exporter = AzureMonitorMetricExporter(
connection_string=os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)
```
#### Tracing
```python
from azure.monitor.opentelemetry.exporter import AzureMonitorTraceExporter
exporter = AzureMonitorTraceExporter(
connection_string=os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)
```
You can also instantiate the exporter directly via the constructor. In this case, the connection string will be automatically populated from the `APPLICATIONINSIGHTS_CONNECTION_STRING` environment variable.
```python
from azure.monitor.opentelemetry.exporter import AzureMonitorLogExporter
exporter = AzureMonitorLogExporter()
```
```python
from azure.monitor.opentelemetry.exporter import AzureMonitorMetricExporter
exporter = AzureMonitorMetricExporter()
```
```python
from azure.monitor.opentelemetry.exporter import AzureMonitorTraceExporter
exporter = AzureMonitorTraceExporter()
```
## Key concepts
Some of the key concepts for the Azure monitor exporter include:
* [OpenTelemetry][opentelemetry_spec]: OpenTelemetry is a set of libraries used to collect and export telemetry data (metrics, logs, and traces) for analysis in order to understand your software's performance and behavior.
* [Instrumentation][instrumentation_library]: The ability to call the OpenTelemetry API directly by any application is facilitated by instrumentation. A library that enables OpenTelemetry observability for another library is called an instrumentation Library.
* [Log][log_concept]: Log refers to capturing of logging, exception and events.
* [LogRecord][log_record]: Represents a log record emitted from a supported logging library.
* [Logger][logger]: Converts a `LogRecord` into a readable `LogData`, and will be pushed through the SDK to be exported.
* [Logger Provider][logger_provider]: Provides a `Logger` for the given instrumentation library.
* [LogRecordProcessor][log_record_processor]: Interface to hook the log record emitting action.
* [LoggingHandler][logging_handler]: A handler class which writes logging records in OpenTelemetry format from the standard Python `logging` library.
* [AzureMonitorLogExporter][log_reference]: This is the class that is initialized to send logging related telemetry to Azure Monitor.
* [Metric][metric_concept]: `Metric` refers to recording raw measurements with predefined aggregation and sets of attributes for a period in time.
* [Measurement][measurement]: Represents a data point recorded at a point in time.
* [Instrument][instrument]: Instruments are used to report `Measurement`s.
* [Meter][meter]: The `Meter` is responsible for creating `Instruments`.
* [Meter Provider][meter_provider]: Provides a `Meter` for the given instrumentation library.
* [Metric Reader][metric_reader]: An SDK implementation object that provides the common configurable aspects of the OpenTelemetry Metrics SDK such as collection, flushing and shutdown.
* [AzureMonitorMetricExporter][metric_reference]: This is the class that is initialized to send metric related telemetry to Azure Monitor.
* [Trace][trace_concept]: Trace refers to distributed tracing. A distributed trace is a set of events, triggered as a result of a single logical operation, consolidated across various components of an application. In particular, a Trace can be thought of as a directed acyclic graph (DAG) of Spans, where the edges between Spans are defined as parent/child relationship.
* [Span][span]: Represents a single operation within a `Trace`. Can be nested to form a trace tree. Each trace contains a root span, which typically describes the entire operation and, optionally, one ore more sub-spans for its sub-operations.
* [Tracer][tracer]: Responsible for creating `Span`s.
* [Tracer Provider][tracer_provider]: Provides a `Tracer` for use by the given instrumentation library.
* [Span Processor][span_processor]: A span processor allows hooks for SDK's `Span` start and end method invocations. Follow the link for more information.
* [AzureMonitorTraceExporter][trace_reference]: This is the class that is initialized to send tracing related telemetry to Azure Monitor.
* [Sampling][sampler_ref]: Sampling is a mechanism to control the noise and overhead introduced by OpenTelemetry by reducing the number of samples of traces collected and sent to the backend.
* ApplicationInsightsSampler: Application Insights specific sampler used for consistent sampling across Application Insights SDKs and OpenTelemetry-based SDKs sending data to Application Insights. This sampler MUST be used whenever `AzureMonitorTraceExporter` is used.
For more information about these resources, see [What is Azure Monitor?][product_docs].
## Configuration
All configuration options can be passed through the constructors of exporters through `kwargs`. Below is a list of configurable options.
* `connection_string`: The connection string used for your Application Insights resource.
* `disable_offline_storage`: Boolean value to determine whether to disable storing failed telemetry records for retry. Defaults to `False`.
* `storage_directory`: Storage directory in which to store retry files. Defaults to `<tempfile.gettempdir()>/Microsoft/AzureMonitor/opentelemetry-python-<your-instrumentation-key>`.
* `credential`: Token credential, such as ManagedIdentityCredential or ClientSecretCredential, used for [Azure Active Directory (AAD) authentication][aad_for_ai_docs]. Defaults to None. See [samples][exporter_samples] for examples. The credential will be automatically created from the `APPLICATIONINSIGHTS_AUTHENTICATION_STRING` environment variable if not explicitly passed in. See [documentation][aad_env_var_docs] for more.
## Examples
### Logging (experimental)
NOTE: The logging signal for the `AzureMonitorLogExporter` is currently in an EXPERIMENTAL state. Possible breaking changes may ensue in the future.
The following sections provide several code snippets covering some of the most common tasks, including:
* [Exporting a log record](#export-hello-world-log)
* [Exporting correlated log record](#export-correlated-log)
* [Exporting log record with custom properties](#export-custom-properties-log)
* [Exporting an exceptions log record](#export-exceptions-log)
Review the [OpenTelemetry Logging SDK][ot_logging_sdk] to learn how to use OpenTelemetry components to collect logs.
When integrating the `AzureMonitorLogExporter`, it's **strongly advised to utilize a named logger** rather
than the root logger.
This recommendation stems from the exporter's dependency on `azure-core` for constructing and dispatching requests.
Since `azure-core` itself uses a Python logger, attaching the handler to the root logger would
inadvertently capture and export these internal log messages as well.
This triggers a recursive loop of logging and exporting, leading to an unnecessary proliferation of log data.
To avoid this, configure a named logger for your application's logging needs or set up your logging handler to filter out logs originating from the SDK library.
#### Export Hello World Log
```python
"""
An example to show an application using Opentelemetry logging sdk. Logging calls to the standard Python
logging library are tracked and telemetry is exported to application insights with the AzureMonitorLogExporter.
"""
import os
import logging
from opentelemetry._logs import set_logger_provider
from opentelemetry.sdk._logs import (
LoggerProvider,
LoggingHandler,
)
from opentelemetry.sdk._logs.export import BatchLogRecordProcessor
from azure.monitor.opentelemetry.exporter import AzureMonitorLogExporter
logger_provider = LoggerProvider()
set_logger_provider(logger_provider)
exporter = AzureMonitorLogExporter(
connection_string=os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)
logger_provider.add_log_record_processor(BatchLogRecordProcessor(exporter))
# Attach LoggingHandler to namespaced logger
handler = LoggingHandler()
logger = logging.getLogger(__name__)
logger.addHandler(handler)
logger.setLevel(logging.NOTSET)
logger.warning("Hello World!")
# Telemetry records are flushed automatically upon application exit
# If you would like to flush records manually yourself, you can call force_flush()
logger_provider.force_flush()
```
#### Export Correlated Log
```python
"""
An example showing how to include context correlation information in logging telemetry.
"""
import os
import logging
from opentelemetry import trace
from opentelemetry._logs import set_logger_provider
from opentelemetry.sdk._logs import (
LoggerProvider,
LoggingHandler,
)
from opentelemetry.sdk._logs.export import BatchLogRecordProcessor
from opentelemetry.sdk.trace import TracerProvider
from azure.monitor.opentelemetry.exporter import AzureMonitorLogExporter
trace.set_tracer_provider(TracerProvider())
tracer = trace.get_tracer(__name__)
logger_provider = LoggerProvider()
set_logger_provider(logger_provider)
exporter = AzureMonitorLogExporter(
connection_string=os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)
logger_provider.add_log_record_processor(BatchLogRecordProcessor(exporter))
# Attach LoggingHandler to namespaced logger
handler = LoggingHandler()
logger = logging.getLogger(__name__)
logger.addHandler(handler)
logger.setLevel(logging.NOTSET)
logger.info("INFO: Outside of span")
with tracer.start_as_current_span("foo"):
logger.warning("WARNING: Inside of span")
logger.error("ERROR: After span")
```
#### Export Custom Properties Log
```python
"""
An example showing how to add custom properties to logging telemetry.
"""
import os
import logging
from opentelemetry._logs import set_logger_provider
from opentelemetry.sdk._logs import (
LoggerProvider,
LoggingHandler,
)
from opentelemetry.sdk._logs.export import BatchLogRecordProcessor
from azure.monitor.opentelemetry.exporter import AzureMonitorLogExporter
logger_provider = LoggerProvider()
set_logger_provider(logger_provider)
exporter = AzureMonitorLogExporter(
connection_string=os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)
logger_provider.add_log_record_processor(BatchLogRecordProcessor(exporter))
# Attach LoggingHandler to namespaced logger
handler = LoggingHandler()
logger = logging.getLogger(__name__)
logger.addHandler(handler)
logger.setLevel(logging.NOTSET)
# Custom properties
logger.debug("DEBUG: Debug with properties", extra={"debug": "true"})
```
#### Export Exceptions Log
```python
"""
An example showing how to export exception telemetry using the AzureMonitorLogExporter.
"""
import os
import logging
from opentelemetry._logs import (
get_logger_provider,
set_logger_provider,
)
from opentelemetry.sdk._logs import (
LoggerProvider,
LoggingHandler,
)
from opentelemetry.sdk._logs.export import BatchLogRecordProcessor
from azure.monitor.opentelemetry.exporter import AzureMonitorLogExporter
set_logger_provider(LoggerProvider())
exporter = AzureMonitorLogExporter(
connection_string=os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)
get_logger_provider().add_log_record_processor(BatchLogRecordProcessor(exporter))
# Attach LoggingHandler to namespaced logger
handler = LoggingHandler()
logger = logging.getLogger(__name__)
logger.addHandler(handler)
logger.setLevel(logging.NOTSET)
# The following code will generate two pieces of exception telemetry
# that are identical in nature
try:
val = 1 / 0
print(val)
except ZeroDivisionError:
logger.exception("Error: Division by zero")
try:
val = 1 / 0
print(val)
except ZeroDivisionError:
logger.error("Error: Division by zero", stack_info=True, exc_info=True)
```
### Metrics
The following sections provide several code snippets covering some of the most common tasks, including:
* [Using different metric instruments](#metric-instrument-usage)
* [Customizing outputted metrics with views](#metric-custom-views)
* [Recording instruments with attributes](#metric-record-attributes)
Review the [OpenTelemetry Metrics SDK][ot_metrics_sdk] to learn how to use OpenTelemetry components to collect metrics.
#### Metric instrument usage
```python
"""
An example to show an application using all instruments in the OpenTelemetry SDK. Metrics created
and recorded using the sdk are tracked and telemetry is exported to application insights with the
AzureMonitorMetricsExporter.
"""
import os
from typing import Iterable
from opentelemetry import metrics
from opentelemetry.metrics import CallbackOptions, Observation
from opentelemetry.sdk.metrics import MeterProvider
from opentelemetry.sdk.metrics.export import PeriodicExportingMetricReader
from azure.monitor.opentelemetry.exporter import AzureMonitorMetricExporter
exporter = AzureMonitorMetricExporter(
connection_string=os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)
reader = PeriodicExportingMetricReader(exporter, export_interval_millis=5000)
metrics.set_meter_provider(MeterProvider(metric_readers=[reader]))
# Create a namespaced meter
meter = metrics.get_meter_provider().get_meter("sample")
# Callback functions for observable instruments
def observable_counter_func(options: CallbackOptions) -> Iterable[Observation]:
yield Observation(1, {})
def observable_up_down_counter_func(
options: CallbackOptions,
) -> Iterable[Observation]:
yield Observation(-10, {})
def observable_gauge_func(options: CallbackOptions) -> Iterable[Observation]:
yield Observation(9, {})
# Counter
counter = meter.create_counter("counter")
counter.add(1)
# Async Counter
observable_counter = meter.create_observable_counter(
"observable_counter", [observable_counter_func]
)
# UpDownCounter
up_down_counter = meter.create_up_down_counter("up_down_counter")
up_down_counter.add(1)
up_down_counter.add(-5)
# Async UpDownCounter
observable_up_down_counter = meter.create_observable_up_down_counter(
"observable_up_down_counter", [observable_up_down_counter_func]
)
# Histogram
histogram = meter.create_histogram("histogram")
histogram.record(99.9)
# Async Gauge
gauge = meter.create_observable_gauge("gauge", [observable_gauge_func])
# Upon application exit, one last collection is made and telemetry records are
# flushed automatically. # If you would like to flush records manually yourself,
# you can call force_flush()
meter_provider.force_flush()
```
#### Metric custom views
```python
"""
This example shows how to customize the metrics that are output by the SDK using Views. Metrics created
and recorded using the sdk are tracked and telemetry is exported to application insights with the
AzureMonitorMetricsExporter.
"""
import os
from opentelemetry import metrics
from opentelemetry.sdk.metrics import Counter, MeterProvider
from opentelemetry.sdk.metrics.export import PeriodicExportingMetricReader
from opentelemetry.sdk.metrics.view import View
from azure.monitor.opentelemetry.exporter import AzureMonitorMetricExporter
exporter = AzureMonitorMetricExporter.from_connection_string(
os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)
# Create a view matching the counter instrument `my.counter`
# and configure the new name `my.counter.total` for the result metrics stream
change_metric_name_view = View(
instrument_type=Counter,
instrument_name="my.counter",
name="my.counter.total",
)
reader = PeriodicExportingMetricReader(exporter, export_interval_millis=5000)
provider = MeterProvider(
metric_readers=[
reader,
],
views=[
change_metric_name_view,
],
)
metrics.set_meter_provider(provider)
meter = metrics.get_meter_provider().get_meter("view-name-change")
my_counter = meter.create_counter("my.counter")
my_counter.add(100)
```
More examples with the metrics `Views` SDK can be found [here](https://github.com/open-telemetry/opentelemetry-python/tree/main/docs/examples/metrics/views).
#### Metric record attributes
```python
"""
An example to show an application using different attributes with instruments in the OpenTelemetry SDK.
Metrics created and recorded using the sdk are tracked and telemetry is exported to application insights
with the AzureMonitorMetricsExporter.
"""
import os
from opentelemetry import metrics
from opentelemetry.sdk.metrics import MeterProvider
from opentelemetry.sdk.metrics.export import PeriodicExportingMetricReader
from azure.monitor.opentelemetry.exporter import AzureMonitorMetricExporter
exporter = AzureMonitorMetricExporter.from_connection_string(
os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)
reader = PeriodicExportingMetricReader(exporter, export_interval_millis=5000)
metrics.set_meter_provider(MeterProvider(metric_readers=[reader]))
attribute_set1 = {
"key1": "val1"
}
attribute_set2 = {
"key2": "val2"
}
large_attribute_set = {}
for i in range(20):
key = "key{}".format(i)
val = "val{}".format(i)
large_attribute_set[key] = val
meter = metrics.get_meter_provider().get_meter("sample")
# Counter
counter = meter.create_counter("attr1_counter")
counter.add(1, attribute_set1)
# Counter2
counter2 = meter.create_counter("attr2_counter")
counter2.add(10, attribute_set1)
counter2.add(30, attribute_set2)
# Counter3
counter3 = meter.create_counter("large_attr_counter")
counter3.add(100, attribute_set1)
counter3.add(200, large_attribute_set)
```
### Tracing
The following sections provide several code snippets covering some of the most common tasks, including:
* [Exporting a custom span](#export-hello-world-trace)
* [Using an instrumentation to track a library](#instrumentation-with-requests-library)
* [Enabling sampling to limit the amount of telemetry sent](#enabling-sampling)
Review the [OpenTelemetry Tracing SDK][ot_tracing_sdk] to learn how to use OpenTelemetry components to collect logs.
#### Export Hello World Trace
```python
"""
An example to show an application using Opentelemetry tracing api and sdk. Custom dependencies are
tracked via spans and telemetry is exported to application insights with the AzureMonitorTraceExporter.
"""
import os
from opentelemetry import trace
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from azure.monitor.opentelemetry.exporter import AzureMonitorTraceExporter
tracer_provider = TracerProvider()
trace.set_tracer_provider(tracer_provider)
tracer = trace.get_tracer(__name__)
# This is the exporter that sends data to Application Insights
exporter = AzureMonitorTraceExporter(
connection_string=os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)
span_processor = BatchSpanProcessor(exporter)
trace.get_tracer_provider().add_span_processor(span_processor)
with tracer.start_as_current_span("hello"):
print("Hello, World!")
# Telemetry records are flushed automatically upon application exit
# If you would like to flush records manually yourself, you can call force_flush()
tracer_provider.force_flush()
```
#### Instrumentation with requests library
OpenTelemetry also supports several instrumentations which allows to instrument with third party libraries.
For a list of instrumentations available in OpenTelemetry, visit the contrib [documentation](https://opentelemetry-python-contrib.readthedocs.io/en/latest/).
This example shows how to instrument with the [requests](https://pypi.org/project/requests/) library.
* Install the requests instrumentation package using pip install opentelemetry-instrumentation-requests.
```python
"""
An example to show an application instrumented with the OpenTelemetry requests instrumentation.
Calls made with the requests library will be automatically tracked and telemetry is exported to
application insights with the AzureMonitorTraceExporter.
See more info on the requests instrumentation here:
https://github.com/open-telemetry/opentelemetry-python-contrib/tree/main/instrumentation/opentelemetry-instrumentation-requests
"""
import os
import requests
from opentelemetry import trace
from opentelemetry.instrumentation.requests import RequestsInstrumentor
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from azure.monitor.opentelemetry.exporter import AzureMonitorTraceExporter
# This line causes your calls made with the requests library to be tracked.
RequestsInstrumentor().instrument()
trace.set_tracer_provider(TracerProvider())
tracer = trace.get_tracer(__name__)
exporter = AzureMonitorTraceExporter(
connection_string=os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)
span_processor = BatchSpanProcessor(exporter)
trace.get_tracer_provider().add_span_processor(span_processor)
# This request will be traced
response = requests.get(url="https://azure.microsoft.com/")
```
#### Enabling sampling
You can enable sampling to limit the amount of telemetry records you receive. In order to enable correct sampling in Application Insights, use the `ApplicationInsightsSampler` as shown below.
```python
"""
An example to show an application using the ApplicationInsightsSampler to enable sampling for your telemetry.
Specify a sampling rate for the sampler to limit the amount of telemetry records you receive. Custom dependencies
are tracked via spans and telemetry is exported to application insights with the AzureMonitorTraceExporter.
"""
import os
from opentelemetry import trace
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from azure.monitor.opentelemetry.exporter import (
ApplicationInsightsSampler,
AzureMonitorTraceExporter,
)
# Sampler expects a sample rate of between 0 and 1 inclusive
# A rate of 0.75 means approximately 75% of your telemetry will be sent
sampler = ApplicationInsightsSampler(0.75)
trace.set_tracer_provider(TracerProvider(sampler=sampler))
tracer = trace.get_tracer(__name__)
exporter = AzureMonitorTraceExporter(
connection_string=os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)
span_processor = BatchSpanProcessor(exporter)
trace.get_tracer_provider().add_span_processor(span_processor)
for i in range(100):
# Approximately 25% of these spans should be sampled out
with tracer.start_as_current_span("hello"):
print("Hello, World!")
```
## Flush/shutdown behavior
For all applications set up with OpenTelemetry SDK and Azure Monitor exporters, telemetry is flushed automatically upon application exit. Note that this does not include when application ends abruptly or crashes due to uncaught exception.
## Troubleshooting
The exporter raises exceptions defined in [Azure Core](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/core/azure-core/README.md#azure-core-library-exceptions).
## Next steps
### More sample code
Please find further examples in the [samples][exporter_samples] directory demonstrating common scenarios.
### Additional documentation
For more extensive documentation on the Azure Monitor service, see the [Azure Monitor documentation][product_docs] on learn.microsoft.com.
For detailed overview of OpenTelemetry, visit their [overview](https://github.com/open-telemetry/opentelemetry-specification/blob/master/specification/overview.md) page.
For the official OpenTelemetry Python documentation and how to enable other telemetry scenarios, visit the official OpenTelemetry [website](https://opentelemetry.io/docs/instrumentation/python/).
For more information on the Azure Monitor OpenTelemetry Distro, which is a bundle of useful, pre-assembled components (one of them being this current package) that enable telemetry scenarios with Azure Monitor, visit the [README](https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/monitor/azure-monitor-opentelemetry).
## Contributing
This project welcomes contributions and suggestions. Most contributions require you to agree to a
Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us
the rights to use your contribution. For details, visit https://cla.microsoft.com.
When you submit a pull request, a CLA-bot will automatically determine whether you need to provide
a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions
provided by the bot. You will only need to do this once across all repos using our CLA.
This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or
contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.
<!-- LINKS -->
[aad_env_var_docs]: https://learn.microsoft.com/azure/azure-monitor/app/azure-ad-authentication
<!-- TODO: Update with documentation link to be python-specific after Python docs have been updated to be like Java: https://learn.microsoft.com/en-us/azure/azure-monitor/app/azure-ad-authentication?tabs=java#environment-variable-configuration-2 -->
[aad_for_ai_docs]: https://learn.microsoft.com/azure/azure-monitor/app/azure-ad-authentication?tabs=python
[api_docs]: https://azure.github.io/azure-sdk-for-python/monitor.html#azure-monitor-opentelemetry-exporter
[exporter_samples]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/monitor/azure-monitor-opentelemetry-exporter/samples
[product_docs]: https://learn.microsoft.com/azure/azure-monitor/overview
[azure_sub]: https://azure.microsoft.com/free/
[pip]: https://pypi.org/project/pip/
[pypi]: https://pypi.org/project/azure-monitor-opentelemetry-exporter/
[python]: https://www.python.org/downloads/
[ot_sdk_python]: https://github.com/open-telemetry/opentelemetry-python
[application_insights_namespace]: https://learn.microsoft.com/azure/azure-monitor/app/app-insights-overview#how-do-i-use-application-insights
[opentelemetry_spec]: https://opentelemetry.io/
[instrumentation_library]: https://github.com/open-telemetry/opentelemetry-specification/blob/master/specification/overview.md#instrumentation-libraries
[log_concept]: https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/overview.md#log-signal
[log_record]: https://opentelemetry-python.readthedocs.io/en/latest/sdk/_logs.html#opentelemetry.sdk._logs.LogRecord
[logger]: https://opentelemetry-python.readthedocs.io/en/latest/sdk/_logs.html#opentelemetry.sdk._logs.Logger
[logger_provider]: https://opentelemetry-python.readthedocs.io/en/latest/sdk/_logs.html#opentelemetry.sdk._logs.LoggerProvider
[log_record_processor]: https://opentelemetry-python.readthedocs.io/en/latest/sdk/_logs.html#opentelemetry.sdk._logs.LogRecordProcessor
[logging_handler]: https://opentelemetry-python.readthedocs.io/en/latest/sdk/_logs.html#opentelemetry.sdk._logs.LoggingHandler
[log_reference]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/monitor/azure-monitor-opentelemetry-exporter/azure/monitor/opentelemetry/exporter/export/logs/_exporter.py
[ot_logging_sdk]: https://opentelemetry-python.readthedocs.io/en/latest/sdk/_logs.html
[metric_concept]: https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/overview.md#metric-signal
[measurement]: https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/api.md#measurement
[instrument]: https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/api.md#instrument
[meter]: https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/api.md#meter
[meter_provider]: https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/api.md#meterprovider
[metric_reader]:https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/sdk.md#metricreader
[metric_reference]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/monitor/azure-monitor-opentelemetry-exporter/azure/monitor/opentelemetry/exporter/export/metrics/_exporter.py
[ot_metrics_sdk]: https://opentelemetry-python.readthedocs.io/en/latest/sdk/metrics.html
[trace_concept]: https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/overview.md#tracing-signal
[span]: https://opentelemetry-python.readthedocs.io/en/latest/api/trace.html?highlight=TracerProvider#opentelemetry.trace.Span
[tracer]: https://opentelemetry-python.readthedocs.io/en/latest/api/trace.html?highlight=TracerProvider#opentelemetry.trace.Tracer
[tracer_provider]: https://opentelemetry-python.readthedocs.io/en/latest/api/trace.html?highlight=TracerProvider#opentelemetry.trace.TracerProvider
[span_processor]: https://opentelemetry-python.readthedocs.io/en/latest/_modules/opentelemetry/sdk/trace.html?highlight=SpanProcessor#
[trace_reference]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/monitor/azure-monitor-opentelemetry-exporter/azure/monitor/opentelemetry/exporter/export/trace/_exporter.py
[ot_tracing_sdk]: https://opentelemetry-python.readthedocs.io/en/latest/sdk/trace.html
[sampler_ref]: https://github.com/open-telemetry/opentelemetry-specification/blob/master/specification/trace/sdk.md#sampling
|