File: sample_flask.py

package info (click to toggle)
python-azure 20250603%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 851,724 kB
  • sloc: python: 7,362,925; ansic: 804; javascript: 287; makefile: 195; sh: 145; xml: 109
file content (40 lines) | stat: -rw-r--r-- 1,522 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
"""
An example to show an application instrumented with the OpenTelemetry flask instrumentation.
Calls made with the flask library will be automatically tracked and telemetry is exported to 
application insights with the AzureMonitorTraceExporter.
See more info on the flask instrumentation here:
https://github.com/open-telemetry/opentelemetry-python-contrib/tree/main/instrumentation/opentelemetry-instrumentation-flask
"""
# mypy: disable-error-code="attr-defined"
import os
import flask

from opentelemetry import trace
from opentelemetry.instrumentation.flask import FlaskInstrumentor
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor

from azure.monitor.opentelemetry.exporter import AzureMonitorTraceExporter

# This method instruments all of FastAPI.
# You can also use FlaskInstrumentor().instrument_app(app) to instrument a specific app after it is created.
FlaskInstrumentor().instrument()
app = flask.Flask(__name__)

trace.set_tracer_provider(TracerProvider())
tracer = trace.get_tracer(__name__)
span_processor = BatchSpanProcessor(
    AzureMonitorTraceExporter.from_connection_string(os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"])
)
trace.get_tracer_provider().add_span_processor(span_processor)


@app.route("/")
def test():
    return "Test flask request"


if __name__ == "__main__":
    app.run(host="localhost", port=8080, threaded=True)