File: sample_metrics_query.py

package info (click to toggle)
python-azure 20250603%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 851,724 kB
  • sloc: python: 7,362,925; ansic: 804; javascript: 287; makefile: 195; sh: 145; xml: 109
file content (45 lines) | stat: -rw-r--r-- 1,793 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
"""
FILE: sample_metrics_query.py
DESCRIPTION:
    This sample demonstrates authenticating the MetricsQueryClient and retrieving the "Ingress"
    metric along with the "Average" aggregation type. The query will execute over a timespan
    of 2 hours with a granularity of 5 minutes.
USAGE:
    python sample_metrics_query.py
    Set the environment variables with your own values before running the sample:
    1) METRICS_RESOURCE_URI - The resource uri of the resource for which the metrics are being queried.

    This example uses DefaultAzureCredential, which requests a token from Azure Active Directory.
    For more information on DefaultAzureCredential, see https://learn.microsoft.com/python/api/overview/azure/identity-readme?view=azure-python#defaultazurecredential.

    In this example, a Storage account resource URI is taken.
"""

# [START send_metrics_query]
from datetime import timedelta
import os

from azure.identity import DefaultAzureCredential
from azure.monitor.query import MetricsQueryClient, MetricAggregationType


credential = DefaultAzureCredential()
client = MetricsQueryClient(credential)

metrics_uri = os.environ["METRICS_RESOURCE_URI"]
response = client.query_resource(
    metrics_uri,
    metric_names=["Ingress"],
    timespan=timedelta(hours=2),
    granularity=timedelta(minutes=5),
    aggregations=[MetricAggregationType.AVERAGE],
)

for metric in response.metrics:
    print(metric.name + " -- " + metric.display_description)
    for time_series_element in metric.timeseries:
        for metric_value in time_series_element.data:
            print("The ingress at {} is {}".format(metric_value.timestamp, metric_value.average))
# [END send_metrics_query]