File: sample_create_experiment_metrics.py

package info (click to toggle)
python-azure 20250603%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 851,724 kB
  • sloc: python: 7,362,925; ansic: 804; javascript: 287; makefile: 195; sh: 145; xml: 109
file content (212 lines) | stat: -rw-r--r-- 8,373 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#!/usr/bin/env python

# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.

"""
Create different types of experiment metrics
"""

import os
from azure.identity import DefaultAzureCredential
from azure.onlineexperimentation import OnlineExperimentationClient
from azure.onlineexperimentation.models import (
    ExperimentMetric,
    LifecycleStage,
    DesiredDirection,
    EventCountMetricDefinition,
    UserCountMetricDefinition,
    EventRateMetricDefinition,
    UserRateMetricDefinition,
    SumMetricDefinition,
    AverageMetricDefinition,
    PercentileMetricDefinition,
    ObservedEvent,
    AggregatedValue,
)
from azure.core.exceptions import HttpResponseError


def create_event_count_metric():
    # Create a client with your Azure Online Experimentation workspace endpoint and credentials
    endpoint = os.environ["AZURE_ONLINEEXPERIMENTATION_ENDPOINT"]
    client = OnlineExperimentationClient(endpoint, DefaultAzureCredential())

    # Define the Event Count metric - counts all occurrences of a specific event type
    prompt_sent_metric = ExperimentMetric(
        lifecycle=LifecycleStage.ACTIVE,
        display_name="Total number of prompts sent",
        description="Counts the total number of prompts sent by users to the chatbot",
        categories=["Usage"],
        desired_direction=DesiredDirection.INCREASE,
        definition=EventCountMetricDefinition(event=ObservedEvent(event_name="PromptSent")),
    )

    try:
        # Create the metric with ID "prompt_sent_count"
        response = client.create_or_update_metric("prompt_sent_count", prompt_sent_metric)

        print(f"Created metric: {response.id}")
        print(f"Display name: {response.display_name}")
    except HttpResponseError as error:
        print(f"Failed to create metric: {error}")


def create_user_count_metric():
    endpoint = os.environ["AZURE_ONLINEEXPERIMENTATION_ENDPOINT"]
    client = OnlineExperimentationClient(endpoint, DefaultAzureCredential())

    # Define the User Count metric with a filter - counts unique users who performed a specific action
    users_prompt_sent_metric = ExperimentMetric(
        lifecycle=LifecycleStage.ACTIVE,
        display_name="Users with at least one prompt sent on checkout page",
        description="Counts unique users who sent at least one prompt while on the checkout page",
        categories=["Usage"],
        desired_direction=DesiredDirection.INCREASE,
        definition=UserCountMetricDefinition(
            event=ObservedEvent(event_name="PromptSent", filter="Page == 'checkout.html'")
        ),
    )

    try:
        # Create the metric with ID "users_prompt_sent"
        response = client.create_or_update_metric("users_prompt_sent", users_prompt_sent_metric)

        print(f"Created metric: {response.id}")
    except HttpResponseError as error:
        print(f"Failed to create metric: {error}")


def create_event_rate_metric():
    endpoint = os.environ["AZURE_ONLINEEXPERIMENTATION_ENDPOINT"]
    client = OnlineExperimentationClient(endpoint, DefaultAzureCredential())

    # Define the Event Rate metric - measures a percentage of events meeting a condition
    relevance_metric = ExperimentMetric(
        lifecycle=LifecycleStage.ACTIVE,
        display_name="% evaluated conversations with good relevance",
        description="Percentage of evaluated conversations where the LLM response has good relevance (score >= 4)",
        categories=["Quality"],
        desired_direction=DesiredDirection.INCREASE,
        definition=EventRateMetricDefinition(
            event=ObservedEvent(event_name="EvaluateLLM"), rate_condition="Relevance > 4"
        ),
    )

    try:
        # Create the metric
        response = client.create_or_update_metric("pct_relevance_good", relevance_metric)

        print(f"Created metric: {response.id}")
    except HttpResponseError as error:
        print(f"Failed to create metric: {error}")


def create_user_rate_metric():
    endpoint = os.environ["AZURE_ONLINEEXPERIMENTATION_ENDPOINT"]
    client = OnlineExperimentationClient(endpoint, DefaultAzureCredential())

    # Define the User Rate metric - measures percentage of users who performed action B after action A
    conversion_metric = ExperimentMetric(
        lifecycle=LifecycleStage.ACTIVE,
        display_name="% users with LLM interaction who made a high-value purchase",
        description="Percentage of users who received a response from the LLM and then made a purchase of $100 or more",
        categories=["Business"],
        desired_direction=DesiredDirection.INCREASE,
        definition=UserRateMetricDefinition(
            start_event=ObservedEvent(event_name="ResponseReceived"),
            end_event=ObservedEvent(event_name="Purchase", filter="Revenue > 100"),
        ),
    )

    try:
        # Create the metric
        response = client.create_or_update_metric("pct_chat_to_high_value_purchase_conversion", conversion_metric)

        print(f"Created metric: {response.id}")
    except HttpResponseError as error:
        print(f"Failed to create metric: {error}")


def create_sum_metric():
    endpoint = os.environ["AZURE_ONLINEEXPERIMENTATION_ENDPOINT"]
    client = OnlineExperimentationClient(endpoint, DefaultAzureCredential())

    # Define the Sum metric - sums a numeric value across all events of a type
    revenue_metric = ExperimentMetric(
        lifecycle=LifecycleStage.ACTIVE,
        display_name="Total revenue",
        description="Sum of revenue from all purchase transactions",
        categories=["Business"],
        desired_direction=DesiredDirection.INCREASE,
        definition=SumMetricDefinition(
            value=AggregatedValue(event_name="Purchase", event_property="Revenue", filter="Revenue > 0")
        ),
    )

    try:
        # Create the metric
        response = client.create_or_update_metric("total_revenue", revenue_metric)

        print(f"Created metric: {response.id}")
    except HttpResponseError as error:
        print(f"Failed to create metric: {error}")


def create_average_metric():
    endpoint = os.environ["AZURE_ONLINEEXPERIMENTATION_ENDPOINT"]
    client = OnlineExperimentationClient(endpoint, DefaultAzureCredential())

    # Define the Average metric - calculates the mean of a numeric value across events
    avg_revenue_metric = ExperimentMetric(
        lifecycle=LifecycleStage.ACTIVE,
        display_name="Average revenue per purchase",
        description="The average revenue per purchase transaction in USD",
        categories=["Business"],
        desired_direction=DesiredDirection.INCREASE,
        definition=AverageMetricDefinition(value=AggregatedValue(event_name="Purchase", event_property="Revenue")),
    )

    try:
        # Create the metric
        response = client.create_or_update_metric("avg_revenue_per_purchase", avg_revenue_metric)

        print(f"Created metric: {response.id}")
        print(f"Display name: {response.display_name}")
    except HttpResponseError as error:
        print(f"Failed to create metric: {error}")


def create_percentile_metric():
    endpoint = os.environ["AZURE_ONLINEEXPERIMENTATION_ENDPOINT"]
    client = OnlineExperimentationClient(endpoint, DefaultAzureCredential())

    # Define the Percentile metric - calculates a specific percentile of a numeric value
    p95_response_time_metric = ExperimentMetric(
        lifecycle=LifecycleStage.ACTIVE,
        display_name="P95 LLM response time [seconds]",
        description="The 95th percentile of response time in seconds for LLM responses",
        categories=["Performance"],
        desired_direction=DesiredDirection.DECREASE,
        definition=PercentileMetricDefinition(
            value=AggregatedValue(event_name="ResponseReceived", event_property="ResponseTimeSeconds"), percentile=95
        ),
    )

    try:
        # Create the metric
        response = client.create_or_update_metric("p95_response_time_seconds", p95_response_time_metric)

        print(f"Created metric: {response.id}")
    except HttpResponseError as error:
        print(f"Failed to create metric: {error}")


if __name__ == "__main__":
    create_event_count_metric()
    create_user_count_metric()
    create_event_rate_metric()
    create_user_rate_metric()
    create_sum_metric()
    create_average_metric()
    create_percentile_metric()