1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
# coding: utf-8
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
"""
FILE: sample_vector_search_async.py
DESCRIPTION:
This sample demonstrates how to get search results from a basic search text
from an Azure Search index.
USAGE:
python sample_vector_search_async.py
Set the environment variables with your own values before running the sample:
1) AZURE_SEARCH_SERVICE_ENDPOINT - the endpoint of your Azure Cognitive Search service
2) AZURE_SEARCH_INDEX_NAME - the name of your search index (e.g. "hotels-sample-index")
3) AZURE_SEARCH_API_KEY - your search API key
"""
import os
import asyncio
from azure.core.credentials import AzureKeyCredential
from azure.search.documents.aio import SearchClient
from azure.search.documents.indexes import SearchIndexClient
from azure.search.documents.models import VectorizedQuery
service_endpoint = os.environ["AZURE_SEARCH_SERVICE_ENDPOINT"]
index_name = os.environ["AZURE_SEARCH_INDEX_NAME"]
key = os.environ["AZURE_SEARCH_API_KEY"]
def get_embeddings(text: str):
# There are a few ways to get embeddings. This is just one example.
import openai
open_ai_endpoint = os.getenv("OpenAIEndpoint")
open_ai_key = os.getenv("OpenAIKey")
client = openai.AzureOpenAI(
azure_endpoint=open_ai_endpoint,
api_key=open_ai_key,
api_version="2023-09-01-preview",
)
embedding = client.embeddings.create(input=[text], model="text-embedding-ada-002")
return embedding.data[0].embedding
def get_hotel_index(name: str):
from azure.search.documents.indexes.models import (
SearchIndex,
SearchField,
SearchFieldDataType,
SimpleField,
SearchableField,
VectorSearch,
VectorSearchProfile,
HnswAlgorithmConfiguration,
)
fields = [
SimpleField(name="hotelId", type=SearchFieldDataType.String, key=True),
SearchableField(name="hotelName", type=SearchFieldDataType.String, sortable=True, filterable=True),
SearchableField(name="description", type=SearchFieldDataType.String),
SearchField(
name="descriptionVector",
type=SearchFieldDataType.Collection(SearchFieldDataType.Single),
searchable=True,
vector_search_dimensions=1536,
vector_search_profile_name="my-vector-config",
),
SearchableField(
name="category", type=SearchFieldDataType.String, sortable=True, filterable=True, facetable=True
),
]
vector_search = VectorSearch(
profiles=[VectorSearchProfile(name="my-vector-config", algorithm_configuration_name="my-algorithms-config")],
algorithms=[HnswAlgorithmConfiguration(name="my-algorithms-config")],
)
return SearchIndex(name=name, fields=fields, vector_search=vector_search)
def get_hotel_documents():
docs = [
{
"hotelId": "1",
"hotelName": "Fancy Stay",
"description": "Best hotel in town if you like luxury hotels.",
"descriptionVector": get_embeddings("Best hotel in town if you like luxury hotels."),
"category": "Luxury",
},
{
"hotelId": "2",
"hotelName": "Roach Motel",
"description": "Cheapest hotel in town. Infact, a motel.",
"descriptionVector": get_embeddings("Cheapest hotel in town. Infact, a motel."),
"category": "Budget",
},
{
"hotelId": "3",
"hotelName": "EconoStay",
"description": "Very popular hotel in town.",
"descriptionVector": get_embeddings("Very popular hotel in town."),
"category": "Budget",
},
{
"hotelId": "4",
"hotelName": "Modern Stay",
"description": "Modern architecture, very polite staff and very clean. Also very affordable.",
"descriptionVector": get_embeddings(
"Modern architecture, very polite staff and very clean. Also very affordable."
),
"category": "Luxury",
},
{
"hotelId": "5",
"hotelName": "Secret Point",
"description": "One of the best hotel in town. The hotel is ideally located on the main commercial artery of the city in the heart of New York.",
"descriptionVector": get_embeddings(
"One of the best hotel in town. The hotel is ideally located on the main commercial artery of the city in the heart of New York."
),
"category": "Boutique",
},
]
return docs
async def single_vector_search():
# [START single_vector_search]
query = "Top hotels in town"
search_client = SearchClient(service_endpoint, index_name, AzureKeyCredential(key))
vector_query = VectorizedQuery(vector=get_embeddings(query), k_nearest_neighbors=3, fields="descriptionVector")
async with search_client:
results = await search_client.search(
search_text="",
vector_queries=[vector_query],
select=["hotelId", "hotelName"],
)
async for result in results:
print(result)
# [END single_vector_search]
async def single_vector_search_with_filter():
# [START single_vector_search_with_filter]
query = "Top hotels in town"
search_client = SearchClient(service_endpoint, index_name, AzureKeyCredential(key))
vector_query = VectorizedQuery(vector=get_embeddings(query), k_nearest_neighbors=3, fields="descriptionVector")
async with search_client:
results = await search_client.search(
vector_queries=[vector_query],
filter="category eq 'Luxury'",
select=["hotelId", "hotelName"],
)
async for result in results:
print(result)
# [END single_vector_search_with_filter]
async def simple_hybrid_search():
# [START simple_hybrid_search]
query = "Top hotels in town"
search_client = SearchClient(service_endpoint, index_name, AzureKeyCredential(key))
vector_query = VectorizedQuery(vector=get_embeddings(query), k_nearest_neighbors=3, fields="descriptionVector")
async with search_client:
results = await search_client.search(
search_text=query,
vector_queries=[vector_query],
select=["hotelId", "hotelName"],
)
async for result in results:
print(result)
# [END simple_hybrid_search]
async def main():
credential = AzureKeyCredential(key)
index_client = SearchIndexClient(service_endpoint, credential)
index = get_hotel_index(index_name)
index_client.create_index(index)
client = SearchClient(service_endpoint, index_name, credential)
hotel_docs = get_hotel_documents()
await client.upload_documents(documents=hotel_docs)
await single_vector_search()
await single_vector_search_with_filter()
await simple_hybrid_search()
if __name__ == "__main__":
asyncio.run(main())
|