File: README.md

package info (click to toggle)
python-azure 20250603%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 851,724 kB
  • sloc: python: 7,362,925; ansic: 804; javascript: 287; makefile: 195; sh: 145; xml: 109
file content (563 lines) | stat: -rw-r--r-- 30,972 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
# Azure Document Translation client library for Python

Azure Cognitive Services Document Translation is a cloud service that can be used to translate multiple and complex documents across languages and dialects while preserving original document structure and data format.
Use the client library for Document Translation to:

* Translate numerous, large files from an Azure Blob Storage container to a target container in your language of choice.
* Check the translation status and progress of each document in the translation operation.
* Apply a custom translation model or glossaries to tailor translation to your specific case.

[Source code][python-dt-src]
| [Package (PyPI)][python-dt-pypi]
| [Package (Conda)](https://anaconda.org/microsoft/azure-ai-translation-document/)
| [API reference documentation][python-dt-ref-docs]
| [Product documentation][python-dt-product-docs]
| [Samples][python-dt-samples]

## _Disclaimer_

_Azure SDK Python packages support for Python 2.7 has ended 01 January 2022. For more information and questions, please refer to https://github.com/Azure/azure-sdk-for-python/issues/20691_

## Getting started

### Prerequisites
* Python 3.8 or later is required to use this package.
* You must have an [Azure subscription][azure_subscription] and a
[Translator resource][DT_resource] to use this package.

### Install the package

Install the Azure Document Translation client library for Python with [pip][pip]:

```bash
pip install --pre azure-ai-translation-document
```

> Note: This version of the client library defaults to the v2024-05-01 version of the service

#### Create a Translator resource

The Document Translation feature supports [single-service access][single_service] only.
To access the service, create a Translator resource.

You can create the resource using

**Option 1:** [Azure Portal][azure_portal_create_DT_resource]

**Option 2:** [Azure CLI][azure_cli_create_DT_resource].
Below is an example of how you can create a Translator resource using the CLI:

```bash
# Create a new resource group to hold the Translator resource -
# if using an existing resource group, skip this step
az group create --name my-resource-group --location westus2
```

```bash
# Create document translation
az cognitiveservices account create \
    --name document-translation-resource \
    --custom-domain document-translation-resource \
    --resource-group my-resource-group \
    --kind TextTranslation \
    --sku S1 \
    --location westus2 \
    --yes
```

### Authenticate the client

In order to interact with the Document Translation feature service, you will need to create an instance of a client.
An **endpoint** and **credential** are necessary to instantiate the client object.

#### Looking up the endpoint

You can find the endpoint for your Translator resource using the
[Azure Portal][azure_portal_get_endpoint].

> Note that the service requires a custom domain endpoint. Follow the instructions in the above link to format your endpoint:
> https://{NAME-OF-YOUR-RESOURCE}.cognitiveservices.azure.com/

#### Get the API key

The API key can be found in the Azure Portal or by running the following Azure CLI command:

```az cognitiveservices account keys list --name "resource-name" --resource-group "resource-group-name"```

#### Create the client with AzureKeyCredential

To use an [API key][cognitive_authentication_api_key] as the `credential` parameter,
pass the key as a string into an instance of [AzureKeyCredential][azure-key-credential].

<!-- SNIPPET:sample_authentication.create_dt_client_with_key -->

```python
from azure.core.credentials import AzureKeyCredential
from azure.ai.translation.document import DocumentTranslationClient

endpoint = os.environ["AZURE_DOCUMENT_TRANSLATION_ENDPOINT"]
key = os.environ["AZURE_DOCUMENT_TRANSLATION_KEY"]

document_translation_client = DocumentTranslationClient(endpoint, AzureKeyCredential(key))
```

<!-- END SNIPPET -->

#### Create the client with an Azure Active Directory credential

`AzureKeyCredential` authentication is used in the examples in this getting started guide, but you can also
authenticate with Azure Active Directory using the [azure-identity][azure_identity] library.

To use the [DefaultAzureCredential][default_azure_credential] type shown below, or other credential types provided
with the Azure SDK, please install the `azure-identity` package:

```pip install azure-identity```

You will also need to [register a new AAD application and grant access][register_aad_app] to your
Translator resource by assigning the `"Cognitive Services User"` role to your service principal.

Once completed, set the values of the client ID, tenant ID, and client secret of the AAD application as environment variables:
`AZURE_CLIENT_ID`, `AZURE_TENANT_ID`, `AZURE_CLIENT_SECRET`.

<!-- SNIPPET:sample_authentication.create_dt_client_with_aad -->

```python
"""DefaultAzureCredential will use the values from these environment
variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET
"""
from azure.identity import DefaultAzureCredential
from azure.ai.translation.document import DocumentTranslationClient

endpoint = os.environ["AZURE_DOCUMENT_TRANSLATION_ENDPOINT"]
credential = DefaultAzureCredential()

document_translation_client = DocumentTranslationClient(endpoint, credential)
```

<!-- END SNIPPET -->

## Key concepts

The Document Translation service requires that you upload your files to an Azure Blob Storage source container and provide
a target container where the translated documents can be written. Additional information about setting this up can be found in
the service documentation:

- [Set up Azure Blob Storage containers][source_containers] with your documents
- Optionally apply [glossaries][glossary] or a [custom model for translation][custom_model]
- Allow access to your storage account with either of the following options:
    - Generate [SAS tokens][sas_token] to your containers (or files) with the appropriate [permissions][sas_token_permissions]
    - Create and use a [managed identity][managed_identity] to grant access to your storage account

### DocumentTranslationClient

Interaction with the Document Translation client library begins with an instance of the `DocumentTranslationClient`.
The client provides operations for:

 - Creating a translation operation to translate documents in your source container(s) and write results to you target container(s).
 - Checking the status of individual documents in the translation operation and monitoring each document's progress.
 - Enumerating all past and current translation operations.
 - Identifying supported glossary and document formats.

### Translation Input

Input to the `begin_translation` client method can be provided in two different ways:

1) A single source container with documents can be translated to a different language:

```python
from azure.core.credentials import AzureKeyCredential
from azure.ai.translation.document import DocumentTranslationClient

document_translation_client = DocumentTranslationClient("<endpoint>", AzureKeyCredential("<api_key>"))
poller = document_translation_client.begin_translation("<sas_url_to_source>", "<sas_url_to_target>", "<target_language>")
```

2) Or multiple different sources can be provided each with their own targets.

<!-- SNIPPET:sample_translate_multiple_inputs.multiple_translation -->

```python
import os
from azure.core.credentials import AzureKeyCredential
from azure.ai.translation.document import DocumentTranslationClient, DocumentTranslationInput, TranslationTarget

endpoint = os.environ["AZURE_DOCUMENT_TRANSLATION_ENDPOINT"]
key = os.environ["AZURE_DOCUMENT_TRANSLATION_KEY"]
source_container_url_1 = os.environ["AZURE_SOURCE_CONTAINER_URL_1"]
source_container_url_2 = os.environ["AZURE_SOURCE_CONTAINER_URL_2"]
target_container_url_fr = os.environ["AZURE_TARGET_CONTAINER_URL_FR"]
target_container_url_ar = os.environ["AZURE_TARGET_CONTAINER_URL_AR"]
target_container_url_es = os.environ["AZURE_TARGET_CONTAINER_URL_ES"]

client = DocumentTranslationClient(endpoint, AzureKeyCredential(key))

poller = client.begin_translation(
    inputs=[
        DocumentTranslationInput(
            source_url=source_container_url_1,
            targets=[
                TranslationTarget(target_url=target_container_url_fr, language="fr"),
                TranslationTarget(target_url=target_container_url_ar, language="ar"),
            ],
        ),
        DocumentTranslationInput(
            source_url=source_container_url_2,
            targets=[TranslationTarget(target_url=target_container_url_es, language="es")],
        ),
    ]
)
result = poller.result()

print(f"Status: {poller.status()}")
print(f"Created on: {poller.details.created_on}")
print(f"Last updated on: {poller.details.last_updated_on}")
print(f"Total number of translations on documents: {poller.details.documents_total_count}")

print("\nOf total documents...")
print(f"{poller.details.documents_failed_count} failed")
print(f"{poller.details.documents_succeeded_count} succeeded")

for document in result:
    print(f"Document ID: {document.id}")
    print(f"Document status: {document.status}")
    if document.status == "Succeeded":
        print(f"Source document location: {document.source_document_url}")
        print(f"Translated document location: {document.translated_document_url}")
        print(f"Translated to language: {document.translated_to}\n")
    elif document.error:
        print(f"Error Code: {document.error.code}, Message: {document.error.message}\n")
```

<!-- END SNIPPET -->

> Note: the target_url for each target language must be unique.

To translate documents under a folder, or only translate certain documents, see [sample_begin_translation_with_filters.py][sample_begin_translation_with_filters].
See the service documentation for all [supported languages][supported_languages].

### Long-Running Operations

Long-running operations are operations which consist of an initial request sent to the service to start an operation,
followed by polling the service at intervals to determine whether the operation has completed or failed, and if it has
succeeded, to get the result.

Methods that translate documents are modeled as long-running operations.
The client exposes a `begin_<method-name>` method that returns a `DocumentTranslationLROPoller` or `AsyncDocumentTranslationLROPoller`. Callers should wait
for the operation to complete by calling `result()` on the poller object returned from the `begin_<method-name>` method.
Sample code snippets are provided to illustrate using long-running operations [below](#examples "Examples").

## Examples

The following section provides several code snippets covering some of the most common Document Translation tasks, including:

* [Translate your documents](#translate-your-documents "Translate Your Documents")
* [Translate multiple inputs](#translate-multiple-inputs "Translate Multiple Inputs")
* [List translation operations](#list-translation-operations "List Translation Operations")

### Translate your documents

Translate all the documents in your source container to the target container. To translate documents under a folder, or only translate certain documents, see [sample_begin_translation_with_filters.py][sample_begin_translation_with_filters].

```python
from azure.core.credentials import AzureKeyCredential
from azure.ai.translation.document import DocumentTranslationClient

endpoint = "https://<resource-name>.cognitiveservices.azure.com/"
credential = AzureKeyCredential("<api_key>")
source_container_sas_url_en = "<sas-url-en>"
target_container_sas_url_es = "<sas-url-es>"

document_translation_client = DocumentTranslationClient(endpoint, credential)

poller = document_translation_client.begin_translation(source_container_sas_url_en, target_container_sas_url_es, "es")

result = poller.result()

print(f"Status: {poller.status()}")
print(f"Created on: {poller.details.created_on}")
print(f"Last updated on: {poller.details.last_updated_on}")
print(f"Total number of translations on documents: {poller.details.documents_total_count}")

print("\nOf total documents...")
print(f"{poller.details.documents_failed_count} failed")
print(f"{poller.details.documents_succeeded_count} succeeded")

for document in result:
    print(f"Document ID: {document.id}")
    print(f"Document status: {document.status}")
    if document.status == "Succeeded":
        print(f"Source document location: {document.source_document_url}")
        print(f"Translated document location: {document.translated_document_url}")
        print(f"Translated to language: {document.translated_to}\n")
    else:
        print(f"Error Code: {document.error.code}, Message: {document.error.message}\n")
```

### Translate multiple inputs

Begin translating with documents in multiple source containers to multiple target containers in different languages.

<!-- SNIPPET:sample_translate_multiple_inputs.multiple_translation -->

```python
import os
from azure.core.credentials import AzureKeyCredential
from azure.ai.translation.document import DocumentTranslationClient, DocumentTranslationInput, TranslationTarget

endpoint = os.environ["AZURE_DOCUMENT_TRANSLATION_ENDPOINT"]
key = os.environ["AZURE_DOCUMENT_TRANSLATION_KEY"]
source_container_url_1 = os.environ["AZURE_SOURCE_CONTAINER_URL_1"]
source_container_url_2 = os.environ["AZURE_SOURCE_CONTAINER_URL_2"]
target_container_url_fr = os.environ["AZURE_TARGET_CONTAINER_URL_FR"]
target_container_url_ar = os.environ["AZURE_TARGET_CONTAINER_URL_AR"]
target_container_url_es = os.environ["AZURE_TARGET_CONTAINER_URL_ES"]

client = DocumentTranslationClient(endpoint, AzureKeyCredential(key))

poller = client.begin_translation(
    inputs=[
        DocumentTranslationInput(
            source_url=source_container_url_1,
            targets=[
                TranslationTarget(target_url=target_container_url_fr, language="fr"),
                TranslationTarget(target_url=target_container_url_ar, language="ar"),
            ],
        ),
        DocumentTranslationInput(
            source_url=source_container_url_2,
            targets=[TranslationTarget(target_url=target_container_url_es, language="es")],
        ),
    ]
)
result = poller.result()

print(f"Status: {poller.status()}")
print(f"Created on: {poller.details.created_on}")
print(f"Last updated on: {poller.details.last_updated_on}")
print(f"Total number of translations on documents: {poller.details.documents_total_count}")

print("\nOf total documents...")
print(f"{poller.details.documents_failed_count} failed")
print(f"{poller.details.documents_succeeded_count} succeeded")

for document in result:
    print(f"Document ID: {document.id}")
    print(f"Document status: {document.status}")
    if document.status == "Succeeded":
        print(f"Source document location: {document.source_document_url}")
        print(f"Translated document location: {document.translated_document_url}")
        print(f"Translated to language: {document.translated_to}\n")
    elif document.error:
        print(f"Error Code: {document.error.code}, Message: {document.error.message}\n")
```

<!-- END SNIPPET -->

### List translation operations

Enumerate over the translation operations submitted for the resource.

<!-- SNIPPET:sample_list_translations.list_translations -->

```python
from azure.core.credentials import AzureKeyCredential
from azure.ai.translation.document import DocumentTranslationClient

endpoint = os.environ["AZURE_DOCUMENT_TRANSLATION_ENDPOINT"]
key = os.environ["AZURE_DOCUMENT_TRANSLATION_KEY"]

client = DocumentTranslationClient(endpoint, AzureKeyCredential(key))
operations = client.list_translation_statuses()

for operation in operations:
    print(f"ID: {operation.id}")
    print(f"Status: {operation.status}")
    print(f"Created on: {operation.created_on}")
    print(f"Last updated on: {operation.last_updated_on}")
    print(f"Total number of operations on documents: {operation.documents_total_count}")
    print(f"Total number of characters charged: {operation.total_characters_charged}")

    print("\nOf total documents...")
    print(f"{operation.documents_failed_count} failed")
    print(f"{operation.documents_succeeded_count} succeeded")
    print(f"{operation.documents_canceled_count} canceled\n")
```

<!-- END SNIPPET -->

To see how to use the Document Translation client library with Azure Storage Blob to upload documents, create SAS tokens
for your containers, and download the finished translated documents, see this [sample][sample_translation_with_azure_blob].
Note that you will need to install the [azure-storage-blob][azure_storage_blob] library to run this sample.

## Advanced Topics

The following section provides some insights for some advanced translation features such as glossaries and custom translation models.

### **Glossaries**

Glossaries are domain-specific dictionaries. For example, if you want to translate some medical-related documents, you may need support for the many words, terminology, and idioms in the medical field which you can't find in the standard translation dictionary, or you simply need specific translation. This is why Document Translation provides support for glossaries.

#### **How To Create Glossary File**

Document Translation supports glossaries in the following formats:

|**File Type**|**Extension**|**Description**|**Samples**|
|---------------|---------------|---------------|---------------|
|Tab-Separated Values/TAB|.tsv, .tab|Read more on [wikipedia][tsv_files_wikipedia]|[glossary_sample.tsv][sample_tsv_file]|
|Comma-Separated Values|.csv|Read more on [wikipedia][csv_files_wikipedia]|[glossary_sample.csv][sample_csv_file]|
|Localization Interchange File Format|.xlf, .xliff|Read more on [wikipedia][xlf_files_wikipedia]|[glossary_sample.xlf][sample_xlf_file]|

View all supported formats [here][supported_glossary_formats].

#### **How Use Glossaries in Document Translation**

In order to use glossaries with Document Translation, you first need to upload your glossary file to a blob container, and then provide the SAS URL to the file as in the code samples [sample_translation_with_glossaries.py][sample_translation_with_glossaries].

### **Custom Translation Models**

Instead of using Document Translation's engine for translation, you can use your own custom Azure machine/deep learning model.

#### **How To Create a Custom Translation Model**

For more info on how to create, provision, and deploy your own custom Azure translation model, please follow the instructions here: [Build, deploy, and use a custom model for translation][custom_translation_article]

#### **How To Use a Custom Translation Model With Document Translation**

In order to use a custom translation model with Document Translation, you first 
need to create and deploy your model, then follow the code sample [sample_translation_with_custom_model.py][sample_translation_with_custom_model] to use with Document Translation.

## Troubleshooting

### General

Document Translation client library will raise exceptions defined in [Azure Core][azure_core_exceptions].

### Logging

This library uses the standard
[logging][python_logging] library for logging.

Basic information about HTTP sessions (URLs, headers, etc.) is logged at `INFO` level.

Detailed `DEBUG` level logging, including request/response bodies and **unredacted**
headers, can be enabled on the client or per-operation with the `logging_enable` keyword argument.

See full SDK logging documentation with examples [here][sdk_logging_docs].

### Optional Configuration

Optional keyword arguments can be passed in at the client and per-operation level.
The azure-core [reference documentation][azure_core_ref_docs]
describes available configurations for retries, logging, transport protocols, and more.

## Next steps

The following section provides several code snippets illustrating common patterns used in the Document Translation Python client library.
More samples can be found under the [samples][samples] directory.

### More sample code

These code samples show common scenario operations with the Azure Document Translation client library.

* Client authentication: [sample_authentication.py][sample_authentication]
* Begin translating documents: [sample_begin_translation.py][sample_begin_translation]
* Translate with multiple inputs: [sample_translate_multiple_inputs.py][sample_translate_multiple_inputs]
* Check the status of documents: [sample_check_document_statuses.py][sample_check_document_statuses]
* List all submitted translation operations: [sample_list_translations.py][sample_list_translations]
* Apply a custom glossary to translation: [sample_translation_with_glossaries.py][sample_translation_with_glossaries]
* Use Azure Blob Storage to set up translation resources: [sample_translation_with_azure_blob.py][sample_translation_with_azure_blob]

### Async samples

This library also includes a complete set of async APIs. To use them, you must
first install an async transport, such as [aiohttp](https://pypi.org/project/aiohttp/). Async clients
are found under the `azure.ai.translation.document.aio` namespace.

* Client authentication: [sample_authentication_async.py][sample_authentication_async]
* Begin translating documents: [sample_begin_translation_async.py][sample_begin_translation_async]
* Translate with multiple inputs: [sample_translate_multiple_inputs_async.py][sample_translate_multiple_inputs_async]
* Check the status of documents: [sample_check_document_statuses_async.py][sample_check_document_statuses_async]
* List all submitted translation operations: [sample_list_translations_async.py][sample_list_translations_async]
* Apply a custom glossary to translation: [sample_translation_with_glossaries_async.py][sample_translation_with_glossaries_async]
* Use Azure Blob Storage to set up translation resources: [sample_translation_with_azure_blob_async.py][sample_translation_with_azure_blob_async]

### Additional documentation

For more extensive documentation on Azure Cognitive Services Document Translation, see the [Document Translation documentation][python-dt-product-docs] on docs.microsoft.com.

## Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit [cla.microsoft.com][cla].

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the [Microsoft Open Source Code of Conduct][code_of_conduct]. For more information see the [Code of Conduct FAQ][coc_faq] or contact [opencode@microsoft.com][coc_contact] with any additional questions or comments.

<!-- LINKS -->

[python-dt-src]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/translation/azure-ai-translation-document/azure/ai/translation/document
[python-dt-pypi]: https://aka.ms/azsdk/python/texttranslation/pypi
[python-dt-product-docs]: https://docs.microsoft.com/azure/cognitive-services/translator/document-translation/overview
[python-dt-ref-docs]: https://aka.ms/azsdk/python/documenttranslation/docs
[python-dt-samples]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/translation/azure-ai-translation-document/samples

[azure_subscription]: https://azure.microsoft.com/free/
[DT_resource]: https://learn.microsoft.com/azure/ai-services/translator/document-translation/overview
[single_service]: https://docs.microsoft.com/azure/cognitive-services/cognitive-services-apis-create-account?tabs=singleservice%2Cwindows
[pip]: https://pypi.org/project/pip/
[azure_portal_create_DT_resource]: https://ms.portal.azure.com/#create/Microsoft.CognitiveServicesTextTranslation
[azure_cli_create_DT_resource]: https://docs.microsoft.com/azure/cognitive-services/cognitive-services-apis-create-account-cli?tabs=windows
[azure-key-credential]: https://aka.ms/azsdk/python/core/azurekeycredential
[supported_languages]: https://docs.microsoft.com/azure/cognitive-services/translator/language-support#translate
[source_containers]: https://aka.ms/azsdk/documenttranslation/sas-permissions
[custom_model]: https://docs.microsoft.com/azure/cognitive-services/translator/custom-translator/quickstart-build-deploy-custom-model
[glossary]: https://docs.microsoft.com/azure/cognitive-services/translator/document-translation/overview#supported-glossary-formats
[sas_token]: https://docs.microsoft.com/azure/cognitive-services/translator/document-translation/create-sas-tokens?tabs=Containers#create-your-sas-tokens-with-azure-storage-explorer
[sas_token_permissions]: https://aka.ms/azsdk/documenttranslation/sas-permissions
[azure_storage_blob]: https://pypi.org/project/azure-storage-blob/

[azure_core_ref_docs]: https://aka.ms/azsdk/python/core/docs
[azure_core_exceptions]: https://aka.ms/azsdk/python/core/docs#module-azure.core.exceptions
[python_logging]: https://docs.python.org/3/library/logging.html
[azure_cli_endpoint_lookup]: https://docs.microsoft.com/cli/azure/cognitiveservices/account?view=azure-cli-latest#az-cognitiveservices-account-show
[azure_portal_get_endpoint]: https://learn.microsoft.com/azure/ai-services/translator/document-translation/quickstarts/document-translation-sdk?tabs=dotnet&pivots=programming-language-python
[cognitive_authentication_api_key]: https://learn.microsoft.com/azure/ai-services/translator/document-translation/quickstarts/document-translation-sdk?tabs=dotnet&pivots=programming-language-python
[register_aad_app]: https://docs.microsoft.com/azure/cognitive-services/authentication?tabs=powershell#authenticate-with-azure-active-directory
[custom_subdomain]: https://docs.microsoft.com/azure/cognitive-services/authentication#create-a-resource-with-a-custom-subdomain
[azure_identity]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/identity/azure-identity
[default_azure_credential]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/identity/azure-identity#defaultazurecredential
[managed_identity]: https://aka.ms/azsdk/documenttranslation/managed-identity
[sdk_logging_docs]: https://docs.microsoft.com/azure/developer/python/sdk/azure-sdk-logging

[samples]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/translation/azure-ai-translation-document/samples
[sample_authentication]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/translation/azure-ai-translation-document/samples/sample_authentication.py
[sample_authentication_async]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/translation/azure-ai-translation-document/samples/async_samples/sample_authentication_async.py
[sample_begin_translation]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/translation/azure-ai-translation-document/samples/sample_begin_translation.py
[sample_begin_translation_async]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/translation/azure-ai-translation-document/samples/async_samples/sample_begin_translation_async.py
[sample_translate_multiple_inputs]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/translation/azure-ai-translation-document/samples/sample_translate_multiple_inputs.py
[sample_translate_multiple_inputs_async]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/translation/azure-ai-translation-document/samples/async_samples/sample_translate_multiple_inputs_async.py
[sample_check_document_statuses]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/translation/azure-ai-translation-document/samples/sample_check_document_statuses.py
[sample_check_document_statuses_async]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/translation/azure-ai-translation-document/samples/async_samples/sample_check_document_statuses_async.py
[sample_list_translations]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/translation/azure-ai-translation-document/samples/sample_list_translations.py
[sample_list_translations_async]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/translation/azure-ai-translation-document/samples/async_samples/sample_list_translations_async.py
[sample_translation_with_glossaries]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/translation/azure-ai-translation-document/samples/sample_translation_with_glossaries.py
[sample_translation_with_glossaries_async]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/translation/azure-ai-translation-document/samples/async_samples/sample_translation_with_glossaries_async.py
[sample_translation_with_azure_blob]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/translation/azure-ai-translation-document/samples/sample_translation_with_azure_blob.py
[sample_translation_with_azure_blob_async]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/translation/azure-ai-translation-document/samples/async_samples/sample_translation_with_azure_blob_async.py
[sample_translation_with_custom_model]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/translation/azure-ai-translation-document/samples/sample_translation_with_custom_model.py
[sample_translation_with_custom_model_async]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/translation/azure-ai-translation-document/samples/async_samples/sample_translation_with_custom_model_async.py
[sample_begin_translation_with_filters]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/translation/azure-ai-translation-document/samples/sample_begin_translation_with_filters.py

[supported_glossary_formats]: https://docs.microsoft.com/azure/cognitive-services/translator/document-translation/overview#supported-glossary-formats
[custom_translation_article]: https://docs.microsoft.com/azure/cognitive-services/translator/custom-translator/quickstart-build-deploy-custom-model
[tsv_files_wikipedia]: https://wikipedia.org/wiki/Tab-separated_values
[xlf_files_wikipedia]: https://wikipedia.org/wiki/XLIFF
[csv_files_wikipedia]: https://wikipedia.org/wiki/Comma-separated_values
[sample_tsv_file]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/translation/azure-ai-translation-document/samples/assets/glossary_sample.tsv
[sample_csv_file]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/translation/azure-ai-translation-document/samples/assets/glossary_sample.csv
[sample_xlf_file]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/translation/azure-ai-translation-document/samples/assets/glossary_sample.xlf

[cla]: https://cla.microsoft.com
[code_of_conduct]: https://opensource.microsoft.com/codeofconduct/
[coc_faq]: https://opensource.microsoft.com/codeofconduct/faq/
[coc_contact]: mailto:opencode@microsoft.com