1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
|
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------
import functools
import logging
import sys
import azure.ai.vision.imageanalysis as sdk
import azure.ai.vision.imageanalysis.aio as async_sdk
from os import path
from typing import List, Optional, Union
from devtools_testutils import AzureRecordedTestCase, EnvironmentVariableLoader
from azure.core.credentials import AzureKeyCredential, TokenCredential
from azure.core.exceptions import AzureError
from azure.core.pipeline import PipelineRequest
# Set to True to enable SDK logging
LOGGING_ENABLED = True
if LOGGING_ENABLED:
# Create a logger for the 'azure' SDK
# See https://docs.python.org/3/library/logging.html
logger = logging.getLogger("azure")
logger.setLevel(logging.INFO) # INFO or DEBUG
# Configure a console output
handler = logging.StreamHandler(stream=sys.stdout)
logger.addHandler(handler)
ServicePreparer = functools.partial(
EnvironmentVariableLoader,
"vision",
vision_endpoint="https://fake-resource-name.cognitiveservices.azure.com",
vision_key="00000000000000000000000000000000",
)
# The test class name needs to start with "Test" to get collected by pytest
class ImageAnalysisTestBase(AzureRecordedTestCase):
client: sdk.ImageAnalysisClient
async_client: async_sdk.ImageAnalysisClient
connection_url: str
# Set to True to print out all analysis results
PRINT_ANALYSIS_RESULTS = True
# We use a single image (the same one) for all error-free tests, one hosted on the web and one local
IMAGE_URL = "https://aka.ms/azsdk/image-analysis/sample.jpg"
IMAGE_FILE = path.abspath(path.join(path.abspath(__file__), "..", "./sample.jpg"))
def _create_client_for_standard_analysis(self, sync: bool, get_connection_url: bool = False, **kwargs):
endpoint = kwargs.pop("vision_endpoint")
key = kwargs.pop("vision_key")
credential = AzureKeyCredential(key)
self._create_client(endpoint, credential, sync, get_connection_url)
def _create_client_for_standard_analysis_with_entra_id_auth(self, sync: bool, get_connection_url: bool = False, **kwargs):
endpoint = kwargs.pop("vision_endpoint")
# See /tools/azure-sdk-tools/devtools_testutils/azure_recorded_testcase.py for `get_credential`
if sync:
credential = self.get_credential(sdk.ImageAnalysisClient, is_async=False)
else:
credential = self.get_credential(async_sdk.ImageAnalysisClient, is_async=True)
self._create_client(endpoint, credential, sync, get_connection_url)
def _create_client_for_authentication_failure(self, sync: bool, **kwargs):
endpoint = kwargs.pop("vision_endpoint")
key = "00000000000000000000000000000000"
credential = AzureKeyCredential(key)
self._create_client(endpoint, credential, sync, False)
def _create_client(self, endpoint: str, credential: Union[AzureKeyCredential, TokenCredential], sync: bool, get_connection_url: bool):
if sync:
self.client = sdk.ImageAnalysisClient(
endpoint=endpoint,
credential=credential,
logging_enable=LOGGING_ENABLED,
raw_request_hook=self._raw_request_check if get_connection_url else None,
)
assert self.client is not None
else:
self.async_client = async_sdk.ImageAnalysisClient(
endpoint=endpoint,
credential=credential,
logging_enable=LOGGING_ENABLED,
raw_request_hook=self._raw_request_check if get_connection_url else None,
)
assert self.async_client is not None
def _raw_request_check(self, request: PipelineRequest):
self.connection_url = request.http_request.url
print(f"Connection URL: {request.http_request.url}")
def _do_analysis(
self,
image_source: str,
visual_features: List[sdk.models.VisualFeatures],
language: Optional[str] = None,
gender_neutral_caption: Optional[bool] = None,
smart_crops_aspect_ratios: Optional[List[float]] = None,
model_version: Optional[str] = None,
query_params: Optional[dict] = None,
**kwargs,
):
if "http" in image_source:
result = self.client.analyze_from_url(
image_url=image_source,
visual_features=visual_features,
language=language,
gender_neutral_caption=gender_neutral_caption,
smart_crops_aspect_ratios=smart_crops_aspect_ratios,
model_version=model_version,
params=query_params,
)
else:
# Load image to analyze into a 'bytes' object
with open(image_source, "rb") as f:
image_data = bytes(f.read())
result = self.client.analyze(
image_data=image_data,
visual_features=visual_features,
language=language,
gender_neutral_caption=gender_neutral_caption,
smart_crops_aspect_ratios=smart_crops_aspect_ratios,
model_version=model_version,
params=query_params,
)
# Optional: console printout of all results
if ImageAnalysisTestBase.PRINT_ANALYSIS_RESULTS:
ImageAnalysisTestBase._print_analysis_results(result)
# Validate all results
ImageAnalysisTestBase._validate_result(
result, visual_features, gender_neutral_caption, smart_crops_aspect_ratios
)
# Validate that additional query parameters exists in the connection URL, if specify
if query_params is not None:
ImageAnalysisTestBase._validate_query_parameters(query_params, self.connection_url)
async def _do_async_analysis(
self,
image_source: str,
visual_features: List[sdk.models.VisualFeatures],
language: Optional[str] = None,
gender_neutral_caption: Optional[bool] = None,
smart_crops_aspect_ratios: Optional[List[float]] = None,
model_version: Optional[str] = None,
query_params: Optional[dict] = None,
**kwargs,
):
if "http" in image_source:
result = await self.async_client.analyze_from_url(
image_url=image_source,
visual_features=visual_features,
language=language,
gender_neutral_caption=gender_neutral_caption,
smart_crops_aspect_ratios=smart_crops_aspect_ratios,
model_version=model_version,
params=query_params,
)
else:
# Load image to analyze into a 'bytes' object
with open(image_source, "rb") as f:
image_data = bytes(f.read())
result = await self.async_client.analyze(
image_data=image_data,
visual_features=visual_features,
language=language,
gender_neutral_caption=gender_neutral_caption,
smart_crops_aspect_ratios=smart_crops_aspect_ratios,
model_version=model_version,
params=query_params,
)
# Optional: console printout of all results
if ImageAnalysisTestBase.PRINT_ANALYSIS_RESULTS:
ImageAnalysisTestBase._print_analysis_results(result)
# Validate all results
ImageAnalysisTestBase._validate_result(
result, visual_features, gender_neutral_caption, smart_crops_aspect_ratios
)
# Validate that additional query parameters exists in the connection URL, if specify
if query_params is not None:
ImageAnalysisTestBase._validate_query_parameters(query_params, self.connection_url)
def _do_analysis_with_error(
self,
image_source: str,
visual_features: List[sdk.models.VisualFeatures],
expected_status_code: int,
expected_message_contains: str,
**kwargs,
):
try:
if "http" in image_source:
result = self.client.analyze_from_url(image_url=image_source, visual_features=visual_features)
else:
# Load image to analyze into a 'bytes' object
with open(image_source, "rb") as f:
image_data = bytes(f.read())
result = self.client.analyze(image_data=image_data, visual_features=visual_features)
except AzureError as e:
print(e)
assert hasattr(e, "status_code")
assert e.status_code == expected_status_code
assert expected_message_contains in e.message
return
assert False # We should not get here
async def _do_async_analysis_with_error(
self,
image_source: str,
visual_features: List[sdk.models.VisualFeatures],
expected_status_code: int,
expected_message_contains: str,
**kwargs,
):
try:
if "http" in image_source:
result = await self.async_client.analyze_from_url(
image_url=image_source, visual_features=visual_features
)
else:
# Load image to analyze into a 'bytes' object
with open(image_source, "rb") as f:
image_data = bytes(f.read())
result = await self.async_client.analyze(image_data=image_data, visual_features=visual_features)
except AzureError as e:
print(e)
assert hasattr(e, "status_code")
assert e.status_code == expected_status_code
assert expected_message_contains in e.message
return
assert False # We should not get here
@staticmethod
def _validate_query_parameters(query_params: dict, connection_url: str):
assert len(query_params) > 0
query_string = ""
for key, value in query_params.items():
query_string += "&" + key + "=" + value
query_string = "?" + query_string[1:]
assert query_string in connection_url
@staticmethod
def _validate_result(
result: sdk.models.ImageAnalysisResult,
expected_features: List[sdk.models.VisualFeatures],
gender_neutral_caption: Optional[bool] = None,
smart_crops_aspect_ratios: Optional[List[float]] = None,
):
ImageAnalysisTestBase._validate_metadata(result)
ImageAnalysisTestBase._validate_model_version(result)
if expected_features != None and sdk.models.VisualFeatures.CAPTION in expected_features:
ImageAnalysisTestBase._validate_caption(result, gender_neutral_caption)
else:
assert result.caption is None
if expected_features != None and sdk.models.VisualFeatures.DENSE_CAPTIONS in expected_features:
ImageAnalysisTestBase._validate_dense_captions(result)
else:
assert result.dense_captions is None
if expected_features != None and sdk.models.VisualFeatures.OBJECTS in expected_features:
ImageAnalysisTestBase._validate_objects(result)
else:
assert result.objects is None
if expected_features != None and sdk.models.VisualFeatures.TAGS in expected_features:
ImageAnalysisTestBase._validate_tags(result)
else:
assert result.tags is None
if expected_features != None and sdk.models.VisualFeatures.PEOPLE in expected_features:
ImageAnalysisTestBase._validate_people(result)
else:
assert result.people is None
if expected_features != None and sdk.models.VisualFeatures.SMART_CROPS in expected_features:
ImageAnalysisTestBase._validate_smart_crops(result, smart_crops_aspect_ratios)
else:
assert result.smart_crops is None
if expected_features != None and sdk.models.VisualFeatures.READ in expected_features:
ImageAnalysisTestBase._validate_read(result)
else:
assert result.read is None
@staticmethod
def _validate_metadata(result: sdk.models.ImageAnalysisResult):
assert result.metadata is not None
assert result.metadata.height == 576
assert result.metadata.width == 864
@staticmethod
def _validate_model_version(result: sdk.models.ImageAnalysisResult):
assert result.model_version is not None
assert result.model_version == "2023-10-01"
@staticmethod
def _validate_caption(result: sdk.models.ImageAnalysisResult, gender_neutral_caption: Optional[bool] = None):
assert result.caption is not None
assert result.caption.text is not None
if gender_neutral_caption is not None and gender_neutral_caption:
assert "person" in result.caption.text.lower()
else:
assert "woman" in result.caption.text.lower()
assert "table" in result.caption.text.lower()
assert "laptop" in result.caption.text.lower()
assert 0.0 < result.caption.confidence < 1.0
@staticmethod
def _validate_dense_captions(result: sdk.models.ImageAnalysisResult):
assert result.dense_captions is not None
assert len(result.dense_captions.list) > 1
# First dense caption should apply to the whole image, and be identical to the caption found in CaptionResult
first_dense_caption = result.dense_captions.list[0]
assert first_dense_caption is not None
assert first_dense_caption.text is not None
if result.caption is not None:
assert first_dense_caption.text == result.caption.text
else:
assert first_dense_caption.text is not None
assert len(first_dense_caption.text) > 0
assert first_dense_caption.bounding_box is not None
assert first_dense_caption.bounding_box.x == 0
assert first_dense_caption.bounding_box.y == 0
assert first_dense_caption.bounding_box.height == result.metadata.height
assert first_dense_caption.bounding_box.width == result.metadata.width
# Sanity checks on all dense captions
for dense_caption in result.dense_captions.list:
assert dense_caption is not None
assert dense_caption.text is not None
assert len(dense_caption.text) > 0
assert dense_caption.confidence is not None
assert 0.0 < dense_caption.confidence < 1.0
assert dense_caption.bounding_box is not None
assert dense_caption.bounding_box.x >= 0
assert dense_caption.bounding_box.y >= 0
assert dense_caption.bounding_box.height <= result.metadata.height - dense_caption.bounding_box.y
assert dense_caption.bounding_box.width <= result.metadata.width - dense_caption.bounding_box.x
# Make sure each dense caption is unique
for i, dense_caption in enumerate(result.dense_captions.list):
for other_dense_caption in result.dense_captions.list[i + 1 :]:
# Do not include the check below. It's okay to have two identical dense captions since they have different bounding boxes.
# assert other_dense_caption.text != dense_caption.text
assert not (
other_dense_caption.bounding_box.x == dense_caption.bounding_box.x
and other_dense_caption.bounding_box.y == dense_caption.bounding_box.y
and other_dense_caption.bounding_box.height == dense_caption.bounding_box.height
and other_dense_caption.bounding_box.width == dense_caption.bounding_box.width
)
@staticmethod
def _validate_objects(result: sdk.models.ImageAnalysisResult):
objects = result.objects
assert objects is not None
assert len(objects.list) > 1
found1 = False
for object in objects.list:
assert object is not None
assert object.tags is not None
assert len(object.tags) == 1
tag = object.tags[0]
assert tag is not None
assert tag.name is not None
assert len(tag.name) > 0
assert 0.0 < tag.confidence < 1.0
# We expect to see this in the list of objects
if tag.name.lower() == "person":
found1 = True
assert found1
# Make sure each object box is unique
for i in range(len(objects.list)):
for j in range(i + 1, len(objects.list)):
box_i = objects.list[i].bounding_box
box_j = objects.list[j].bounding_box
assert not (
box_i.x == box_j.x
and box_i.y == box_j.y
and box_i.height == box_j.height
and box_i.width == box_j.width
)
@staticmethod
def _validate_tags(result: sdk.models.ImageAnalysisResult):
tags = result.tags
assert tags is not None
assert tags.list is not None
assert len(tags.list) > 1
found1, found2 = False, False
for tag in tags.list:
assert tag.name is not None
assert len(tag.name) > 0
assert 0.0 < tag.confidence < 1.0
if tag.name.lower() == "person":
found1 = True
if tag.name.lower() == "laptop":
found2 = True
assert found1
assert found2
# Make sure each tag is unique
for i in range(len(tags.list)):
for j in range(i + 1, len(tags.list)):
assert tags.list[j].name != tags.list[i].name
@staticmethod
def _validate_people(result: sdk.models.ImageAnalysisResult):
assert result.people is not None
assert len(result.people.list) > 0
for person in result.people.list:
assert 0.0 < person.confidence < 1.0
assert person.bounding_box.x >= 0
assert person.bounding_box.y >= 0
assert person.bounding_box.height <= result.metadata.height - person.bounding_box.y
assert person.bounding_box.width <= result.metadata.width - person.bounding_box.x
# Make sure each person is unique
for i, person in enumerate(result.people.list):
for other_person in result.people.list[i + 1 :]:
assert not (
other_person.bounding_box.x == person.bounding_box.x
and other_person.bounding_box.y == person.bounding_box.y
and other_person.bounding_box.height == person.bounding_box.height
and other_person.bounding_box.width == person.bounding_box.width
)
@staticmethod
def _validate_smart_crops(
result: sdk.models.ImageAnalysisResult, smart_crops_aspect_ratios: Optional[List[float]] = None
):
assert result.smart_crops is not None
crop_regions = result.smart_crops.list
if smart_crops_aspect_ratios is None:
assert len(crop_regions) == 1
assert crop_regions[0].aspect_ratio >= 0.5 and crop_regions[0].aspect_ratio <= 2.0
else:
assert len(crop_regions) == len(smart_crops_aspect_ratios)
for i, region in enumerate(crop_regions):
assert region.aspect_ratio == smart_crops_aspect_ratios[i]
assert region.aspect_ratio >= 0.75 and region.aspect_ratio <= 1.8
for region in crop_regions:
assert region.bounding_box.x >= 0
assert region.bounding_box.y >= 0
assert region.bounding_box.height <= result.metadata.height - region.bounding_box.y
assert region.bounding_box.width <= result.metadata.width - region.bounding_box.x
# Make sure each bounding box is unique
for i, region in enumerate(crop_regions):
for other_region in crop_regions[i + 1 :]:
assert not (
other_region.bounding_box.x == region.bounding_box.x
and other_region.bounding_box.y == region.bounding_box.y
and other_region.bounding_box.height == region.bounding_box.height
and other_region.bounding_box.width == region.bounding_box.width
)
@staticmethod
def _validate_read(result: sdk.models.ImageAnalysisResult):
read = result.read
assert read is not None
assert read.blocks is not None
assert len(read.blocks) == 1
block = read.blocks[0]
assert block is not None
lines = block.lines
assert lines is not None
assert len(lines) == 3
# Do some validation on the first line
line = lines[0]
assert line is not None
assert line.text == "Sample text"
polygon = line.bounding_polygon
assert polygon is not None
assert len(polygon) == 4
for i in range(len(polygon)):
assert polygon[i].x > 0.0
assert polygon[i].y > 0.0
# Do some validation on the 3rd line (including word validation)
line = lines[2]
assert line is not None
assert line.text == "123 456"
polygon = line.bounding_polygon
assert polygon is not None
assert len(polygon) == 4
for i in range(len(polygon)):
assert polygon[i].x > 0.0
assert polygon[i].y > 0.0
words = line.words
assert words is not None
assert len(words) == 2
word = words[1]
assert word is not None
assert word.text == "456"
assert word.confidence > 0.0
assert word.confidence < 1.0
polygon = word.bounding_polygon
assert polygon is not None
assert len(polygon) == 4
for i in range(len(polygon)):
assert polygon[i].x > 0.0
assert polygon[i].y > 0.0
@staticmethod
def _print_analysis_results(result: sdk.models.ImageAnalysisResult):
print(" Image height: {}".format(result.metadata.height))
print(" Image width: {}".format(result.metadata.width))
print(" Model version: {}".format(result.model_version))
if result.caption is not None:
print(" Caption:")
print(" '{}', Confidence {:.4f}".format(result.caption.text, result.caption.confidence))
if result.dense_captions is not None:
print(" Dense Captions:")
for caption in result.dense_captions.list:
print(" '{}', {}, Confidence: {:.4f}".format(caption.text, caption.bounding_box, caption.confidence))
if result.objects is not None:
print(" Objects:")
for object in result.objects.list:
print(
" '{}', {}, Confidence: {:.4f}".format(
object.tags[0].name, object.bounding_box, object.tags[0].confidence
)
)
if result.tags is not None:
print(" Tags:")
for tag in result.tags.list:
print(" '{}', Confidence {:.4f}".format(tag.name, tag.confidence))
if result.people is not None:
print(" People:")
for person in result.people.list:
print(" {}, Confidence {:.4f}".format(person.bounding_box, person.confidence))
if result.smart_crops is not None:
print(" Smart Cropping:")
for smart_crop in result.smart_crops.list:
print(" Aspect ratio {}: Smart crop {}".format(smart_crop.aspect_ratio, smart_crop.bounding_box))
if result.read is not None:
print(" Read:")
for line in result.read.blocks[0].lines:
print(f" Line: '{line.text}', Bounding box {line.bounding_polygon}")
for word in line.words:
print(
f" Word: '{word.text}', Bounding polygon {word.bounding_polygon}, Confidence {word.confidence:.4f}"
)
|