File: sample_agents_auto_function_call.py

package info (click to toggle)
python-azure 20250829%2Bgit-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 756,824 kB
  • sloc: python: 6,224,989; ansic: 804; javascript: 287; makefile: 198; sh: 195; xml: 109
file content (104 lines) | stat: -rw-r--r-- 3,815 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# pylint: disable=line-too-long,useless-suppression
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------

"""
DESCRIPTION:
    This sample demonstrates how to enable automatic function calls by calling `enable_auto_function_calls`
    using a synchronous client.

USAGE:
    python sample_agents_auto_function_call.py

    Before running the sample:

    pip install azure-ai-agents azure-identity

    Set these environment variables with your own values:
    1) PROJECT_ENDPOINT - The Azure AI Project endpoint, as found in the Overview
                          page of your Azure AI Foundry portal.
    2) MODEL_DEPLOYMENT_NAME - The deployment name of the AI model, as found under the "Name" column in
       the "Models + endpoints" tab in your Azure AI Foundry project.
"""

import os, sys
from azure.ai.projects import AIProjectClient
from azure.identity import DefaultAzureCredential
from azure.ai.agents.models import FunctionTool
from samples.utils.user_functions import user_functions

project_client = AIProjectClient(
    endpoint=os.environ["PROJECT_ENDPOINT"],
    credential=DefaultAzureCredential(),
)

with project_client:
    agents_client = project_client.agents

    agent = agents_client.create_agent(
        model=os.environ["MODEL_DEPLOYMENT_NAME"],
        name="my-agent",
        instructions="You are helpful agent",
    )

    # To enable tool calls executed automatically you can pass a functions in one of these types:
    # Set[Callable[..., Any]], _models.FunctionTool, or _models.ToolSet
    # Example 1:
    #    agents_client.enable_auto_function_calls(user_functions)
    # Example 2:
    #   functions = FunctionTool(user_functions)
    #   agents_client.enable_auto_function_calls(functions)
    # Example 3:
    #   functions = FunctionTool(user_functions)
    #   toolset = ToolSet()
    #   toolset.add(functions)
    #   agents_client.enable_auto_function_calls(toolset)
    agents_client.enable_auto_function_calls(user_functions)
    # Notices that `enable_auto_function_calls` can be made at any time.

    functions = FunctionTool(user_functions)

    # Initialize agent.
    # Whether you would like the functions to be called automatically or not, it is required to pass functions as tools or toolset.
    # NOTE: To reuse existing agent, fetch it with get_agent(agent_id)
    agent = agents_client.create_agent(
        model=os.environ["MODEL_DEPLOYMENT_NAME"],
        name="my-agent",
        instructions="You are a helpful agent",
        tools=functions.definitions,
    )

    print(f"Created agent, ID: {agent.id}")

    # Create thread for communication
    thread = agents_client.threads.create()
    print(f"Created thread, ID: {thread.id}")

    # Create message to thread
    message = agents_client.messages.create(
        thread_id=thread.id,
        role="user",
        content="Hello, send an email with the datetime and weather information in New York?",
    )
    print(f"Created message, ID: {message.id}")

    # Create and process agent run in thread with tools
    run = agents_client.runs.create_and_process(thread_id=thread.id, agent_id=agent.id)
    print(f"Run finished with status: {run.status}")

    if run.status == "failed":
        print(f"Run failed: {run.last_error}")

    # Clean-up and delete the agent once the run is finished.
    # NOTE: Comment out this line if you plan to reuse the agent later.
    agents_client.delete_agent(agent.id)
    print("Deleted agent")

    # Fetch and log all messages
    messages = agents_client.messages.list(thread_id=thread.id)
    for msg in messages:
        if msg.text_messages:
            last_text = msg.text_messages[-1]
            print(f"{msg.role}: {last_text.text.value}")