1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
# pylint: disable=line-too-long,useless-suppression
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------
"""
DESCRIPTION:
This sample demonstrates how to use Agent operations with the Deep Research tool from
the Azure Agents service through the synchronous Python client. Deep Research issues
external Bing Search queries and invokes an LLM, so each run can take several minutes
to complete.
For more information see the Deep Research Tool document: https://aka.ms/agents-deep-research
USAGE:
python sample_agents_deep_research.py
Before running the sample:
pip install azure-identity
pip install --pre azure-ai-projects
Set this environment variables with your own values:
1) PROJECT_ENDPOINT - The Azure AI Project endpoint, as found in the Overview
page of your Azure AI Foundry portal.
2) MODEL_DEPLOYMENT_NAME - The deployment name of the arbitration AI model, as found under the "Name" column in
the "Models + endpoints" tab in your Azure AI Foundry project.
3) DEEP_RESEARCH_MODEL_DEPLOYMENT_NAME - The deployment name of the Deep Research AI model, as found under the "Name" column in
the "Models + endpoints" tab in your Azure AI Foundry project.
4) BING_RESOURCE_NAME - The resource name of the Bing connection, you can find it in the "Connected resources" tab
in the Management Center of your AI Foundry project.
"""
import os
import time
import re
from typing import Optional, Dict, List
from azure.ai.projects import AIProjectClient
from azure.identity import DefaultAzureCredential
from azure.ai.agents import AgentsClient
from azure.ai.agents.models import DeepResearchTool, MessageRole, ThreadMessage
def convert_citations_to_superscript(markdown_content):
"""
Convert citation markers in markdown content to HTML superscript format.
This function finds citation patterns like [78:12+source] and converts them to
HTML superscript tags <sup>12</sup> for better formatting in markdown documents.
It also consolidates consecutive citations by sorting and deduplicating them.
Args:
markdown_content (str): The markdown content containing citation markers
Returns:
str: The markdown content with citations converted to HTML superscript format
"""
# Pattern to match [number:number+source]
pattern = r"\u3010\d+:(\d+)\u2020source\u3011"
# Replace with <sup>captured_number</sup>
def replacement(match):
citation_number = match.group(1)
return f"<sup>{citation_number}</sup>"
# First, convert all citation markers to superscript
converted_text = re.sub(pattern, replacement, markdown_content)
# Then, consolidate consecutive superscript citations
# Pattern to match multiple superscript tags with optional commas/spaces
# Matches: <sup>5</sup>,<sup>4</sup>,<sup>5</sup> or <sup>5</sup><sup>4</sup><sup>5</sup>
consecutive_pattern = r"(<sup>\d+</sup>)(\s*,?\s*<sup>\d+</sup>)+"
def consolidate_and_sort_citations(match):
# Extract all citation numbers from the matched text
citation_text = match.group(0)
citation_numbers = re.findall(r"<sup>(\d+)</sup>", citation_text)
# Convert to integers, remove duplicates, and sort
unique_sorted_citations = sorted(set(int(num) for num in citation_numbers))
# If only one citation, return simple format
if len(unique_sorted_citations) == 1:
return f"<sup>{unique_sorted_citations[0]}</sup>"
# If multiple citations, return comma-separated format
citation_list = ",".join(str(num) for num in unique_sorted_citations)
return f"<sup>{citation_list}</sup>"
# Remove consecutive duplicate citations and sort them
final_text = re.sub(consecutive_pattern, consolidate_and_sort_citations, converted_text)
return final_text
def fetch_and_print_new_agent_response(
thread_id: str,
agents_client: AgentsClient,
last_message_id: Optional[str] = None,
progress_filename: str = "research_progress.txt",
) -> Optional[str]:
"""
Fetch the interim agent responses and citations from a thread and write them to a file.
Args:
thread_id (str): The ID of the thread to fetch messages from
agents_client (AgentsClient): The Azure AI agents client instance
last_message_id (Optional[str], optional): ID of the last processed message
to avoid duplicates. Defaults to None.
progress_filename (str, optional): Name of the file to write progress to.
Defaults to "research_progress.txt".
Returns:
Optional[str]: The ID of the latest message if new content was found,
otherwise returns the last_message_id
"""
response = agents_client.messages.get_last_message_by_role(
thread_id=thread_id,
role=MessageRole.AGENT,
)
if not response or response.id == last_message_id:
return last_message_id # No new content
# If not a "cot_summary", return.
if not any(t.text.value.startswith("cot_summary:") for t in response.text_messages):
return last_message_id
print("\nAgent response:")
agent_text = "\n".join(t.text.value.replace("cot_summary:", "Reasoning:") for t in response.text_messages)
print(agent_text)
# Print citation annotations (if any)
for ann in response.url_citation_annotations:
print(f"URL Citation: [{ann.url_citation.title}]({ann.url_citation.url})")
# Write progress to file
with open(progress_filename, "a", encoding="utf-8") as fp:
fp.write("\nAGENT>\n")
fp.write(agent_text)
fp.write("\n")
for ann in response.url_citation_annotations:
fp.write(f"Citation: [{ann.url_citation.title}]({ann.url_citation.url})\n")
return response.id
def create_research_summary(message: ThreadMessage, filepath: str = "research_report.md") -> None:
"""
Create a formatted research report from an agent's thread message with numbered citations
and a references section.
Args:
message (ThreadMessage): The thread message containing the agent's research response
filepath (str, optional): Path where the research summary will be saved.
Defaults to "research_report.md".
Returns:
None: This function doesn't return a value, it writes to a file
"""
if not message:
print("No message content provided, cannot create research report.")
return
with open(filepath, "w", encoding="utf-8") as fp:
# Write text summary
text_summary = "\n\n".join([t.text.value.strip() for t in message.text_messages])
# Convert citations to superscript format
text_summary = convert_citations_to_superscript(text_summary)
fp.write(text_summary)
# Write unique URL citations with numbered bullets, if present
if message.url_citation_annotations:
fp.write("\n\n## Citations\n")
seen_urls = set()
# Dictionary mapping full citation content to ordinal number
citations_ordinals: Dict[str, int] = {}
# List of citation URLs indexed by ordinal (0-based)
text_citation_list: List[str] = []
for ann in message.url_citation_annotations:
url = ann.url_citation.url
title = ann.url_citation.title or url
if url not in seen_urls:
# Use the full annotation text as the key to avoid conflicts
citation_key = ann.text if ann.text else f"fallback_{url}"
# Only add if this citation content hasn't been seen before
if citation_key not in citations_ordinals:
# Assign next available ordinal number (1-based for display)
ordinal = len(text_citation_list) + 1
citations_ordinals[citation_key] = ordinal
text_citation_list.append(f"[{title}]({url})")
seen_urls.add(url)
# Write citations in order they were added
for i, citation_text in enumerate(text_citation_list):
fp.write(f"{i + 1}. {citation_text}\n")
print(f"Research report written to '{filepath}'.")
if __name__ == "__main__":
project_client = AIProjectClient(
endpoint=os.environ["PROJECT_ENDPOINT"],
credential=DefaultAzureCredential(),
)
# [START create_agent_with_deep_research_tool]
bing_connection = project_client.connections.get(name=os.environ["BING_RESOURCE_NAME"])
# Initialize a Deep Research tool with Bing Connection ID and Deep Research model deployment name
deep_research_tool = DeepResearchTool(
bing_grounding_connection_id=bing_connection.id,
deep_research_model=os.environ["DEEP_RESEARCH_MODEL_DEPLOYMENT_NAME"],
)
# Create Agent with the Deep Research tool and process Agent run
with project_client:
with project_client.agents as agents_client:
# Create a new agent that has the Deep Research tool attached.
# NOTE: To add Deep Research to an existing agent, fetch it with `get_agent(agent_id)` and then,
# update the agent with the Deep Research tool.
agent = agents_client.create_agent(
model=os.environ["MODEL_DEPLOYMENT_NAME"],
name="my-agent",
instructions="You are a helpful Agent that assists in researching scientific topics.",
tools=deep_research_tool.definitions,
)
# [END create_agent_with_deep_research_tool]
print(f"Created agent, ID: {agent.id}")
# Create thread for communication
thread = agents_client.threads.create()
print(f"Created thread, ID: {thread.id}")
# Create message to thread
message = agents_client.messages.create(
thread_id=thread.id,
role="user",
content=(
"Research the current state of studies on orca intelligence and orca language, including what is currently known about orcas' cognitive capabilities and communication systems."
),
)
print(f"Created message, ID: {message.id}")
print(f"Start processing the message... this may take a few minutes to finish. Be patient!")
# Poll the run as long as run status is queued or in progress
run = agents_client.runs.create(thread_id=thread.id, agent_id=agent.id)
last_message_id = None
while run.status in ("queued", "in_progress"):
time.sleep(1)
run = agents_client.runs.get(thread_id=thread.id, run_id=run.id)
last_message_id = fetch_and_print_new_agent_response(
thread_id=thread.id,
agents_client=agents_client,
last_message_id=last_message_id,
progress_filename="research_progress.txt",
)
print(f"Run status: {run.status}")
# Once the run is finished, print the final status and ID
print(f"Run finished with status: {run.status}, ID: {run.id}")
if run.status == "failed":
print(f"Run failed: {run.last_error}")
# Fetch the final message from the agent in the thread and create a research summary
final_message = agents_client.messages.get_last_message_by_role(thread_id=thread.id, role=MessageRole.AGENT)
if final_message:
create_research_summary(final_message)
# Clean-up and delete the agent once the run is finished.
# NOTE: Comment out this line if you plan to reuse the agent later.
agents_client.delete_agent(agent.id)
print("Deleted agent")
|