File: sample_agents_fabric.py

package info (click to toggle)
python-azure 20250829%2Bgit-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 756,824 kB
  • sloc: python: 6,224,989; ansic: 804; javascript: 287; makefile: 198; sh: 195; xml: 109
file content (90 lines) | stat: -rw-r--r-- 3,084 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# pylint: disable=line-too-long,useless-suppression
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------

"""
FILE: sample_agents_fabric.py

DESCRIPTION:
    This sample demonstrates how to use Agent operations with the Microsoft Fabric grounding tool from
    the Azure Agents service using a synchronous client.

USAGE:
    python sample_agents_fabric.py

    Before running the sample:

    pip install azure-identity
    pip install --pre azure-ai-projects

    Set this environment variables with your own values:
    1) PROJECT_ENDPOINT - The Azure AI Project endpoint, as found in the Overview
                          page of your Azure AI Foundry portal.
    2) MODEL_DEPLOYMENT_NAME - The deployment name of the AI model, as found under the "Name" column in
       the "Models + endpoints" tab in your Azure AI Foundry project.
    3) FABRIC_CONNECTION_NAME  - The name of a connection to the Microsoft Fabric resource as it is
       listed in Azure AI Foundry connected resources.
"""

import os
from azure.ai.projects import AIProjectClient
from azure.identity import DefaultAzureCredential
from azure.ai.agents.models import FabricTool, ListSortOrder

project_client = AIProjectClient(
    endpoint=os.environ["PROJECT_ENDPOINT"],
    credential=DefaultAzureCredential(),
)

# [START create_agent_with_fabric_tool]
conn_id = project_client.connections.get(os.environ["FABRIC_CONNECTION_NAME"]).id

print(conn_id)

# Initialize an Agent Fabric tool and add the connection id
fabric = FabricTool(connection_id=conn_id)

# Create an Agent with the Fabric tool and process an Agent run
with project_client:
    agents_client = project_client.agents

    agent = agents_client.create_agent(
        model=os.environ["MODEL_DEPLOYMENT_NAME"],
        name="my-agent",
        instructions="You are a helpful agent",
        tools=fabric.definitions,
    )
    # [END create_agent_with_fabric_tool]
    print(f"Created Agent, ID: {agent.id}")

    # Create thread for communication
    thread = agents_client.threads.create()
    print(f"Created thread, ID: {thread.id}")

    # Create message to thread
    message = agents_client.messages.create(
        thread_id=thread.id,
        role="user",
        content="<User query against Fabric resource>",
    )
    print(f"Created message, ID: {message.id}")

    # Create and process an Agent run in thread with tools
    run = agents_client.runs.create_and_process(thread_id=thread.id, agent_id=agent.id)
    print(f"Run finished with status: {run.status}")

    if run.status == "failed":
        print(f"Run failed: {run.last_error}")

    # Delete the Agent when done
    agents_client.delete_agent(agent.id)
    print("Deleted agent")

    # Fetch and log all messages
    messages = agents_client.messages.list(thread_id=thread.id, order=ListSortOrder.ASCENDING)
    for msg in messages:
        if msg.text_messages:
            last_text = msg.text_messages[-1]
            print(f"{msg.role}: {last_text.text.value}")