1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
|
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------
"""
DESCRIPTION:
This sample demonstrates how to use basic agent operations from
the Azure Agents service using a synchronous client.
USAGE:
python sample_agents_basics.py
Before running the sample:
pip install azure-ai-projects azure-ai-agents azure-identity
Set these environment variables with your own values:
1) PROJECT_ENDPOINT - The Azure AI Project endpoint, as found in the Overview
page of your Azure AI Foundry portal.
2) MODEL_DEPLOYMENT_NAME - The deployment name of the AI model, as found under the "Name" column in
the "Models + endpoints" tab in your Azure AI Foundry project.
"""
import os, time
from azure.ai.projects import AIProjectClient
from azure.identity import DefaultAzureCredential
from azure.ai.agents.models import ListSortOrder
import sys
import logging
# Enable detailed console logs across Azure libraries
azure_logger = logging.getLogger("azure")
azure_logger.setLevel(logging.DEBUG)
azure_logger.addHandler(logging.StreamHandler(stream=sys.stdout))
# Exclude details logs for network calls associated with getting Entra ID token
identity_logger = logging.getLogger("azure.identity")
identity_logger.setLevel(logging.ERROR)
# Make sure regular (redacted) detailed azure.core logs are not shown, as we are about to
# turn on non-redacted logs by passing 'logging_enable=True' to the client constructor
# (which are implemented as a separate logging policy)
logger = logging.getLogger("azure.core.pipeline.policies.http_logging_policy")
logger.setLevel(logging.ERROR)
# Pass in 'logging_enable=True' to your client constructor for un-redacted logs
project_client = AIProjectClient(
endpoint=os.environ["PROJECT_ENDPOINT"], credential=DefaultAzureCredential(), logging_enable=True
)
with project_client:
agents_client = project_client.agents
# [START create_agent]
agent = agents_client.create_agent(
model=os.environ["MODEL_DEPLOYMENT_NAME"],
name="my-agent",
instructions="You are helpful agent",
)
# [END create_agent]
print(f"Created agent, agent ID: {agent.id}")
# [START create_thread]
thread = agents_client.threads.create()
# [END create_thread]
print(f"Created thread, thread ID: {thread.id}")
# List all threads for the agent
# [START list_threads]
threads = agents_client.threads.list()
# [END list_threads]
# [START create_message]
message = agents_client.messages.create(thread_id=thread.id, role="user", content="Hello, tell me a joke")
# [END create_message]
print(f"Created message, message ID: {message.id}")
# [START create_run]
run = agents_client.runs.create(thread_id=thread.id, agent_id=agent.id)
# Poll the run as long as run status is queued or in progress
while run.status in ["queued", "in_progress", "requires_action"]:
# Wait for a second
time.sleep(1)
run = agents_client.runs.get(thread_id=thread.id, run_id=run.id)
# [END create_run]
print(f"Run status: {run.status}")
if run.status == "failed":
print(f"Run error: {run.last_error}")
agents_client.delete_agent(agent.id)
print("Deleted agent")
# [START list_messages]
messages = agents_client.messages.list(thread_id=thread.id, order=ListSortOrder.ASCENDING)
for msg in messages:
if msg.text_messages:
last_text = msg.text_messages[-1]
print(f"{msg.role}: {last_text.text.value}")
# [END list_messages]
|